JPS5848038B2 - Denkimetsukiho - Google Patents

Denkimetsukiho

Info

Publication number
JPS5848038B2
JPS5848038B2 JP14471075A JP14471075A JPS5848038B2 JP S5848038 B2 JPS5848038 B2 JP S5848038B2 JP 14471075 A JP14471075 A JP 14471075A JP 14471075 A JP14471075 A JP 14471075A JP S5848038 B2 JPS5848038 B2 JP S5848038B2
Authority
JP
Japan
Prior art keywords
nickel
current density
sodium
electrodeposition
limited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14471075A
Other languages
Japanese (ja)
Other versions
JPS5268034A (en
Inventor
喜夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP14471075A priority Critical patent/JPS5848038B2/en
Publication of JPS5268034A publication Critical patent/JPS5268034A/en
Publication of JPS5848038B2 publication Critical patent/JPS5848038B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 本発明はニッケル・リン合金の電着法に関するもので、
スルファミン酸ニッケルと次亜リン酸ナトリウムあるい
は亜リン酸ナトリウムを用いることにより、能率の良い
高電流密度処理で、しかも特性の良い被膜を得ることが
可能になった。
[Detailed Description of the Invention] The present invention relates to a method for electrodeposition of nickel-phosphorus alloy.
By using nickel sulfamate and sodium hypophosphite or sodium phosphite, it has become possible to obtain a film with good properties through efficient high current density processing.

従来から広く行なわれてきていたニッケルK着液におい
て、硫酸ニッケル、塩化ニッケルを主体とした液は、通
常、有機光択剤を添加しなければ光択・応力・強度の面
で問題が多く、実用に耐えず、又高電流密度による高速
電着も不可能であった。
In nickel K deposition, which has been widely used for a long time, liquids mainly composed of nickel sulfate and nickel chloride usually have many problems in terms of photoselectivity, stress, and strength unless an organic photoselector is added. It was not practical, and high-speed electrodeposition using high current density was also impossible.

さらに、上記の液に用いる有機光択剤は、般に硫黄を゜
含む添加剤を使用するため、竃着物の耐熱性及び耐触性
の劣化が生じるという欠点があり、温度の上昇する環境
あるいは腐触環境においては長時間の信頼性を得られな
かった。
Furthermore, the organic photoselectors used in the above liquids generally use additives containing sulfur, which has the disadvantage of deteriorating the heat resistance and touch resistance of the coating. Long-term reliability could not be achieved in a corrosive environment.

この硫酸ニッケルを主成分とした液に変えて、スルフア
ミノ酸ニッケル液が有機光択剤を使用しない電解高速度
メッキ液として使われているが、有機光択剤を使用しな
いため強度的に低く、あまり広い用途に使えないのが現
状である。
In place of this nickel sulfate-based solution, a nickel sulfamino acid solution is used as an electrolytic high-speed plating solution that does not use an organic photo-selective agent, but because it does not use an organic photo-selective agent, its strength is low. At present, it cannot be used for a very wide range of purposes.

このスルファミン酸液にスルファミン酸コバルトを添加
することにより強度の上昇を図れるが、強度的に限界が
あり、又Coの添加により価格的に上昇するという欠点
があった。
Although it is possible to increase the strength by adding cobalt sulfamic acid to this sulfamic acid solution, there is a limit in terms of strength, and the addition of Co increases the price.

本発明は上記の様な欠点を除去するもので、スルファミ
ン酸ニッケル液に次亜リン酸ソーダ又は亜リン酸ソーダ
を添加することにより、以下の様な利点が生じてくる。
The present invention aims to eliminate the above-mentioned drawbacks, and by adding sodium hypophosphite or sodium phosphite to the nickel sulfamate solution, the following advantages arise.

■.無電解ニッケルメッキ液よりも、リン量の制御が容
易で硬さの調節が可能である。
■. Compared to electroless nickel plating solution, it is easier to control the amount of phosphorus and adjust the hardness.

2.無電解ニッケルメッキ液よりも液寿命が長い。2. Longer lifespan than electroless nickel plating solution.

3.高電流密度により高速度のニッケル・リン合金メッ
キが可能で、厚付けも可能である。
3. High current density enables high-speed nickel-phosphorus alloy plating, and thick plating is also possible.

(例えば40A/diで400μ/hの電着速度である
)4,熱処理(例えば400°Clhr)により硬化す
る。
(e.g. electrodeposition rate of 400 μ/h at 40 A/di) 4. Harden by heat treatment (e.g. 400° Clhr).

5.純ニッケル及びニッケル・コバルト合金よりも耐触
性が良好である。
5. It has better corrosion resistance than pure nickel and nickel-cobalt alloys.

6,硫黄を含む有機光択剤により強度の上昇を図ってい
ないため、耐熱性が良好である。
6. Heat resistance is good because no organic photoselector containing sulfur is used to increase strength.

本請求範囲における成分限定の理由を下記に説明する。The reasons for limiting the components in the scope of this claim will be explained below.

主成分であるスルフアミノ酸ニッケルの量は200〜8
0 0 g/11と範囲を限定したが、その下限を2
00g/11としたのは、それ以下の量においては電流
密度をIOA/dm2以上にすると、外観レベルの低下
やp H値の低下を招きやすく、本発明の特徴とするニ
ッケル合金の高速電着は不可能である。
The amount of sulfur amino acid nickel, which is the main component, is 200 to 8
The range was limited to 0 0 g/11, but the lower limit was set to 2
00g/11 was chosen because if the current density is less than IOA/dm2, the appearance level and pH value are likely to decrease, which is a feature of the present invention. is impossible.

又、スルフアミノ酸ニッケル量の上限を8 0 0 g
/lとしたのはこれ以上濃度を高めても浴の電着速度に
限界があり、又、実際の作業上の液のくみ出しによる損
失も大きくなり、トータル的な効率が低下する。
In addition, the upper limit of the amount of sulfur amino acid nickel is 800 g.
/l because even if the concentration is increased beyond this, there is a limit to the electrodeposition speed of the bath, and losses due to pumping of the liquid during actual work increase, resulting in a decrease in overall efficiency.

一方、リンを含有させるための次亜リン酸ナトリウムを
0.05〜2 0 g/lの範囲に限定したが、その下
限を0.05g/lとしたのは、それ以下の量において
は電着条件を変化させてもHV−300以上の硬度の確
保は困難であり、N i − P系の硬質被膜として実
用に供するには、これ以上次亜リン酸ナトリウム又は亜
リン酸ナトリウムを含有させることが必要である。
On the other hand, although the sodium hypophosphite used to contain phosphorus was limited to a range of 0.05 to 20 g/l, the lower limit was set at 0.05 g/l because it is Even if the coating conditions are changed, it is difficult to secure a hardness of HV-300 or higher, and in order to put it into practical use as a Ni-P-based hard coating, it is necessary to contain more sodium hypophosphite or sodium phosphite. It is necessary.

又、その上限を2 0 9/lとしたのは0.05g/
ljから含有量の増加につれて硬度が増加してゆくが、
20g/lを越えるとHV−600以上となり、皮膜自
体が非常に硬く、かつ、もろくなってしまうため、種々
の用途への実用化は不適となってしまう。
Also, the upper limit was set to 209/l, which is 0.05g/l.
The hardness increases as the content increases from lj, but
If it exceeds 20 g/l, the HV-600 or higher will result, and the film itself will become extremely hard and brittle, making it unsuitable for practical use in various applications.

又、電着物表面においても雲りの発生、ピットの発生が
生じ、特に装飾的な用途には適さなくなる。
In addition, clouds and pits occur on the surface of the electrodeposited material, making it unsuitable for decorative purposes in particular.

さらに電着応力が引張りとなり、特に電鋳浴としては使
用困難となるという問題があった。
Furthermore, there was a problem in that the electrodeposition stress became tensile, making it difficult to use, especially as an electroforming bath.

塩化ニッケルの戒分を5〜20g/lに限定したのは、
59/l以下では陽極板の溶解が制限され分極が生じ肢
のpHがしだいに低下してしまうためであり、2 0
g/l以上になると電着応力が高くなりすぎてしまい特
に厚付けメッキや電鋳に不適となってしまうからである
The reason why the precept of nickel chloride was limited to 5 to 20 g/l was because
This is because below 59/l, the dissolution of the anode plate is limited, polarization occurs, and the pH of the limbs gradually decreases.
This is because if it exceeds g/l, the electrodeposition stress becomes too high, making it particularly unsuitable for thick plating or electroforming.

硼酸の成分を30〜6 0 9/lに限定したのはpH
の緩衝剤として効果を示す下限が30g/lであり、6
0 Vl以上にしてもその量に比例する効果は示さな
いため、それ以上の添加は意味がない。
The reason why the boric acid content was limited to 30-609/l was due to the pH.
The lower limit showing the effect as a buffering agent is 30 g/l, and 6
Even if the amount is increased to 0 Vl or more, there is no effect proportional to the amount, so there is no point in adding more than that amount.

次に、ラウリル硫酸ソーダの成分範囲を0.1〜1 g
/Itに限定したのは、ラウリル硫酸ソーダが0.1g
/lよりも少いと、メッキ面にピツテイングを生じ、正
常なメッキ面が得られない。
Next, the component range of sodium lauryl sulfate is 0.1 to 1 g.
/It is limited to 0.1g of sodium lauryl sulfate.
If it is less than /l, pitting will occur on the plated surface, making it impossible to obtain a normal plated surface.

? g/13以上添カロしてもその効果は同じであるた
め19/lに限定した。
? Since the effect is the same even if the amount of calories added is 13 g/l or more, the amount was limited to 19 g/l.

電解条件において液温を50〜70℃に限定した。Under the electrolytic conditions, the liquid temperature was limited to 50 to 70°C.

その理由は液温か50℃以下であるとメッキ面に光択が
出にくく又、一方70゜Cより高くなるとスルファミン
酸イオンが分解を開始して、液寿命が極端に短くなって
しまうためである。
The reason for this is that if the liquid temperature is below 50°C, it is difficult to produce photo-selectivity on the plated surface, and on the other hand, if it is higher than 70°C, the sulfamic acid ions will begin to decompose, and the life of the liquid will be extremely shortened. .

次に電流密度を1 0 O A/dm2以下に限定した
のは、この電流密度が光択面の得られる限界値であるた
めである。
Next, the reason why the current density is limited to 10 O A/dm2 or less is because this current density is the limit value at which a photo-selective surface can be obtained.

又、pHは3.5〜5.5に限した。Further, the pH was limited to 3.5 to 5.5.

その理由は、pHが3.5以下ではスルファミン酸イオ
ンの力U水分解が進行し、液寿命が短くなる。
The reason is that when the pH is below 3.5, water decomposition due to the force of sulfamic acid ions progresses, resulting in a shortened solution life.

又pHが上ると電着条件のバラツキにより、水酸化ニッ
ケルの沈澱が生じる可能性が出てくるため、安全サイド
の値としてpH上限を5.5とした。
Furthermore, as the pH increases, there is a possibility that nickel hydroxide will precipitate due to variations in electrodeposition conditions, so the upper limit of pH was set at 5.5 as a safe value.

実症例を以下に示す。Actual cases are shown below.

例1 スルフアミノ酸ニッケル ・・・・・・・・・6 0
0 g/1塩化ニツ・′rル ・・・・
・・・・・10g/l次亜リン酸ナトリウム ・・
・・・・・・・0.5 g/1硼酸
・・・・・・・・・4 0 g/1ラウリル硫酸ソ
ーダ ・・・・・・・・・0.3 g/1液温
・・・・・・・・・60°C電流
密度 ・・・・・・・・・10A7’
dm”pH ・・・・・・・
・・4,0この条件で黄銅板の上に60μのNiを電着
したところ、マイクロピツカース硬さHV450〜55
0、それを400’CI時間熱処理を行なったところ、
}{V= 1 0 0 0となった。
Example 1 Nickel sulfur amino acid ・・・・・・・・・6 0
0 g/1 nitrous chloride...
...10g/l sodium hypophosphite...
・・・・・・0.5 g/1 boric acid
・・・・・・・・・4 0 g/1 Sodium lauryl sulfate ・・・・・・・・・0.3 g/1 Liquid temperature
......60°C current density ...10A7'
dm”pH ・・・・・・・・・
...4,0 When 60 μm of Ni was electrodeposited on a brass plate under these conditions, the micropicker hardness was HV450-55.
0. When it was heat treated for 400'CI hours,
}{V= 1 0 0 0.

この電着物はNi−P合金ではあるが、通常の無電解メ
ッキによるNi−Pと異なり延付が高く、脆性が少ない
のが特徴的であった。
Although this electrodeposited material was a Ni--P alloy, it was characterized by high elongation and low brittleness, unlike Ni--P produced by ordinary electroless plating.

このメッキ液の特徴は高速窒メツキであり、高硬度で耐
触性、耐熱性が良好なことであるので、その応用範囲は
広く、例えば電鋳で製造する射出成形用金型、腕時計用
ケース、腕時計用部品、電鋳で製造する電気カミソリ用
外刃、キワゾリ刃及び内刃のコーテング等種々のものが
考えられる。
The characteristics of this plating solution are high-speed nitrogen plating, high hardness, and good contact resistance and heat resistance, so its application range is wide, such as injection molds manufactured by electroforming, watch cases, etc. , parts for wristwatches, outer blades for electric razors manufactured by electroforming, coatings for scraping blades and inner blades, etc. can be considered.

尚、次亜リン酸ナトリウムと亜リン酸ナトリウムは、効
果としてはほとんど同じで添カロ量を増加させれば次第
に硬度が上昇し、膜の性質としては引張応力を示すよう
になる。
Note that sodium hypophosphite and sodium phosphite have almost the same effect; as the amount of added calories increases, the hardness gradually increases, and the film exhibits tensile stress.

Claims (1)

【特許請求の範囲】 1 スルファミン酸ニッケル200〜800g/lと、
次亜リン酸ナトリウム0.05〜2 0 g/l,塩化
ニッケル5〜2 0 El/l,硼酸30〜6 0 E
l/It ,ラウリル硫酸ソーダ0.1〜19/lの組
成を有する電解液にて液温50〜70℃、電流密i1
0 0A7’d m以下、p H 3. 5 〜5.
5の条件で電着することを特徴とするニッケル・リン合
金の電気メッキ法。 2 スルファミン酸ニッケル200〜8 0 0 i/
11と亜リン酸ナトリウム0.05〜20i.#1塩化
ニッケル5〜2 0 g/l,硼酸30〜6 0 9/
l,ラウリル硫酸ソーダ0.1〜1 9/13の組成を
有する電解液にて、液温50〜70℃、電流密度100
人/bm以下、p H 3. 5 〜5. 5の条件で
電着することを特徴とするニッケル・リン合金の電気メ
ッキ法。
[Claims] 1. 200 to 800 g/l of nickel sulfamate;
Sodium hypophosphite 0.05-20 g/l, nickel chloride 5-20 El/l, boric acid 30-60 E
l/It, with an electrolytic solution having a composition of 0.1 to 19/l of sodium lauryl sulfate, a liquid temperature of 50 to 70°C, and a current density of i1.
0 0A7'd m or less, pH 3. 5 ~5.
An electroplating method for a nickel-phosphorous alloy characterized by electrodeposition under conditions 5. 2 Nickel sulfamate 200-800 i/
11 and sodium phosphite 0.05-20i. #1 Nickel chloride 5-20 g/l, boric acid 30-60 9/
l, sodium lauryl sulfate 0.1 to 1 In an electrolytic solution having a composition of 9/13, the liquid temperature is 50 to 70°C, and the current density is 100.
person/bm or less, pH 3. 5 ~5. An electroplating method for a nickel-phosphorous alloy characterized by electrodeposition under conditions 5.
JP14471075A 1975-12-04 1975-12-04 Denkimetsukiho Expired JPS5848038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14471075A JPS5848038B2 (en) 1975-12-04 1975-12-04 Denkimetsukiho

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14471075A JPS5848038B2 (en) 1975-12-04 1975-12-04 Denkimetsukiho

Publications (2)

Publication Number Publication Date
JPS5268034A JPS5268034A (en) 1977-06-06
JPS5848038B2 true JPS5848038B2 (en) 1983-10-26

Family

ID=15368475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14471075A Expired JPS5848038B2 (en) 1975-12-04 1975-12-04 Denkimetsukiho

Country Status (1)

Country Link
JP (1) JPS5848038B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130295A (en) * 1982-01-29 1983-08-03 C Uyemura & Co Ltd Electroplating method of pattern
CN102534708B (en) * 2012-03-27 2014-04-09 浙江大学 Nickel phosphor alloy electroplating solution and application thereof

Also Published As

Publication number Publication date
JPS5268034A (en) 1977-06-06

Similar Documents

Publication Publication Date Title
US2643221A (en) Electrodeposition of phosphorusnickel and phosphorus-cobalt alloys
US3354059A (en) Electrodeposition of nickel-iron magnetic alloy films
US4673468A (en) Commercial nickel phosphorus electroplating
US3940319A (en) Electrodeposition of bright tin-nickel alloy
Donten et al. Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys
Golodnitsky et al. Cathode process in nickel-cobalt alloy deposition from sulfamate electrolytes--application to electroforming
US3264199A (en) Electroless plating of metals
GB2218111A (en) Coating metallic substrates by the PVD process
US3892638A (en) Electrolyte and method for electrodepositing rhodium-ruthenium alloys
JPH02217497A (en) Nickel-tungsten-silicon carbide composite plating method
JPS5848038B2 (en) Denkimetsukiho
JPS60258473A (en) Manufacture of corrosion resistant film
JP2007308801A (en) Nickel/cobalt/phosphorus electroplating composition and its application
US3681211A (en) Electroplating a black nickel-zinc alloy deposit
US3708405A (en) Process for continuously producing nickel or nickel-gold coated wires
US20040031694A1 (en) Commercial process for electroplating nickel-phosphorus coatings
JPS6353278B2 (en)
JPS6123789A (en) Method for plating stainless steel with noble metal
KR20210023564A (en) Plating Solution Composition having Ruthenium and Method of plating using the same
US3056733A (en) Process for electrolytic deposition of gold-copper-cadmium alloys
US3374156A (en) Electro-depositing stainless steel coatings on metal surfaces
US2331751A (en) Process of electrodepositing hard nickel plating
US3880730A (en) Electro-galvanic gold plating process
JP2560842B2 (en) Method for manufacturing corrosion resistant film
Sobha et al. Electroplating of nickel-copper alloys