JPS5847492A - Immobilization and propagation of mold of microorganism - Google Patents

Immobilization and propagation of mold of microorganism

Info

Publication number
JPS5847492A
JPS5847492A JP14398381A JP14398381A JPS5847492A JP S5847492 A JPS5847492 A JP S5847492A JP 14398381 A JP14398381 A JP 14398381A JP 14398381 A JP14398381 A JP 14398381A JP S5847492 A JPS5847492 A JP S5847492A
Authority
JP
Japan
Prior art keywords
gel
aqueous solution
polyvinyl alcohol
mold
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14398381A
Other languages
Japanese (ja)
Other versions
JPH0244514B2 (en
Inventor
Masao Nanbu
南部 昌生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP14398381A priority Critical patent/JPH0244514B2/en
Publication of JPS5847492A publication Critical patent/JPS5847492A/en
Publication of JPH0244514B2 publication Critical patent/JPH0244514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the immobilization and propagation of mold, by casting an aqueous solution of a suspension consisting of an aqueous solution of a polyvinyl alcohol having >= a specific saponification degree and >= a specified polymerization degree and a mold of microorganism into a molding mold, freezing, molding and dehydrating it, and, if necessary, adjusting it to a fixed water content, feeding the prepared gel to a medium. CONSTITUTION:An aqueous solution of a suspension consisting of an aqueous solution of a polyvinyl alcohol having a saponification degree of >=95mol% and a viscosity-average polymerization degree of >=1,500 and a lot of molds of microorganism such as one belonging to the genus Asperigillus, Pseudomonas, etc. is casted into a molding mold. The solution is frozen and molded at <=-6 deg.C and dehydrated in a vacuum into a dehydration ratio of >=5wt% without melting it. If necessary, it is immersed in water, and the water content is reached to 20-92wt%, to give a gel including a living body of microorganism. The gel is fed to a medium for propagating microorganism, the diameter of the mold colony for propagating microorganism formed by it is enlarged in a range of 50-550mum, and the mold is immobilized and propagated.

Description

【発明の詳細な説明】 本発明は、微生物生菌体の固定化・増殖法に係り、特に
、弾力性に富み機械的強度に優れた高含水性ゲル中に微
生初生1体を包括(捕捉)後、これを効果的に増殖させ
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for immobilizing and propagating living microorganisms, and in particular, the present invention relates to a method for immobilizing and propagating living microorganisms, and in particular, the present invention relates to a method for immobilizing and propagating living microorganisms, and in particular, it involves encapsulating a single primary microorganism in a highly hydrous gel that is highly elastic and has excellent mechanical strength. After capture), it relates to a method for effectively propagating it.

本発明は、ポリビニルアルコールと微生物生菌体とを含
む懸濁水溶液から所定条件下に得られる凍結・乾燥体(
ゲル)がその空洞に、微生物生菌体を包括(捕捉・包埋
)しここへ増殖用培地を供給することにより、微生物囲
体包括空洞が膨張すること、しかも、この空洞の大きさ
を一定限&(直径550μm)にとどめるよう、前記増
殖用培地の供給量を制御することにより、ゲル内の固定
化微生物生菌体の効果的増殖と活用が達成されることを
見いだした事実に基づくものである。
The present invention provides a freeze-dried product (
The gel) encloses (captures and embeds) living microorganisms in the cavity and supplies a growth medium to the cavity, which causes the microorganism enclosing cavity to expand and to keep the size of this cavity constant. This is based on the fact that it has been found that effective growth and utilization of immobilized living microorganisms within the gel can be achieved by controlling the supply amount of the growth medium so as to keep it within a diameter of 550 μm. It is.

即ち、本発明は、けん化度95モルー以上で、しかも粘
度平均重合度1,500以上のポリビニルアルコールの
水溶液と微生物生菌体より成る懸濁液を、成型用鋳型へ
注入しこれt−−6℃より低い温度で凍結・成型し、し
かる後、この凍結・成型体を融解即ち凍結解除させるこ
となく脱水率5vtllG以上に真空脱水し必要に応じ
水中に浸漬することにより、含水率20〜92wt−(
湿潤体基準)K到達させ微生物生菌体を包括(包埋)し
たゲルを得て後このゲルに微生物増殖用培地を供給しこ
れにより形成される増殖微生物1体集落の直径を50p
、〜550 pfI@の範門にまで拡大させることtl
−特徴どする微生物生菌体の固定化・増殖法を提供する
ものである。
That is, in the present invention, a suspension consisting of an aqueous solution of polyvinyl alcohol having a saponification degree of 95 molar or more and a viscosity average degree of polymerization of 1,500 or more and living microorganisms is poured into a mold for molding, and then the suspension is heated to t-6. By freezing and molding at a temperature lower than °C, and then vacuum dehydrating the frozen and molded product to a dehydration rate of 5vtllG or more without thawing, that is, unfreezing, and immersing it in water as necessary, the water content is 20 to 92 wt- (
Wet body standard) After reaching K and obtaining a gel that encloses (embeds) living microorganisms, a microorganism growth medium is supplied to this gel, and the diameter of one proliferating microorganism colony formed by this is 50p.
, ~ 550 Expansion to the category of pfI@tl
- Provides a method for immobilizing and propagating living microorganisms with specific characteristics.

微生物生菌体をゲル内に捕捉(包括)稜、これを増殖さ
せる試みは既に公知であるへ下記(1)−(6)に要約
するとおり、いずれにも難点があり、更に優れ九固定化
増殖法の開発が望まれてきた。
Attempts to trap (enclose) viable microorganisms in a gel and propagate them are already known, but as summarized in (1) to (6) below, each method has its drawbacks, and even better immobilization methods are known. Development of a propagation method has been desired.

(1):flノ5クテリウム・シンプレックス(Cor
yn・−bacterium  simplex )、
別名アルド付バクター・シンプレックス(Arthro
bacter  51m1ex )、  バシルス・サ
プチルス(l1acillus  5abtilus 
)、シュードモナス・グチダ(Pg+sudomona
s  putida )等の細菌を、ポリ・アクリルア
ミドゲル中に固定化後、栄養源(培地)を供給して増殖
させ、それぞれの活性、すなわち、ステロイド変換能、
α−アミラーゼ生産能、ベンゼンの酸化分解能などを高
める方法が公知である( Naturet6%、Oct
、  28.796(1976)、Bioteeh−B
ieeng−s 20.1267(1978)、Eur
6p、 J。
(1): flno5 Ctherium simplex (Cor
yn・-bacterium simplex),
Also known as Bacter simplex with Arthro
bacter 51m1ex), Bacillus saptillus (l1acillus 5abtilus)
), Pseudomonas guchida (Pg+sudomona
After immobilizing bacteria such as S. sputida in polyacrylamide gel, they are grown by supplying a nutrient source (medium), and their respective activities, i.e., steroid-converting ability,
Methods for increasing α-amylase production ability, benzene oxidative decomposition ability, etc. are known (Naturet6%, Oct.
, 28.796 (1976), Bioteeh-B
ieeng-s 20.1267 (1978), Eur.
6p, J.

^PPI−Micyoblol  Biotechno
l、s  5、 233(1?78)、4,75(19
77))。
^PPI-Micyoblol Biotechno
l, s 5, 233 (1?78), 4,75 (19
77)).

しかしこれらの場合、増殖による活性上昇率は、たかだ
か5〜10倍程度にすぎないは力Nこの固定化担体の原
料であるモノマー(アクリルアミド)が猛毒であるため
、微生物に対し有害であり(醗酵と工業、l互、92(
1977)、Blotech、 Bio@ng、  2
0゜1267(1978))、さらに、固定化(モノマ
ーの重合およびポリマーの架橋)に用いるラジカル開始
剤により、微生物(タンパク質)が損傷を受ける( 8
ei@me・・142.678(1−963)、ムdv
−Biochem lag。
However, in these cases, the rate of increase in activity due to proliferation is only about 5 to 10 times.The monomer (acrylamide) that is the raw material for this immobilization carrier is highly toxic and is harmful to microorganisms (fermentation). and industry, l mutual, 92 (
1977), Blotech, Bio@ng, 2
0°1267 (1978)), and the radical initiators used for immobilization (monomer polymerization and polymer crosslinking) damage microorganisms (proteins) (8
ei@me...142.678 (1-963), mu dv
-Biochem lag.

臣、125(1977)、Agr、Biol、Ch@m
、、42.683(1978)、化学 工学、土us2
6?(1979))はカー固定化ゲル自体が軟弱で(化
学工学、土0,139(1974))、実用上、きわめ
て不満足表点が多い◎ (2)寒天に各種微生物を固定化後、これを増殖させる
ことは、古来広く行なわれているが、この寒天ゲルは、
機械的強度に劣り、実験室的に利用することはできるも
のへ固定化担体として工業的に用いるには難がある。ま
た、微生物の増殖に伴ない、ゲル内部から亀裂の生じる
難点も指摘されている(B%ot@eh、  B%oe
ng、  22゜681(198G))。
Omi, 125 (1977), Agr, Biol, Ch@m
, 42.683 (1978), Chemical Engineering, Sat US2
6? (1979)), the Kerr immobilization gel itself is weak (Chemical Engineering, Soil 0,139 (1974)), and there are many points that are extremely unsatisfactory in practical use. (2) After immobilizing various microorganisms on agar, Proliferation has been widely practiced since ancient times, but this agar gel
It has poor mechanical strength, and while it can be used in the laboratory, it is difficult to use it industrially as an immobilization carrier. In addition, it has been pointed out that cracks occur from inside the gel due to the growth of microorganisms (B%ot@eh, B%oe
ng, 22°681 (198G)).

(5)  ロイコノストック・メセンテpイデス(L・
uionostoc醜・腸・nt@roid@s ) 
f、ポリビニルアルコール・ホウ酸錯体ゲルに包括後、
これを増殖させる試みもある(特開昭54−15529
5)。しかしこの場合、けん化度の高いポリビニルアル
コールから生成するホウ酸錯体(ゲル)は軟弱で、成型
し難いOこの場合、けん化度の低いポリビニルアルコー
ルを用いることにより、この難点はかなり改善されるが
、ゲルの粘着性が強いため成型後の形状は維持され難く
、実用に耐えない0(4)  サラカルマイセス・セレ
ビシェ(SaccharomycesS@r・マ111
・)を、ゼラチン膜に固定化後、増殖させる提案もある
が、活性は4倍程度に上昇するKとどtす、また、ゲル
成型体は軟弱でその形状は不安定である( Biot@
ch 、  Blo@ng 、、  22.1755(
1980))。
(5) Leuconostoc mesente poides (L.
uionostocugly・intestines・nt@roid@s)
f, after inclusion in polyvinyl alcohol/boric acid complex gel,
There is also an attempt to multiply this (Japanese Patent Application Laid-Open No. 54-15529
5). However, in this case, the boric acid complex (gel) produced from polyvinyl alcohol with a high degree of saponification is weak and difficult to mold. Due to the strong adhesiveness of the gel, it is difficult to maintain the shape after molding, making it unsuitable for practical use 0 (4) Saccharomyces S@r・Ma111
・) has been proposed to be grown after being immobilized on a gelatin membrane, but the activity increases by about 4 times, and the gel molded body is soft and its shape is unstable (Biot@
ch,Blo@ng,, 22.1755(
1980)).

(5)  サツカロマイセス・セレビシェをアルギン酸
カルシウム・ゲルに固定化後、これを増殖させる試みも
あるカー天然系多糖類ゲルにしばしば見受けられるとお
り、維■汚染を招きやすいうえ、指先につまみわずかに
指圧を加えることにより、直ちに形くずれして軟弱な糊
状を呈するほか、栄養源として供給輝れるリン酸塩によ
り、ゲル構造組織が破壊される( Biot@ch、 
Bioeng−,19゜587(1977))。
(5) Some attempts have been made to propagate Satucharomyces cerevisiae after immobilizing it on calcium alginate gel. As is often the case with Kerr's natural polysaccharide gel, it is easy to cause tissue contamination, and it is necessary to apply slight acupressure by pinching it with your fingertips. When added, it immediately loses its shape and takes on a soft, pasty appearance, and the gel structure is destroyed by the phosphoric acid supplied as a nutritional source (Biot@ch,
Bioeng-, 19°587 (1977)).

(6)  寒天と同じくポリガラクトースの酸性硫酸エ
ステル型構造を有する天然系多糖類としてのに一力2ゲ
ナンに、サツカロマイセス中セレビシェ(5aeeba
r@mye@sC@r・マ151m5)、サツカロマイ
セス番カルスベルゲンシス(8accharomyce
s  earlab@rg@ns1m)、アセトバクタ
ー・サブオキシダ7ス(Ac5tobaet@r  5
uboxy−ムnm)、セラチアΦマルセセンス(8@
rratimmarac@me@ms )、ニジエリシ
ア・コリ(Kseh@r1chiac+eli )、ブ
レビバクテリウム・フラブム(Br・マ1−bacte
+rium  flavum )、ストレプトマイセス
・7エオクロモゲネス(8trsptomyees  
pha@oehromogenes)ブレビバクテリウ
ム・アンモニアゲネス(Brevi−baeteriu
m ammoniagenea )などを固定化後、こ
れらを増殖させる試みもある。しかし、このゲルは軟弱
で(引張り強度〈1KII/−)、更に塩化カリウム、
ヘキサメチレンジアミン、グルタルアルデヒド、タンニ
ン等ヲ用いる硬化処理を施しても、ポリアクリルアミド
・ゲルと同程度の強度(1〜1.5 K4/ai )に
まで改善されるにすぎず、きわめて軟弱である。従って
、ゲル内で微生物が増殖するに伴ない、ゲル組織に亀裂
が発生−破壊される( J、 5olid  Phas
@Bioshsm e  2. 225(1977)、
Enzym@Mi*rob−T@ehno1.  lX
95(1979)、J、 Ferm@nt、 T@ch
no1.88゜(4)327(1980)、高分子、主
!、238(1980))0 これらの例に見るとお9、従来の微生物固定化用担体の
いずれにも、問題点があり、更に優れた担体(ゲル)が
望まれている(高分子、主!、238(1980))0
これら公知の手法と異なり、本発明によれば、ポリビニ
ルアルコールと微生物生菌体の混合懸濁液を凍結・成型
・脱水する過程でゲルが生成し しかも、微生初生1体
のほぼ全量−一このゲル中に包括される。本発明では、
この固定化(包括)過程で、酸、アルカリ、放射線、ラ
ジカル発生剤、−有機溶媒、反応試薬などを全く用いず
、また、2次的硬化処理も全く必要としない。本発明の
ゲルは、含水性に富み、像生物生菌体の活動に要する炭
素源、窒素源、酸素ガス、二酸化炭素ガスその他の無機
物の透過性にも 優れるゴム状の弾性体であり、引張り
強度の点でも、前記のカラダナン(<14/j)または
、2次的硬化処理を施したカラゲナン(1〜15 m4
/d ) ’iはるかにしのぐ強度(4〜6 Kg/d
以上)t−有する。
(6) As a natural polysaccharide that has an acidic sulfate ester structure of polygalactose like agar, Nichiriki 2genan and Satucharomyces cerevisiae (5aeeba
r@mye@sC@r・Ma151m5), Saccharomyces number callusbergensis (8accharomyce
s earlab@rg@ns1m), Ac5tobaet@r 5
uboxy-mu nm), Serratia Φ marcescens (8@
rratimmarac@me@ms), Nizierisia coli (Kseh@r1chiac+eli), Brevibacterium flavum (Br. ma1-bacte)
+rium flavum), Streptomyces 7eochromogenes (8trsptomyees)
pha@oehromogenes) Brevi-baeteriu
Some attempts have been made to immobilize and then propagate the following species. However, this gel is weak (tensile strength <1KII/-) and further contains potassium chloride,
Even if it is hardened using hexamethylene diamine, glutaraldehyde, tannin, etc., the strength is only improved to the same level as polyacrylamide gel (1 to 1.5 K4/ai), and it is extremely weak. . Therefore, as microorganisms proliferate within the gel, cracks are generated and destroyed in the gel structure (J, 5olid Phas
@Bioshsm e 2. 225 (1977),
Enzym@Mi*rob-T@ehno1. lX
95 (1979), J, Ferm@nt, T@ch
no 1.88° (4) 327 (1980), polymer, main! , 238 (1980)) 0 As can be seen from these examples, all of the conventional carriers for immobilizing microorganisms have problems, and a better carrier (gel) is desired (polymer, main! , 238 (1980)) 0
Unlike these known methods, according to the present invention, a gel is generated during the process of freezing, molding, and dehydrating a mixed suspension of polyvinyl alcohol and live microorganisms. encapsulated in this gel. In the present invention,
This fixation (entrapping) process does not use acids, alkalis, radiation, radical generators, organic solvents, reaction reagents, etc., and also does not require any secondary curing treatment. The gel of the present invention is a rubber-like elastic body that is highly water-containing and has excellent permeability to carbon sources, nitrogen sources, oxygen gas, carbon dioxide gas, and other inorganic substances required for the activity of living microorganisms, and has a tensile strength. In terms of strength, the above-mentioned carrageenan (<14/j) or carrageenan subjected to secondary hardening treatment (1 to 15 m4
/d) 'I far exceeds strength (4-6 Kg/d)
above) t- has.

このゲルに増殖用培地を供給することにより、微生初生
1体は当然のことながら増殖する力ζ本発明のゲルにお
いては、この増殖に伴なぺ微生物包括空洞が押し拡げら
れる0しかし本発明のゲルがきわめて弾力性に富み、し
かも機械的強度に優れることから、ゲル内空洞の直径力
ζ尚初(6〜50μ常)の20〜70倍(550pm)
に達する激しい増殖(膨張)にも耐え、ゲル組織は破壊
されない特長を有する〇 もっとも、本発明のゲルにおいて、増殖集落直径が約1
50μ慣に達すると、増殖菌体の一部は、空洞壁(微細
網目構造から成るゲル組織)の少なくとも一部の網目を
くぐ9抜け、空洞外へ排出され、その排出位置(小空洞
)において、引続き増殖・排出の過程を反復1最終的に
は、ゲル表面近傍の空洞から、ゲル外へ排除される。ま
た、更に増殖用培地を供給することにより、増殖集落直
径が約550 pmt超えると、上記菌体流失量が著し
く増加する。
By supplying a growth medium to this gel, a single primary microorganism naturally proliferates.In the gel of the present invention, the microorganism-encompassing cavity is pushed and expanded as a result of this proliferation. Because the gel is extremely elastic and has excellent mechanical strength, the diameter force of the internal cavity of the gel ζ is 20 to 70 times (550 pm)
The gel structure of the present invention has the feature that it can withstand intense proliferation (swelling) reaching up to
When the culture reaches 50μ, a part of the proliferating bacteria passes through at least a part of the mesh of the cavity wall (gel tissue consisting of a fine network structure) and is discharged from the cavity, and at the discharge position (small cavity). , and then repeating the process of growth and expulsion 1. Finally, they are expelled from the gel from the cavity near the gel surface. Further, when the diameter of the growing colony exceeds about 550 pmt by further supplying a growth medium, the amount of bacterial cells shed increases significantly.

したがって、増殖菌体の流失(損失)1回避するKは、
大部分の増殖菌体集落の直径を150μm以下にとどめ
るのが良い。
Therefore, the K to avoid loss (loss) of proliferating bacterial cells is:
It is preferable to keep the diameter of most of the proliferating bacterial colonies to 150 μm or less.

ところで、一般に、微生物生繭体は、増殖すると同時に
、少なくともその一部は死滅する。この死滅菌体の自己
消化残留分(主として細胞壁構成分)が生菌体集落中に
蓄積し続けることは好ましくないため、本発明のゲルに
おいても、これを断続的または連続的に、ゲル外へ排除
しなければならない。しかるに、死菌体(自己消化残留
分)のみを選択的にゲル外へ排出する方法はまだ知られ
ていないため、止むを得ず、生菌体および死菌体から成
る集落菌体の一部を、断続的または連続的にゲル外へ流
失させなければならない。
By the way, generally, at the same time as a microbial living cocoon proliferates, at least a portion thereof dies. Since it is undesirable for this autolyzed residue (mainly cell wall components) of the dead sterilized cells to continue to accumulate in the viable cell colony, in the gel of the present invention as well, it is removed from the gel intermittently or continuously. must be eliminated. However, since there is still no known method for selectively expelling only dead bacteria (residues from autolysis) out of the gel, it is unavoidable to remove part of the bacterial colony consisting of live and dead bacteria. must be allowed to flow out of the gel intermittently or continuously.

これに関しては、本発明において、集落直径を前記の1
50pm以上に達せしめることにより、容易に上記の目
的を達成することができる。
Regarding this, in the present invention, the colony diameter is
By reaching 50 pm or more, the above objective can be easily achieved.

また、集落直径が550μmを超えることは、前記の増
殖菌体の大量流失を招き、好1しくない。
Moreover, it is not preferable that the colony diameter exceeds 550 μm, as this will lead to the loss of a large amount of the proliferating microbial cells.

従って、本発明においては、菌体集落の直径t−550
μm以下、例えば50〜550pmに維持することによ
り、増殖生菌体の無益な大量流失を回避すると共に、固
定化生菌体を有効に増殖せしめ、これ全活用すると共に
、必要に応じ、死菌体を排出することができる。
Therefore, in the present invention, the diameter of the bacterial colony is t-550.
By maintaining the temperature below μm, for example, 50 to 550 pm, it is possible to avoid wasteful loss of a large amount of proliferating viable bacterial cells, to effectively proliferate immobilized living bacterial cells, to make full use of them, and to kill the bacteria if necessary. The body can be expelled.

本発明における菌体集落の直径の制御は、たとえば、該
集落の拡大状況を追跡観察することKより、増殖用培地
の供給量を制御することによって容易に行なうことがで
きる。
The diameter of the bacterial colony in the present invention can be easily controlled, for example, by controlling the amount of growth medium supplied, rather than by tracking and observing the expansion status of the colony.

一方、ポリビニルアルコールの水溶液を0〜50℃で1
日〜1週間貯菫することにより、粘度上昇あるい嬬ゲル
化の現象がしばしば見受けられること社、古くから周知
である。しか獣このゲルは、前記天然産多糖類のゲルに
しばしば見られるとおり、例えば寒天のように軟弱であ
り、しかも、単に激しくかきまぜるも水を加えてかきま
′ぜる力Nあるいは若干温めることにより溶解するため
、微生物固定化担体として用いることは不可能である。
On the other hand, an aqueous solution of polyvinyl alcohol was heated to 1
It has been well known for a long time that the phenomenon of increased viscosity or gelation is often observed when stored for a day to a week. However, as is often seen in the gels of natural polysaccharides mentioned above, this gel is soft, like agar, and moreover, even if it is simply stirred vigorously, it can be easily stirred by adding water or by heating it slightly. Since it dissolves, it is impossible to use it as a carrier for immobilizing microorganisms.

さらにポリビニルアルコール水溶液に微生物生繭体を混
合後、風乾して、微生物生繭体含V膜を得る方法がある
が、この膜扛、耐水性に劣り、軟弱で、また微生物捕捉
容量も低い。この膜をナイロン布等により支持(補強)
する提案もあるが、上記の難点の大部分は依然として解
消されない。
Furthermore, there is a method of mixing living microorganism cocoons into an aqueous polyvinyl alcohol solution and then air-drying the mixture to obtain a V membrane containing living microorganism cocoons, but this membrane has poor water resistance, is weak, and has a low microorganism trapping capacity. This membrane is supported (reinforced) with nylon cloth, etc.
Although there are some proposals to do so, most of the above-mentioned difficulties still remain.

また、ポリビニルアルコール・フィルムの特色として、
微生物の活動に要する炭素源、窒素源、無機物郷の透過
性に乏しいことに因り、固定化微生物生菌体の活性が減
退する(%開昭52−14592、輯公昭55−354
15、プラスチック材料講座14、P、155、P、1
55 (昭45)、日刊工業新聞社)0 ポリビニルアルコール水溶液と微生物または酵素とを混
合後、酸素を排除してコバルト60(r線)t″照射る
ポリビニルアルコールの架橋・ゲル化法も周知である。
In addition, as a feature of polyvinyl alcohol film,
Due to poor permeability of carbon sources, nitrogen sources, and inorganic materials required for microbial activity, the activity of immobilized microbial viable cells decreases (%Kaisho 52-14592, 软publicsho 55-354)
15, Plastic Materials Course 14, P, 155, P, 1
55 (Sho 45), Nikkan Kogyo Shimbun) 0 A polyvinyl alcohol crosslinking/gelation method is also well known, in which a polyvinyl alcohol aqueous solution is mixed with microorganisms or enzymes, then oxygen is excluded and cobalt 60 (r-ray) t'' is irradiated. be.

しかしこの場合、グリセリン等の放射線障害保膜物質を
併用しても、なお、微生物または酵素への悪影響をまぬ
がれず、照射経費もかさむはis得られるゲルが軟弱で
、しばしば、他の化学試薬による2次的硬化処理を要す
る( B iot@ch 、。
However, in this case, even if a radiation-damaged film-protecting substance such as glycerin is used in combination, it still has an adverse effect on microorganisms or enzymes, increases the cost of irradiation, and the resulting gel is soft and is often contaminated with other chemical reagents. Requires secondary curing treatment (Biot@ch,.

Bi**ng、、  15,407’(1975)、醗
酵と工業、55.92(1977))。
Bi**ng, 15, 407' (1975), Fermentation and Industry, 55.92 (1977)).

ポリビニルアルコール、テトラエチルシリケートおよび
微生物を含む懸濁水溶液に酸を加え風乾することによる
、ポリビニルアルコール・ケイ酸複合酵母膜の製法も提
案されたが、やはりこの膜も軟弱である。
A method for producing a polyvinyl alcohol/silicic acid composite yeast membrane has also been proposed by adding acid to an aqueous suspension containing polyvinyl alcohol, tetraethyl silicate, and microorganisms and air drying the mixture, but this membrane is also weak.

この場合、酸を加えた後、凍結・乾燥しても、生成する
膜の機械的強度はかえって低下しほとんど成型不能であ
る。
In this case, even if the membrane is freeze-dried after adding an acid, the mechanical strength of the resulting membrane decreases and it is almost impossible to form the membrane.

いずれにしても、微生物の懸濁液へ酸を加えてpH3以
下に調整する工程が含まれてお1微生物への悪影響もし
ばしば無視できない(%公昭55−11311、特公昭
55−30358)。
In any case, since a step of adding an acid to the microorganism suspension to adjust the pH to 3 or less is included, the adverse effect on the microorganisms is often not negligible (% Publication No. 55-11311, Japanese Patent Publication No. 55-30358).

ポリビニルアルコールと酵素とを溶解した水溶液を低温
ゲル化(凍結・固化)させることによる酵素の固定化法
も提案されている(%iR昭5O−52276)。しか
し単なる凍結・固化処理により得られるゲルは、弾性を
示さず、機械的強度もきわめて低く、ゼリ一様の軟弱品
(又は粘液)であり、激しいベトッキ(粘着性)を示す
うえ、耐水性に乏しく水中に溶出し残部は糊状と化す。
A method for immobilizing enzymes by gelling (freezing and solidifying) an aqueous solution of polyvinyl alcohol and enzyme at a low temperature has also been proposed (%iR Showa 5O-52276). However, the gel obtained by simple freezing and solidification does not exhibit elasticity, has extremely low mechanical strength, is a soft gel-like product (or mucus), is extremely sticky, and has poor water resistance. It dissolves poorly in water and the remainder turns into paste.

また、凍結・固化・融解後に風乾する場合は、軟弱な湿
潤フィルムあるいは含水性の低いフィルムが生成するに
すぎず、微生物生菌体の固定化用担体として好ましくな
い。
Furthermore, if the carrier is air-dried after freezing, solidifying, and thawing, only a weak wet film or a film with low water content is produced, which is not preferable as a carrier for immobilizing living microorganisms.

なお、凍結・固化・融解後に減圧脱水を試みる場合は、
融解液の泡立ちが激しく、シばしば、操作続行不能の状
態をきたすはカーたとえ長時間を費し脱水しても、はと
んど弾性を示さぬ、もろい白濁ゲルが得られるにすぎず
、その含水性も低いため、微生物生菌体の固定化・増殖
用担体としては、好ましくない。
In addition, when attempting vacuum dehydration after freezing, solidifying, and thawing,
The molten liquid foams violently, often making it impossible to continue operation.Even if dehydration takes a long time, only a brittle, cloudy gel with almost no elasticity is obtained. Because of its low water content, it is not preferred as a carrier for immobilizing and propagating living microorganisms.

本発明に用いるゲルは、水またFi温水に不溶で、前記
のポリビニルアルコールの貯蔵により生成するゲルとは
全く異なる。
The gel used in the present invention is insoluble in water or Fi hot water, and is completely different from the gel produced by storage of polyvinyl alcohol as described above.

また、本発明のゲルは、粘着性を示さず、弾性に富み、
その引張り強度、圧縮強度とも、4麺/−以上に及び、
しかも、微生物生菌体の激しい増進によっても、ゲル組
織の破裂をきたさないなどの諸点でも、前記(公知)の
微生物固定化用担体のいずれにも勝る利点を有している
。なお、本発明のゲルは、γ線、ラジカル開始剤、酸、
アルカリ、化学試薬、有機溶媒、水以外の無機溶媒など
を全く用いない点でも、公知の手法のいずれにも勝る利
点を有する0本発明に用いるポリビニルアルコールのけ
ん化度は95モルチ以上、好ましくは97モルー以上で
あることを景する0けん化度80〜88モル嘔、特に8
5七ル参以下のポリビニルアルコールを用いても、軟弱
なゲルが得られるにすぎず、本発明の目的は達成されな
い。
In addition, the gel of the present invention does not exhibit stickiness and is highly elastic,
Both its tensile strength and compressive strength are 4 noodles/- or more,
Furthermore, it has advantages over any of the above-mentioned (known) microorganism immobilization carriers in that the gel structure does not rupture even when the viable microorganisms grow vigorously. In addition, the gel of the present invention contains gamma rays, radical initiators, acids,
It has an advantage over all known methods in that it does not use alkali, chemical reagents, organic solvents, inorganic solvents other than water, etc. The degree of saponification of the polyvinyl alcohol used in the present invention is 95 molt or more, preferably 97 mol. The saponification degree is 80-88 moles, especially 8 moles or more.
Even if polyvinyl alcohol having a molecular weight of 57 or less is used, only a soft gel will be obtained, and the object of the present invention will not be achieved.

また、本発明では、粘度平均重合度1.500以上のポ
リビニルアルコールを用いる。ポリビニルアルコールの
重合度が低下すると共に、得られるゲルの機械的強度も
低下するため、本発明では、通常市販されている高重合
度品(重合度1,700〜2.600程度)t−用いる
のが良い。
Further, in the present invention, polyvinyl alcohol having a viscosity average degree of polymerization of 1.500 or more is used. As the degree of polymerization of polyvinyl alcohol decreases, the mechanical strength of the resulting gel also decreases. Therefore, in the present invention, a commercially available product with a high degree of polymerization (degree of polymerization of approximately 1,700 to 2,600) is used. It's good.

本発明では、まず、ポリビニルアルコールの水溶液を調
合する。そのs度に特に制限はないが、例えば1〜20
wtチ、好ましくは7〜15wtチとすることができる
In the present invention, first, an aqueous solution of polyvinyl alcohol is prepared. There is no particular limit to the degree of s, but for example, 1 to 20
The weight can be 7 to 15 wt, preferably 7 to 15 wt.

この#1度を、更に例えば90 w tチまで高めるこ
ともできるが、常温における水溶液の粘度がIQOOO
eP以上にも達L/%また、貯蔵中に粘度上昇あるいは
ゲル化をき九すこともあり、若干取扱い離い。この濃度
を3wt−以下とすることもできるめζ後述の脱水(乾
燥)所要時間が長びき、経費(脱水動力費)がかさむ。
This #1 degree can be further increased to, for example, 90 wt, but the viscosity of the aqueous solution at room temperature is IQOOOO
Reaching more than eP L/% Also, viscosity increase or gelation may occur during storage, making it somewhat difficult to handle. Since this concentration can be set to 3 wt- or less, the time required for dehydration (drying), which will be described later, becomes longer and costs (dehydration power costs) increase.

本発明においては、上記ポリビニルアルコール水溶液へ
微生物生菌体を添加するに先立ち、ポリビニルアルコー
ル水溶液を滅菌する。滅菌処理条件として社、100℃
x5min で目的を達する場合もあるが、耐熱性II
!に汚染されている場合は、たとえば、120℃X15
m1m〜6hの高圧・蒸気滅菌を施す。紫外線照射滅菌
法も使用できる力ζその有効性が照射表面に限られるこ
とから、前記の加熱滅菌法と併用するのが望ましい。い
ずれにしても、これらの処理により、本発明に用いる資
材が変質することはなく、本発明の実施になんら支障を
きたさない。
In the present invention, the polyvinyl alcohol aqueous solution is sterilized prior to adding viable microorganisms to the polyvinyl alcohol aqueous solution. Sterilization processing conditions: 100℃
In some cases, the objective can be achieved with x5min, but heat resistance II
! For example, if it is contaminated with
Perform high pressure/steam sterilization for 1 m to 6 h. Ultraviolet irradiation sterilization can also be used, but since its effectiveness is limited to irradiated surfaces, it is desirable to use it in combination with the heat sterilization method described above. In any case, these treatments do not alter the quality of the materials used in the present invention and do not pose any hindrance to the implementation of the present invention.

滅菌された水溶液は、次に、固定化対象とする微生物生
菌体と混合される。微生物生菌体としては、アスペルギ
ルス属、リゾプス属、シュードモナス属、アセトバクタ
ー属、ストレプトマイセス属、ニジユリシア属、サツカ
ロマイセス属、カンデイダ属等のかび、すなわち糸状鉋
、放線1、細菌、酵母、藻類など多くの微生物生菌体を
対象とすることができる。
The sterilized aqueous solution is then mixed with live microorganisms to be immobilized. Examples of viable microorganisms include molds such as Aspergillus, Rhizopus, Pseudomonas, Acetobacter, Streptomyces, Nijiyulicia, Satucharomyces, Candida, etc., such as filamentous genus, Actinosa 1, bacteria, yeast, algae, etc. Many living microorganisms can be targeted.

この場合、凍結・乾燥保存し念生菌体、生菌体の増殖培
養液、あるいは増殖培養液から遠心分離された生菌体濃
縮懸濁液などのいずれを用いることもできる。この微生
物生菌体の添加(混合)操作は、10〜35℃程度で行
なうのが至便であるが、耐熱性生菌体を固定する場合に
は、それぞれの耐熱性に応135℃以上で操作すること
もできる。
In this case, any of the following can be used: a frozen and dry-preserved pneumophilic cell, a culture solution for growing viable cells, or a concentrated suspension of living cells centrifuged from the growing culture solution. It is convenient to perform this addition (mixing) of living microorganisms at a temperature of about 10 to 35°C, but when fixing heat-resistant living cells, the operation is performed at a temperature of 135°C or higher depending on the heat resistance of each individual. You can also.

10℃以下では水溶液の粘度が上昇し生菌体の混合・分
散が緩慢である〃ζこの点に留意するならば、上記操作
を10℃以下で実施することも差支えない。
If the temperature is below 10°C, the viscosity of the aqueous solution increases and the mixing and dispersion of viable bacterial cells is slow.If this point is kept in mind, the above operation may be carried out at temperatures below 10°C.

微生物生菌体の添加量(乾燥体基準)としては、水溶液
中のポリビニルアルコールの7倍量以下にとどめるのめ
ζ微生物生菌体のほぼ全量を固定化する観点から好まし
く、この場合、後述の脱水(ゲル化)工程を経ることK
より、微生物生菌体の96〜98−を確実に捕捉(包括
・固定化)できる。
The amount of viable microorganisms to be added (on a dry basis) is preferably kept at 7 times the amount of polyvinyl alcohol in the aqueous solution or less, from the viewpoint of immobilizing almost the entire amount of viable microorganisms. K to go through a dehydration (gelation) process
Therefore, 96 to 98 of living microorganisms can be reliably captured (enclosed and immobilized).

後述の凍結・成型・脱水工1!ヲ経て得られる本発明の
ゲ六を、走査型電子顕微鍵により観察した結果、例えば
、ポリビニルアルコールの1/4相当重量に及ぶサラカ
ルマイセス・セレビシェを固定化し九場合でさえ、微生
物生繭体は個別分散しそれぞれ8〜5Opsの空洞に包
埋されており、空洞壁は、主として11〜1pmの網状
組織から構成されている。しかもこの個別分散包埋され
た微生物生菌体は、後述の増殖操作により容易に激しく
増殖する。従って、本発明においては、あらかじめゲル
内へ特に大量の微生物生菌体を包埋するより、むしろ後
述の増殖による包括空洞の膨張の余地を残すのが良い。
Freezing, molding, and dewatering process 1 (described later)! As a result of observing the gelatin of the present invention obtained through this process using a scanning electron microscope, it was found that, even when Salacharmyces cerevisiae was immobilized in an amount equivalent to 1/4 of the weight of polyvinyl alcohol, microbial cocoons were individually dispersed. They are each embedded in a cavity of 8-5 Ops, and the cavity wall is mainly composed of a network of 11-1 pm. Furthermore, the individually dispersed and embedded living microbial cells can easily and vigorously proliferate by the propagation operation described below. Therefore, in the present invention, rather than embedding a particularly large amount of living microorganisms in the gel in advance, it is preferable to leave room for expansion of the enclosing cavity due to proliferation, which will be described later.

すなわち、本発明における固定化歯切の微生物学1体添
加量として框、ポリビニルアルコール使用量の7倍以下
と1例えば/   以上、2へ000 好ましく11/     〜/とすることができる。
That is, in the present invention, the amount of microbiology added to the immobilized tooth cutter can be 7 times or less than the amount of polyvinyl alcohol used, for example, 1 to 2,000, preferably 11 to 1.

15.000  2 本発明では、このようにして得たポリビニルアルコール
と微生物生菌体の混合懸濁水溶液へ線菌が混入しないよ
う留意し、しかも殺菌燈(紫外線)が直接照射されぬよ
う留意しつつ、懸濁水溶液を成型用鋳型へ注入し、凍結
・成型する。とこで成型用鋳型とは最終用途の形状のも
のが望ましいが、板状物を得るための任意形状の容器で
もよく、これらも本発明にいう成型用鋳型に包含される
。凍結するための冷却剤としては、例えば、食塩−氷(
2,3ニア7)(−21℃)、塩化カルシウム−氷(3
0ニア0)(−55℃)などの寒剤、あるいはドライア
イス−メチルアルコール(−72℃)、液体窒素(−1
96℃)などを用い、−6℃より低いmtに冷却し、凍
結させる。冷却が不十分であると、後述する乾燥工程を
経て得られるゲルの形状が、当初予期した形態すなわち
、ポリビニルアルコール水溶液注入容器また鉱成聾用鋳
型の形状と合致し難いほか、ゲルの機械的強度に劣る0
液体ヘリウムを用いれば、−269℃まで冷却できるが
、実用上はフレオン冷凍機を用へ例えば−35℃以下に
冷却するのが良い。微生物生菌体の多くは、−20’C
近辺のm度に長時間さらされると好ましくないことから
、むしろ−20℃以下、例えば−55−80℃まで急速
に冷却するのが良い。仁のような低温で凍結・成型する
ことは、微生物生菌体担持用ゲルの機械的強let高め
ることに寄与1.、−20℃と一6℃との間の温度で凍
結・成型するより好ましい。
15.000 2 In the present invention, care must be taken not to contaminate the thus obtained mixed suspension solution of polyvinyl alcohol and living microorganisms with bacteria, and also to avoid direct irradiation with germicidal lamps (ultraviolet light). At the same time, the suspended aqueous solution is injected into a mold for molding, frozen and molded. Here, the mold for molding is preferably one in the shape of the final use, but it may also be a container of any shape for obtaining a plate-like object, and these are also included in the mold for molding as referred to in the present invention. As a cooling agent for freezing, for example, salt-ice (
2,3 near 7) (-21°C), calcium chloride-ice (3
Cryogens such as 0nia0) (-55℃), dry ice-methyl alcohol (-72℃), liquid nitrogen (-1
96°C) to a mt lower than -6°C and freeze. If the cooling is insufficient, the shape of the gel obtained through the drying process described below will not match the initially expected shape, that is, the shape of the polyvinyl alcohol aqueous solution injection container or the mineral mold. 0 less strong
If liquid helium is used, it can be cooled down to -269°C, but for practical purposes, it is better to use a Freon refrigerator to cool down to, for example, -35°C or lower. Most of the living microorganisms are -20'C
Since it is undesirable to expose the material to temperatures around m degrees Celsius for a long time, it is preferable to rapidly cool it to below -20°C, for example, to -55-80°C. Freezing and molding at a low temperature such as kernels contributes to increasing the mechanical strength of the gel for supporting live microorganisms.1. , freezing and molding at temperatures between -20°C and -6°C is preferred.

本発明による凍結拳成型においては、ポリビニルアルコ
ール水溶液は任意の形状の鋳型内で固化(氷結)・成型
され、しかる後、鋳型に−L自カバーまたはト園カバー
(あるいはその双方)がある場合はそれらの一方又は双
方を取りはずし、成型体の形状を保持しつつ凍結・脱水
することができる。
In the freezing fist molding according to the present invention, a polyvinyl alcohol aqueous solution is solidified (frozen) and molded in a mold of an arbitrary shape, and then, if the mold has a -L self-cover or a to-en cover (or both), One or both of them can be removed and the molded product can be frozen and dehydrated while maintaining its shape.

したがって、本発明のゲルの形状としては、固定化微生
物生菌体の増殖・生育活動に好都合な気・液・固相間の
拡散を考慮−任意の大きさと形状を凍結時に選定するこ
とができる。好ましい成型体の形状として鉱、既に化学
工業において、蒸留塔またはガス吸収塔などに用いられ
ているラシヒリング(ramchig ring )、
多孔板(perforatedplat@+ 5iev
@tray)、テラレット(telleratta )
、インター四ツク愉サドル(1ntalox 5add
le )、ボールリング(pail  rinsr )
などの成型用鋳型によることができる。また特願昭56
−51096に記載した突起を有する千板又扛曲板状の
鋳型を用いることもできる。これらの成型用鋳型を用い
て得られる本発明の微生物生菌体固定化ゲルは、いずれ
も、固定化微生物生菌体の増殖・生育活動に必要な栄養
源また社基質との接触、物質移動の点において優れ、ま
た反応塔へ充てんした場合の塔内圧損失の低い点におい
ても、粒状品、球状品、板状晶または膜状品などに比べ
てより勝れている。
Therefore, the shape of the gel of the present invention takes into consideration the diffusion between air, liquid, and solid phase, which is favorable for the growth and growth activities of immobilized living microorganisms, and any size and shape can be selected at the time of freezing. . Preferred shapes of molded bodies include ramchig rings, which are already used in the chemical industry for distillation columns, gas absorption columns, etc.
perforated plate@+5iev
@tray), telleratta
, Inter Yotsuku Saddle (1ntalox 5add
le), ball ring (pail rinsr)
It is possible to use a mold for molding such as. Also, the special request was made in 1983.
It is also possible to use a mold in the form of a zigzag or curved plate having protrusions as described in No. 51096. The gels with immobilized living microorganisms of the present invention obtained using these molding molds are all nutrient sources necessary for the growth and growth activities of the immobilized living microorganisms, as well as contact with the substrate and mass transfer. It is also superior to granular products, spherical products, plate-like crystals, film-like products, etc. in terms of low internal pressure loss when packed into a reaction tower.

もちろん粒状8郷も本発明に含まれるし、板状体會得て
後に切断する等の方法も本発明に含まれる0前述の凍結
・成型を目的とする冷却操作の冷却速度としては、前述
の微生物生菌体への影響を考慮して、−10℃程fまで
はα1〜b ないが、その後は、7〜to00℃/ m i m の
急速冷却が好ましい。
Of course, granular forms are also included in the present invention, and methods such as forming a plate-like body and cutting it later are also included in the present invention. Considering the influence on viable microorganisms, α1~b should not be lowered to about -10°C, but after that, rapid cooling at 7~00°C/mi is preferable.

本発明においては、前述の容器または鋳型へ注入され九
ポリビニルアルコールと微生物生菌体との混合懸濁水溶
液が凍結されたことを確認後、仁れに真空脱水管施す。
In the present invention, after confirming that the aqueous mixed suspension of polyvinyl alcohol and viable microorganisms that has been poured into the container or mold described above has been frozen, the kernels are subjected to a vacuum dehydration tube.

この場合、冷凍室から凍結・成型体を取り出しこれを真
空乾燥室へ移賦直ちに吸引・脱水するならば、水分の除
去(昇華)・に伴ない、試料が冷却されるので、4IK
外部冷却を施さなくとも、凍結・成型体が融解すること
はない0凍結−m111体が融解しない程度に加熱する
こと社差支えなく、これにより脱水を促進することがで
きる。つまり脱水工程のil[としては、凍結・成型体
を融解即ち凍結解除させないかぎゃ、%に制限はなく、
これがゲルの品位K特に影響することはない。この脱水
工程においては、脱水率を5vi−以上とし、たとえば
ゲルの含水率を20〜92チ、好ましくは60〜90v
t%(湿潤体基準)に到達させる。
In this case, if the frozen/molded body is removed from the freezing chamber and transferred to the vacuum drying chamber and immediately suctioned and dehydrated, the sample will be cooled as water is removed (sublimation), so 4IK
Even without external cooling, the frozen/molded body does not melt.It is acceptable to heat the frozen/molded body to such an extent that the body does not melt, thereby promoting dehydration. In other words, there is no limit to the percentage of il [in the dehydration process] as long as the frozen/molded product is not thawed, that is, unfrozen.
This does not particularly affect the quality of the gel. In this dehydration step, the dehydration rate is set to 5 vi - or more, and the water content of the gel is, for example, 20 to 92 vi, preferably 60 to 90 vi.
t% (wet body basis).

含水率″Ik2011!以下とすることもできる汎この
場合においても捗記するように水中に浸漬させることに
より含水率50〜90 v t 9Gに到達させること
ができる。
Although the water content can be lower than ``Ik2011!'', even in this case, a water content of 50 to 90 Vt 9G can be achieved by immersing it in water as described below.

本発明においては、ポリビニルアルコールのlIJ[の
いかんにかかわらず、凍結・成型体に若干の脱水処理(
真空乾燥)を施す。この場合、脱水率(凍結・成型体の
重量減少率)としては、例えば5 v tチさらには1
5wt−以上が採用される。すなわち、脱水が進行する
とともにゲル強度が着しくlll1lまることから、N
望J)ゲル惰−に応じ、議本儀を選定するのが良い。
In the present invention, the frozen and molded body is subjected to a slight dehydration treatment (regardless of whether the polyvinyl alcohol is
(vacuum drying). In this case, the dehydration rate (weight reduction rate of the frozen/molded body) is, for example, 5 v t, or even 1
5wt- or more is adopted. In other words, as dehydration progresses, the gel strength decreases, so N
Desired J) It is best to select the main meeting according to your preference.

この脱水工程(凍結・乾燥)を省略することはできない
This dehydration step (freezing/drying) cannot be omitted.

すなわち、これを実施しないかぎ九本発明の弾性に富む
、しかも機械的強度の優れた高含水性ゲルは得られず、
シ九がって、固定化微生物生菌体ゲルはきわめて軟弱で
ある。
That is, unless this is carried out, the highly elastic and highly hydrous gel of the present invention with excellent mechanical strength cannot be obtained.
As a result, the immobilized live microorganism gel is extremely soft.

また、凍結状態を維持することなく、凍結・成型体を融
層後、減圧脱水する方式によるときは、泡立ちが激しく
、はとんど、操作続行不可能であるうえ、たとえ長時間
を資して脱水しても、弾性に乏しい白濁ゲルが生成する
KすぎないO 本発明における真空脱水の真空贋は凍結水分が脱水しつ
るものであればいずれでもよく、たとえば、1o冒Hf
以下、好ましくIr11■Hg以下、さらに好ましくは
α1■Hg以下飛通常用いられる。
In addition, if the frozen and molded product is melted and then dehydrated under reduced pressure without maintaining the frozen state, the foaming is so intense that it is often impossible to continue the operation, even if it takes a long time. Even if the frozen water is dehydrated, the vacuum dehydration method used in the present invention may be of any type as long as the frozen water can be easily dehydrated.
Below, Ir is preferably 11 ■Hg or less, more preferably α1■Hg or less, and usually used.

本発明では、次に凍結・成型・脱水体を、例えば常温放
置し融解(解凍)させることにより、弾性に富む微生物
固定化ゲルが得られる。この場合の融解操作としては、
1〜b 慮したうえで、場合によっては3〜1.0110℃/m
in  の急速昇温による仁ともできる。いずれにして
も、60℃以上では、ゲルの表面に硬質皮膜が衾速に生
じることから、微生物生菌体の耐熱性のいかんにかかわ
らず、解凍(融解)操作温度としては40〜50℃以下
が望ましい。この解凍操作後、容器またヰ鋳型の支持部
から、微生物固定化ゲルを容易に取り出すことができる
。このゲルは必要により水中に浸漬することにより吸水
し、含水率50〜95vtチ(湿橢体基準)K達するか
、なお強固な弾性体であるため、ゲル内に包括された微
生物の生育活動に好適である。前述の走査型電子顕微鏡
による知見ならびに、上記の含水率このような高含水率
のゲルとして喀きわめて優れた弾性体である。高含水性
と機械的強度とは、従来か呟医用高分子および選択的透
過膜等を開発するうえで、両立し酸4題とされている八
本発明のゲルは、上述の高含水性と強度とを有臥従来の
、ポリビニルアルコール水溶液の風乾皮膜あるいは、前
述のポリビニルアルコール水溶液を0〜30℃に貯蔵す
る場合、あるいはポリビニルアルコール水溶液を単に凍
結−融解する場合などに得られる軟弱なゲルとは全く異
なる。多くの水分を強固に保持することからも明らかな
とおり、このゲルの塾は比重はは埋水と同S度であり、
水中で辛うじて沈降するにすぎなへ本発明のゲルには粘
着性がない。板状(8■×8■×2−)、円筒状(内径
3−1外径6■、長さ6■)、球状(直径4■)等rc
IRmt、たゲル檜1otを50−の水中で10日間が
きまぜても、相互付着、形くずれ等の埃象は全く認めら
れない。なお、水道水中に、1年間浸漬した力ζ溶解せ
ず、弾性および強度も変らない(これは、例えばこんに
ゃくを数日間水道水に浸漬した場合、激しい形くずれが
起るのと、きわめて対照的である)O本発明においては
、ポリビニルアルコール単一成分がゲル素材(ゲル化成
分)として用いられるOしかしポリビニルアルコールの
ゲル化現象管阻害し危いかぎり無機物または有機物が共
存すやことは、本発明に差支えなく、その共存量として
は、例えば、ポリビニルアルコールの4量以下とするこ
とができる。これに反し、ポリビニルアルコール(また
は変性ポリビニルアルコールとしてのポリビニルアセタ
ール、ポリビニルブチラール等)に作用して複合−ゲル
を生成する物質ならびにポリビニルアルコールと反応し
てこれを変性させる物質は、たとえ少量共存することべ
よっても、しばしば、本発明のゲル形成(ポリビニルア
ルコ−羨単−成分ゲルの形成)に好ましくない影響を及
はし、機械的強度の優れた高含水性ゲルの生成を困難と
する。このような物質としては、既にポリビニル、アル
コール類トの相互作用が知られているコロイド状アルカ
リ・シリケート(米国特許2.83へ641(1958
))、コロイド状シリカ(米国特許2,85!5661
(1958))、アルカリ性コロイド状シリカ(特開昭
54−153779)、有機ケイ素化合物(酢酸ビニル
樹脂、P、93、日刊工業新聞社(1942))、テト
ラアルキルシリケート(%公開55−30558、特公
昭55−11311)、ホウ素、ホウ砂(フランス特許
745942(1955))、フェノール、ナフトール
、メタ・クレゾール、ピロガロール、サリチルアニリド
、ジサリチルベンジジド、レゾルシノール、ポリアミン
類(高分子化学、1ユ(105)23、(1?54))
、カオリン(kaolln ) (Nature m1
70.461(1955))などが挙げられる。これら
は、いずれも、その共存量に対応して、ポリビニルアル
コールとの複合ゲルを形成して不都合を生ずるので、本
発明においてに回避される。
In the present invention, the frozen, molded, and dehydrated body is then allowed to stand at room temperature to thaw (thaw), thereby obtaining a highly elastic microorganism-immobilized gel. In this case, the melting operation is as follows:
1-b In some cases, 3-1.0110℃/m
It is also possible to form kernels due to rapid temperature rise in in. In any case, at temperatures above 60°C, a hard film rapidly forms on the surface of the gel, so regardless of the heat resistance of viable microorganisms, the thawing (thawing) operation temperature should be 40 to 50°C or lower. is desirable. After this thawing operation, the microorganism-immobilized gel can be easily taken out from the container or the supporting part of the mold. If necessary, this gel absorbs water by immersing it in water, and reaches a water content of 50 to 95 Vt (wet shell standard), or is still a strong elastic body, so it is not susceptible to the growth activity of microorganisms contained within the gel. suitable. Based on the above-mentioned findings from the scanning electron microscope and the above-mentioned water content, it is an excellent elastic body for a gel with such a high water content. High water content and mechanical strength have traditionally been considered to be compatible in developing medical polymers and selectively permeable membranes. The conventional air-dried film of an aqueous polyvinyl alcohol solution, or the soft gel obtained when the aforementioned aqueous polyvinyl alcohol solution is stored at 0 to 30°C, or when the aqueous polyvinyl alcohol solution is simply frozen and thawed. is completely different. As is clear from the fact that it holds a lot of moisture, the specific gravity of this gel is the same as that of buried water.
The gel of the present invention is not sticky as it only barely settles in water. Plate (8 x 8 x 2-), cylindrical (inner diameter 3-1 outer diameter 6, length 6), spherical (diameter 4), etc.rc
Even when 1 ton of IRmt and Tagel cypress was mixed in water at 50 °C for 10 days, no dust phenomena such as mutual adhesion or deformation were observed. Furthermore, even if konnyaku is soaked in tap water for a year, it will not dissolve and its elasticity and strength will not change. In the present invention, a single component of polyvinyl alcohol is used as a gel material (gelling component).However, it is important to note that inorganic or organic materials may coexist as long as it is dangerous to inhibit the gelation process of polyvinyl alcohol. There is no problem with the invention, and the coexisting amount can be, for example, 4 or less amounts of polyvinyl alcohol. On the other hand, substances that act on polyvinyl alcohol (or polyvinyl acetal as modified polyvinyl alcohol, polyvinyl butyral, etc.) to form a composite gel, and substances that react with polyvinyl alcohol to denature it, may coexist even in small amounts. Even so, it often has an unfavorable influence on the gel formation of the present invention (formation of a polyvinyl alcohol-monomer gel), making it difficult to produce a high water content gel with excellent mechanical strength. Examples of such substances include colloidal alkali silicates (U.S. Pat. No. 2.83 to 641 (1958
)), colloidal silica (U.S. Pat. No. 2,85!5661)
(1958)), alkaline colloidal silica (JP 54-153779), organosilicon compound (vinyl acetate resin, P, 93, Nikkan Kogyo Shimbunsha (1942)), tetraalkyl silicate (% publication 55-30558, special Publication No. 55-11311), boron, borax (French patent 745942 (1955)), phenol, naphthol, meta-cresol, pyrogallol, salicylanilide, disalicyl benzidide, resorcinol, polyamines (polymer chemistry, 1 U (105 )23, (1?54))
, kaolin (Nature m1
70.461 (1955)). These are avoided in the present invention because they form a complex gel with polyvinyl alcohol depending on the amount of coexistence.

本発明では、微生物生菌体の懸濁水溶液を凍結・成型す
ることを不可欠としているo−ffに、微生物または生
体組織、あるいはこれらの懸濁水を凍結する場合、多少
とも、これらが凍結障害金受けることは、古くからよく
知られている。この生体またはその組1タンパク質等へ
の凍結障害を回避する力へおるいは、これを著しく軽減
するには、前述の一30℃以下の低ii&まで急冷する
方法のはカーカルボキシメチルセルロース等の水酸基含
有水溶性高分子物質、さらには各種の凍結・乾燥障害保
護剤を少量添加する方法が著名である。本発明において
は、ポリビニルアルコール(ゲル化素材)自体が強力な
凍結・乾燥障害保護剤として作用するため、通常微生物
生菌体の大部分が保饅され、後述するとおり十分な増殖
・生育活動が確保されるが、更に公知の凍結・乾燥障害
保護剤を共存させることができる。
In the present invention, when freezing microorganisms or biological tissues, or their suspension water, in an o-ff, which is essential for freezing and molding an aqueous suspension of living microorganisms, it is possible that these may be more or less susceptible to freezing damage. Receiving has been well known since ancient times. In order to avoid or significantly reduce freezing damage to this living body or its group 1 proteins, etc., the method of rapidly cooling to a low temperature of 130°C or lower is the hydroxyl group of carboxymethylcellulose, etc. A well-known method is to add a small amount of water-soluble polymeric substances and various freeze-drying protection agents. In the present invention, since the polyvinyl alcohol (gelling material) itself acts as a strong freeze/dry protection agent, most of the viable microorganisms are normally preserved and sufficient proliferation and growth activity is achieved as described below. However, a known freeze-drying protection agent may also be present.

凍結・乾燥障害を軽減する物質は、一般に1保鰻剤、保
鰻物質(Prot@etanL prot@ettoe
  5ubstance)、添加剤、添加物(addi
tives、 add%t%0!Ill 5ubsta
nce )、媒質、媒剤、媒液(adjuvant)、
分散媒(suspendedmelium)、安定剤(
5tabllizer )などと呼ばれ、具体例として
は、マグネシウムイオン、グリセリン、ジメチルスルホ
キシド、蜂蜜、ペプトン(pepton・)、肉エキ入
酵母エキス、脱脂乳(スキンミルク)、血清、アルブミ
ン(albumim )、L−またはD−グルタミン酸
のナトリウム塩、カリウム塩、N−アセチルグルタミン
酸塩、D−またはL−アルギニン、DI、−2−ピロリ
ドン−5−カルボン駿塩、ポリビニルピロリドン、L−
ホモアルギン酸、D−グルコース、D−1たはL−アス
パラギン酸(aspartieacid )、アスコル
ビン酸、DL−)レオニン(thr@onin@χD、
L−アロトレオニン(allothr@onins )
、ゼラチン、ムチン、乳糖、DL−リンゴ酸、L−シス
ティン(cyst%n・)、L−ソルビトール、アラビ
トール、ペクチン、アラビアゴム、マンノース、〃ラタ
トース、L −’IレジンD−74#ドース、デキスト
リン、デキストラン、スクロース、可■性駁粉、ラフィ
ノース、クエン酸、アセチルグリシン、D−キシリトー
ルなどが知られているほか、L−グルタミン酸塩−脱脂
乳(またはデキストラン、可溶性殿粉ポリビニルピロリ
ドン、カルボキシメチルセルロー人ゼラチン、乳糖)の
組合せ、あるいはデキストラン−塩化アンモニウム−チ
オ尿素−アスコルビン酸の組合せ、脱脂乳−7x:フル
ビン@(またはスクロース)の組合せ、グルコースと血
清の併用処決も知られているOその添加量としては、前
述゛のポリビニルアルコール水溶液にα5〜2−加えて
十分目的を達することが多い力ζ 104程度加えるこ
ともできる。
Substances that reduce freeze-drying damage are generally 1-eel preservatives, eel-preservatives (Prot@etanL prot@ettoe
5ubstance), additives, additives (addi
tives, add%t%0! Ill 5ubsta
nce), medium, medium, adjuvant,
Dispersion medium (suspendedmelium), stabilizer (
Specific examples include magnesium ions, glycerin, dimethyl sulfoxide, honey, peptone, yeast extract with meat extract, skim milk, serum, albumin, L- or D-glutamic acid sodium salt, potassium salt, N-acetylglutamate, D- or L-arginine, DI, -2-pyrrolidone-5-carboxylic salt, polyvinylpyrrolidone, L-
Homoalginic acid, D-glucose, D-1 or L-aspartieacid, ascorbic acid, DL-) leonine (thr@onin@χD,
L-allothreonine (allothr@onins)
, gelatin, mucin, lactose, DL-malic acid, L-cysteine (cyst%n.), L-sorbitol, arabitol, pectin, gum arabic, mannose, ratatose, L-'I Resin D-74#dose, dextrin , dextran, sucrose, soluble starch, raffinose, citric acid, acetylglycine, D-xylitol, etc., as well as L-glutamate-skimmed milk (or dextran, soluble starch polyvinylpyrrolidone, carboxymethyl cellulose). Combination treatments of human gelatin, lactose) or dextran-ammonium chloride-thiourea-ascorbic acid, skim milk-7x:fulvin@(or sucrose), and glucose and serum are also known. As for the amount to be added, it is also possible to add α5 to 2- to the polyvinyl alcohol aqueous solution mentioned above, and add a force of about ζ 104, which is often sufficient to achieve the purpose.

仁のように本発明により微生物生菌体を高含水性の弾性
に富む機械的強度の優れたゲル内に捕捉するととができ
るが、このようにして得られる固定化微生物生菌体は、
本発明の増殖制御により著しく増殖して活性を高め、本
発明の目的とする微生物生菌体の固定化・増殖が達成さ
れる。
According to the present invention, live microorganisms can be captured in a gel with high water content, high elasticity, and excellent mechanical strength.
By controlling the growth of the present invention, the microorganisms proliferate significantly and increase their activity, thereby achieving the immobilization and proliferation of living microorganisms, which is the objective of the present invention.

微生物生菌体が増殖用培地の供給を受けて増殖すること
自体は、なんら%銀すべき新事実ではなく、古来きわめ
て轟然の原理であるが5本発明のゲルが弾性に富むこと
から、ゲル中に包埋された微生物生菌体は、容易にその
包括空洞を押し拡げつつ増殖して巨大な集落に成長し、
しかも本発明のゲルが機械的強度に優れることから、微
生物生菌体の増殖に伴なうゲル組織の破壊(亀裂)が回
避される。本発明のゲルは引張り強度、圧縮強度とも4
麺/−以上に及び、天然系多糖類(寒天、カラダナン、
ペクチン等、強度11cf/−以下)!または、カラゲ
ナンの2次的硬化処理品(強、度1〜1.511/cs
i )に比lA遥かに優れるoしかし本発明のゲルにお
いて、増殖菌体集落の直径が150pm程度に達すると
、増殖菌体の一部は、空洞壁の少なくとも一部の網目を
くぐり抜け、空洞外へ排出され、その排出位置(小空洞
において、引続き、増殖・排出の過程を反復し最終的に
は、ゲル表面近傍の空洞からゲル外へ排除される0また
、なおも増殖用培地を供給し続けると、増殖1体集落直
径が約5507gmを超え、これに因り、上記1体流失
量も著しく増加する。したがって、本発明において増殖
一体の流失を回避するには、集落の直径を通常150p
講以下にとどめることが好ましい0また、集落中に死1
体の蓄積するのを回避するには、多量の増殖用培地を供
給して集落直径を150p講以上に達せしめる手法を採
ることができる。ただ昧集落直径が550pmt超える
ことは、前述のとお抄増殖菌体の大量流失をきたし好ま
しくない。従って、本発明においては、菌体集落の直径
’ff550p解以下、例えば50〜550μm1好ま
しくは100〜500pvmK維持して、増殖一体の無
益な大量流失を回避すると共に1菌体集落直径を断続的
または連続的に150〜550pwaに達せしめること
によ九菌体集落から死菌体(自己消化残留分)を含む一
部の菌体をゲル外へ排除する。すなわち、本発明では、
増殖菌体集落の直径′t−550pg以下にとどめるよ
う、増殖用培地の供給を制御することにより、増殖一体
の無益な大量流失を回避する。
The fact that viable microorganisms multiply when supplied with a growth medium is not in itself a new fact; it is an extremely well-known principle from ancient times, but because the gel of the present invention is highly elastic, The living microorganisms embedded inside easily expand the enclosing cavity and multiply, growing into a huge colony.
Moreover, since the gel of the present invention has excellent mechanical strength, destruction (cracks) of the gel structure due to proliferation of viable microorganisms can be avoided. The gel of the present invention has both tensile strength and compressive strength of 4.
Noodles/- and above, natural polysaccharides (agar, kaladanan,
Pectin, etc., strength 11 cf/- or less)! Alternatively, a secondary hardening treatment product of carrageenan (strong, degree 1 to 1.511/cs
i) However, in the gel of the present invention, when the diameter of the growing bacterial colony reaches about 150 pm, some of the growing bacterial cells pass through the mesh of at least a part of the cavity wall and exit the cavity. The cells are discharged to the gel, and the process of growth and discharge is repeated in the discharge position (small cavity), and finally, they are discharged from the gel from the cavity near the gel surface. If this continues, the diameter of a colony of one proliferating body exceeds about 5507 gm, and as a result, the amount of loss of one body increases significantly. Therefore, in order to avoid the loss of a single proliferating body in the present invention, the diameter of the colony is usually set to 150 gm.
It is preferable to keep the number of deaths below 1.
In order to avoid the accumulation of bodies, it is possible to adopt a method of supplying a large amount of growth medium to reach a colony diameter of 150 μm or more. However, it is not preferable for the colony diameter to exceed 550 pmt, as this will result in a large amount of the aforementioned Toosho-proliferating bacterial cells being washed away. Therefore, in the present invention, the diameter of the bacterial colony is maintained below 550 p, for example, 50 to 550 μm, preferably 100 to 500 pvmK, to avoid wasteful loss of a large amount of growth, and to reduce the diameter of one bacterial colony intermittently or By continuously increasing the pressure to 150 to 550 pwa, some of the bacteria including dead bacteria (residues from autolysis) are removed from the gel from the nine-microbial colony. That is, in the present invention,
By controlling the supply of the growth medium so that the diameter of the growing bacterial colony remains below t-550 pg, wasteful loss of a large amount of growth is avoided.

本発明においては、固定化微生物生菌体へ増殖用培地を
供給μ断続的にゲルの極II[tを採取μ例えば走査型
電子顕微鏡により、ゲル内の増殖集落を観察しその直径
が550FIIl以下に達した時点で、増殖用培地の供
給を停止することによ九増殖生菌体の大量流失t−まぬ
がれることができる。
In the present invention, a growth medium is supplied to the immobilized living microorganisms. μ The pole II [t of the gel is intermittently collected. μ For example, by scanning electron microscopy, the proliferating colony within the gel is observed and its diameter is 550 FIIl or less. When this point is reached, a large amount of viable bacterial cells can be eliminated by stopping the supply of the growth medium.

一方、固定化微生物生菌体の活性を高めるには、ゲル内
の生菌体製[を高める必要がある0単位体積のゲルに収
容しうる生菌体数はもちろん有限で、その限界値(jl
密充て−ん濃f)は、生菌体の形状と大きさに基づき、
数学的に算出され、例えばサツカロマイセス・セレビシ
ェ(球形または楕円形、平均約5μm)では、約4・1
0・個/sgである。実際のゲルにおいては、ゲル素材
も若干の空間を占有するため、上記の極限値を完全に達
成すること社不可能である力ζ本発明において、増殖菌
体集落の直径が前記550μ餌を超えない範囲で、上記
極限値にきわめて近い菌体濃[を達成することができる
。すなわち、ポリビニルアルコールに対重例えばしi。
On the other hand, in order to increase the activity of immobilized live microorganisms, it is necessary to increase the number of live bacteria in the gel.The number of live bacteria that can be accommodated in a gel of 0 unit volume is of course limited, and its limit value ( jl
Density filling f) is based on the shape and size of viable bacterial cells.
It is calculated mathematically, for example, in Satucharomyces cerevisiae (spherical or elliptical, average about 5 μm), it is about 4.1
0 pieces/sg. In an actual gel, since the gel material also occupies some space, it is impossible to completely achieve the above limit value. It is possible to achieve a bacterial cell concentration extremely close to the above-mentioned limit value, within a range where the concentration of bacteria is very close to the above limit value. That is, when compared to polyvinyl alcohol, for example,

(乾燥菌体基準重量)のサツカロマイセス・セレビシェ
を添加し本発明の包括処理を施し増殖用培地を3〜4日
供給した場合、ゲル内に直径約400μ講の1体集落が
密集1酵母濃度は約10”個/−−ゲルと推算された0
また、同じくサツカロマイセス・セレビシェを、ポリビ
ニルアルコールに対u’/、、程度添加程度添加層増殖
用培地間供給した場合、ゲル内に直径200μ調程度の
菌体集落が密集1酵母濃度社、やはり1a−個/5ff
−ゲルと推算される。
When Saccharomyces cerevisiae (based on dry bacterial body weight) is added, subjected to the comprehensive treatment of the present invention, and a growth medium is supplied for 3 to 4 days, single colonies with a diameter of about 400 μm are densely packed in the gel, and the yeast concentration is Approximately 10” pieces/--0 estimated to be gels
Furthermore, when Satucharomyces cerevisiae was supplied to polyvinyl alcohol as an additive layer growth medium to the extent of u'/, bacterial colonies with a diameter of about 200 μm were densely packed in the gel. -pcs/5ff
- Estimated to be gel.

このようにして得られる固定化増殖画体の活性は、増殖
用培地の供給停止後も急激に低下すること社なく、シば
しば2〜3週間同様の活性が維持される。もっとも1〜
2力月後KFi、―体集落の直径が当初の2〜4割程度
減少し活性も3割程度低下する例が多いが、このような
事mを招いた後も、再び増殖用培地1に12〜24h供
給する仁とにより、固定化菌体の活性及び集落直径は元
に復する。
The activity of the immobilized and proliferated specimen thus obtained does not drop sharply even after the supply of the growth medium is stopped, and the same activity is often maintained for 2 to 3 weeks. Most 1~
After 2 months, the diameter of KFi-body colonies decreases by about 20-40% and the activity decreases by about 30% in many cases. By supplying kernels for 12 to 24 hours, the activity and colony diameter of the immobilized bacterial cells are restored to their original values.

本発明においては、ゲル内に直径50〜550pW@、
好マシく扛100〜5QOp南の菌体集落を多数生成せ
しめ、しかる後、ここへ増殖用培地を断続的もしくは少
量ずつ連続的に供給することにより、当初の菌体活性を
維持する仁とを特徴とする0本発明のゲルに、上記操作
t−4カ月以上反後・継続しても、ゲル組織の強度に変
化扛なく、ゲル組織の亀裂・破壊は全く認められない。
In the present invention, a diameter of 50 to 550 pW@,
By generating a large number of bacterial cell colonies of 100 to 5 QOp south, and then continuously supplying the growth medium intermittently or in small amounts, it is possible to maintain the initial bacterial cell activity. Characteristics: Even when the gel of the present invention is subjected to the above-mentioned operation for t-4 months or more, there is no change in the strength of the gel structure, and no cracking or destruction of the gel structure is observed.

本発明のポリビニルアルコールゲルに1ポリビニルアル
コール繊維またはポリビニルアルコール拳フィルムに対
スる硬化処理を施すことにより、更に若干、ゲルの機械
的強度が高まる。仁の公知の硬化(架橋)処理として框
、例えば、アルデヒド、ジアルデヒド、ジインシアナー
ト、フェノール類、あるいは、チタニウム、クロム、ジ
ルコニウム等の金属化合物、さらにはホウ砂、アクリロ
ニトリル、トリメチロールメラミン、エビクーロヒドリ
ン、ビス−(−一ヒドロキシエチル)スルホン、ポリア
ク゛リル酸、ジメチロール尿素、無水マレイン酸等によ
る方法を挙げることができる〇 しかし本発明のゲルは、既に述べたとおりの強度(耐荷
重性)を有し、また上記の補助的硬化処理により固定化
微生物生菌体がしばしば損傷を受けることや、ゲルの製
造費がいたずらKかさむことt考lするならば、天然多
糖類にしばしば用いられるこれらの硬化処理を、本発明
においては、用いない方が望ましいといえる0 次に実施例により本発明を説明する。
By subjecting the polyvinyl alcohol gel of the present invention to a curing treatment for polyvinyl alcohol fibers or polyvinyl alcohol film, the mechanical strength of the gel is further increased slightly. Known hardening (crosslinking) treatments include aldehydes, dialdehydes, diincyanates, phenols, or metal compounds such as titanium, chromium, and zirconium, as well as borax, acrylonitrile, trimethylolmelamine, and evicoulohydride. Examples include methods using phosphorus, bis-(-monohydroxyethyl) sulfone, polyacrylic acid, dimethylol urea, maleic anhydride, etc. However, the gel of the present invention has the strength (load-bearing capacity) as described above. However, considering that the immobilized living microorganisms are often damaged by the above-mentioned auxiliary curing treatment and that the manufacturing cost of the gel is unnecessarily high, these curing treatments, which are often used for natural polysaccharides, In the present invention, it is preferable not to use such a treatment.Next, the present invention will be explained with reference to Examples.

実施例 1 市販ポリビニルアルコール(けん化度97モル一、粘度
平均重合[2,200,491水溶液の粘1j(20℃
)54eP)の粉末85f(含水率6wt1g)を、水
91stに溶解1.、!LOvtl!水溶1’[(pH
&9)を得た◇仁の水溶液5781に120℃X2Gm
inの加圧水蒸気滅1処理を施し無鉋室において放冷後
、ここへ、サツカワマイセス9セレビシエ(8aeeh
aromye*m e@revisims) −[12
tを含む懸濁水(リン酸緩衝液pH7) (培養液濃縮
液)20−を添加し、7m1n間かきまぜた。この懸濁
水溶液のポリビニルアルコール濃度は7.6 w t 
%である。
Example 1 Commercially available polyvinyl alcohol (saponification degree 97 mol 1, viscosity average polymerization [2,200,491 viscosity of aqueous solution 1j (20 ° C.
)54eP) powder 85f (water content 6wt1g) was dissolved in 91st water.1. ,! LOvtl! Aqueous 1' [(pH
&9) was obtained◇Gin aqueous solution 5781 at 120℃
After being subjected to pressurized steam sterilization 1 treatment in an incubator and left to cool in a non-plane room, Satsukawa Myces 9 cerevisiae (8 aeeh
aromye*m e@revisims) -[12
20 - of suspension water (phosphate buffer pH 7) (culture solution concentrate) containing T was added and stirred for 7 ml. The polyvinyl alcohol concentration of this suspended aqueous solution was 7.6 wt.
%.

この懸濁水溶液200fを、無菌室において、ラシヒリ
ング(8mX 8 m )成型用鋳型(665個分)へ
注入臥−45℃×α5hの冷却(a[l結・成型)を施
し食後、鋳型の上面カバーを除き、成型体を支持する下
面カバーに11−Hgで6hの真空脱水処理を施した。
200 f of this suspended aqueous solution was poured into a Raschig ring (8 m x 8 m) mold for molding (665 molds) in a sterile room, and then cooled at -45°C x α5 h (a[l condensation and molding]). The cover was removed, and the lower cover supporting the molded body was subjected to vacuum dehydration treatment at 11-Hg for 6 hours.

解凍後、132F(含水率88 w t IG、脱水率
35wt1)のゲルを得た。
After thawing, a gel of 132F (water content 88 wt IG, dehydration rate 35 wt1) was obtained.

このゲルを、あらかじめ滅菌したα9−食塩水15(1
−に6h浸漬した結果、成型ゲルは吸水して1sar(
含水率89 w tチ)に達しな。この浸漬液に前記酵
母Fi認められず、酵母の余量がラシヒリング内に包括
されたことを確かめた〇 直径351、高さ6051のアクリル樹脂製カラムへ、
上記ラシヒリ/グ130t−不規副光てんし、あらかじ
め120℃X15m1mの滅菌処理を施した培地(グル
コース1−1ぺyトンLIL5Is1酵母工讐スα5%
、麦芽エキスrls哄、塩化カリウム1%、pH5,5
,25℃)i120sf/にの流速で塔底から送入した
。この培地送入操作の前後において、ラシヒリングの極
微量を採取1走査型電子顕微鏡により観察し友結果、培
地送入開始前には、ゲル中に少数の酵母が個別分散・包
括されているにすぎなかっためζλ4h後には多数の酵
母集落(直径70μm)を容易に認めることができた。
This gel was mixed with α9-saline solution 15 (1
- As a result of being immersed in water for 6 hours, the molded gel absorbed water and became 1sar (
Do not reach a moisture content of 89 wt. The yeast Fi was not found in this immersion solution, and it was confirmed that the remaining amount of yeast was trapped in the Raschig ring.
The above Rashhili/g 130t-irregular secondary light cell, 120℃ x 15ml 1m pre-sterilized medium (Glucose 1-1Pyton LIL5Is1 Yeast Technology α5%
, malt extract RLS, potassium chloride 1%, pH 5.5
, 25° C.) from the bottom of the column at a flow rate of 120 sf/. Before and after this medium feeding operation, a very small amount of Raschig ring was collected and observed using a scanning electron microscope.The results showed that before the medium feeding started, only a small number of yeast were individually dispersed and encapsulated in the gel. Therefore, many yeast colonies (70 μm in diameter) could be easily observed after ζλ4h.

58b後には、集落の直径が200μmに違賦各集落が
膨張して互いに接近してきたことを知り、直ちに、培地
の送入を停止して、エチルアルコール合成用基質溶液(
グルコースIQwtチ、硫酸マグネシウム七水和物!O
ppm、PH!L5.52℃)t80ssg/hの流速
で塔底から送入した結果、12h後の流出液のエチルア
ルコール濃I[は4wt1(理論収率の7711)K達
した。この操作を1力月間継続したことにより、塔頂流
出液のエチルアルコール濃度は五5 w t Isに低
下レゲル中の生菌体集落の直径は140μmに縮小した
ことを知ったOしか改前記培地を1zo−/hの流速で
再び塔底から送入することにより、12h後には元の集
落直径(200μm)に復した。しかる後、ここへ前記
エチルアルコール合成用基質溶液を80d/hの流速で
送入り、% shiには流出液のエチルアルコール濃匿
扛、再びAwtlGK後したO 実施例 2 市販ポリビニルアルコール(けん化1j97モルチ、粘
度平均重合WL1,700.4%水溶液の粘度(20℃
)26cP)の粉末88t(含水率7vtlG)を水9
17tに溶解LA 8vt−水溶液とした。
After 58b, we noticed that the diameter of each colony was 200 μm and the colonies were expanding and coming closer to each other, so we immediately stopped feeding the medium and added the substrate solution for ethyl alcohol synthesis (
Glucose IQwt, magnesium sulfate heptahydrate! O
ppm, PH! As a result of feeding from the bottom of the column at a flow rate of 80 ssg/h (L5.52°C), the ethyl alcohol concentration in the effluent reached 4 wt 1 (theoretical yield of 7711) K after 12 h. By continuing this operation for one month, the ethyl alcohol concentration of the top effluent decreased to 55 wt Is.The diameter of the viable bacterial colony in the regel was reduced to 140 μm. was fed again from the bottom of the column at a flow rate of 1 zo-/h, and the original colony diameter (200 μm) was restored after 12 hours. After that, the substrate solution for ethyl alcohol synthesis was fed into the tube at a flow rate of 80 d/h, and the effluent was concentrated with ethyl alcohol and then again subjected to AwtlGK. , viscosity average polymerization WL1, 700.4% aqueous solution viscosity (20°C
)26cP) powder (moisture content 7vtlG) was mixed with 9g of water.
LA was dissolved in 17t to make an aqueous solution of 8vt.

この水溶液44tに、120℃X15m1nの加圧水蒸
気滅菌処理を一1次に無菌室において放冷後、ここへク
ルイフエロマイ篭ス・マルキシアヌス(Kluyマ・r
omyoasmarxlanmlm)1008 ft−
含む懸濁液(培養液)4ft−注ぎ、7m1n間かきま
ぜた。この懸濁水溶液のポリビニルアルコール濃WLは
zSvtチであった。この懸濁水41tt1無繭室にお
いて、ラシヒリング(8雪×8■)成型用鋳型(130
個分)へ注入り、 −58℃X[15hの冷却(凍結・
成型)を施し食後、成型体を鋳型から取り出し6hの真
空脱水を施した。解凍後23t(含水率85 Wt ’
4s脱水率43wtl5)の成嬰ゲルを得た0こ、のゲ
ルを、あらかじめ滅菌したa9s食塩水40sd″4C
6h浸漬した結果、成型ゲルは吸水し27f(含水率8
7wtチ)に達した0直径3c11、高さ1051のガ
ラス製カラムに、上記ラシヒリング27ft−不規則光
てん獣あらかじめ120℃X20m1nの滅菌処理を施
した培地(イヌリン11%麦芽エキスα3先酵母j−’
I’ ス(151%  PH”、25℃)t12d/h
の流速で塔底から送入した。40h後のゲルを、走査型
電子顕微鏡を用い観察した結果、ゲル内に直径450p
mの集落i認めた妙ζゲル組織に裂目はなかった0培地
を更に10h送入後、同様の観察を行った結果、集落の
直径が550μwst−超えた段階で塔頂流出液に濁り
が目立ち、酵母が若干流失し始めたことを知った。した
がって、集落直径550μm以下に制御する必vIを閣
めた〇実施例 3 市販ポリビニルアルコール(けん化、l[9&4モルー
1粘度平均重合[1,800,49G水溶液の粘度(2
0℃)29.5eP)の粉末85t(含水率5vtIs
)t、水9132に溶解LA 8wt−水溶液(pH7
)とした。
44 tons of this aqueous solution was first sterilized with pressurized steam at 120°C x 15 ml, then left to cool in a sterile room, and then transferred to Kluyma marxianus (Kluyma r.
omyoasmarxlanmlm) 1008 ft-
Pour 4 ft of suspension (culture solution) containing the mixture and stir for 7 ml. The polyvinyl alcohol concentration WL of this aqueous suspension solution was zSvt. In this suspended water 41tt1 cocoon-free chamber, a mold for molding (130
-58℃×[15h cooling (freezing/
After molding), the molded product was removed from the mold and subjected to vacuum dehydration for 6 hours. 23t after thawing (moisture content 85Wt'
A gel with a 4S dehydration rate of 43 wtl5) was obtained using a 9S saline solution 40sd''4C that had been sterilized in advance.
As a result of soaking for 6 hours, the molded gel absorbed water and became 27f (water content 8).
A glass column with a diameter of 3c11 and a height of 1051, which had reached 7wt. '
I's (151% PH", 25℃) t12d/h
It was introduced from the bottom of the tower at a flow rate of . As a result of observing the gel after 40 hours using a scanning electron microscope, a diameter of 450p was observed within the gel.
There were no fissures in the strange ζ gel structure observed in the colonies of m. After feeding the 0 medium for another 10 hours, the same observation was performed. As a result, when the diameter of the colonies exceeded 550 μwst, the effluent at the top of the column became turbid. I noticed that the yeast had started to bleed out a little. Therefore, it was necessary to control the colony diameter to 550 μm or less. Example 3 Commercially available polyvinyl alcohol (saponification, 1 viscosity average polymerization of 1,800,49 G
0°C) 29.5eP) powder 85t (moisture content 5vtIs
)t, LA 8wt dissolved in water 9132-aqueous solution (pH 7
).

この水溶液18fに、120℃X20m1nの加圧′水
蒸気絨曹処理を施ム次に無菌室において放冷後、ここへ
バシルス°サブチリス(Baeillug  5ubt
ilis )  a OQ 2tを含む邂濁水(培養液
、pH7)2ff注ぎ、7’m i n間かきまぜた。
18f of this aqueous solution was subjected to a pressurized water vapor treatment at 120°C x 20m1n, then allowed to cool in a sterile room, and then transferred to the 18f water solution.
ilis) a 2 ff of turbid water (culture solution, pH 7) containing 2 t of OQ was poured and stirred for 7'min.

この懸濁水溶液のポリビニルアルコール濃度は7wt−
である。
The polyvinyl alcohol concentration of this suspended aqueous solution is 7wt-
It is.

この懸濁水溶液18ft、無菌室において、ポリエチレ
ン製容器(底面6 X 6 tya )に注ぎ、−48
℃×α6hの冷却(凍結・成型)t−施した後、5hの
真空脱水を施した。
Pour 18 ft of this aqueous suspension into a polyethylene container (bottom 6 x 6 tya) in a sterile room.
After cooling (freezing/molding) for 6 hours at ℃×α, vacuum dehydration was performed for 5 hours.

解凍後、1a4f(含水率86 w t %、脱水率4
2wtチ)の白色不透明ゲルを得た。これを、あらかじ
め滅菌したa9−食塩水30sdk8h浸漬した結果、
ゲルは吸水し12t(含水率88wt56)に達した。
After thawing, 1a4f (moisture content 86 wt%, dehydration rate 4
A white opaque gel of 2 wt. As a result of soaking this in pre-sterilized A9-saline solution for 30sdk8h,
The gel absorbed water and reached 12t (water content 88wt56).

このゲルを、多数の細片(8mX8■×4霞うに裁断後
、滅菌した培地(可溶性殿粉5チ、ペグトン1−1肉エ
キス1チ、酵母エキスミ1チ、食塩a5−1塩化カルシ
ウムa02%、硫酸マグネシウム七水和物(101%、
pH7,30℃)4〇−中へ投入し、30〜33℃の恒
温室において48h振とうした時点で、ゲルの極微量を
採取し走査型電子顕微鏡を用いて観察した結果、直径3
70声mの細菌集落を多数認めたが、ゲル組織に亀裂は
認められなかった。しかる後、更に12h振とうしつつ
、同様に観察した結果、細■の集落直径550μmk超
えた後、培地の濁度が目立ち始め、細■がかなり流失し
たことを知った。従って、細1集落直径550μmの段
階で、増殖用培地をゲルから分離するのが適切であるこ
とを確認した。
This gel was cut into a large number of pieces (8 m x 8 x 4 pieces) and then sterilized in a medium (5 ml of soluble starch, 1 ml of Pegton 1-1 meat extract, 1 ml of yeast extract, 2% sodium chloride A5-1 calcium chloride A0). , magnesium sulfate heptahydrate (101%,
After shaking for 48 hours in a thermostatic chamber at 30 to 33 degrees Celsius, a very small amount of the gel was collected and observed using a scanning electron microscope.
Many bacterial colonies of 70 m in size were observed, but no cracks were observed in the gel structure. Thereafter, while shaking for another 12 hours, similar observations were made, and it was found that after the colony diameter of the small 2's exceeded 550 μmk, the turbidity of the medium began to become noticeable, and a considerable amount of the 2's 2's were washed away. Therefore, it was confirmed that it was appropriate to separate the growth medium from the gel at the stage of 550 μm in diameter of each small colony.

実施例 4 市販ポリビニルアルコール(けん化度97モル一、粘度
平均重合度1,700.4チ水溶触の粘度(20℃)2
6eP)の粉末85t(含水率7 v t ’36 )
 t、水912fに溶解18wt−水溶液(pH瓜9)
を得た0この水溶液171tに120℃X20m1nの
加圧水蒸気滅菌処理を施賦次に無菌室において放冷後、
ここへアルトロバクターシンプレックス(ムrthro
baeter simplex)  (別名コリネバク
テリウム・シンプレックス、Coryne−baet@
rimm mimpl@x ) 1 sat含む懸濁液
(トリス(ヒドロキシメチル)アミノメタン・塩酸緩衝
液pH7,5)20ft:注ぎ、7m1n間かきまぜた
。この懸濁水溶液のポリビニルアルコール濃度は7 w
 t To テある。
Example 4 Commercially available polyvinyl alcohol (degree of saponification 97 mol, viscosity average degree of polymerization 1,700.4
6eP) powder 85t (moisture content 7vt'36)
t, 18wt-aqueous solution dissolved in water 912f (pH melon 9)
171 t of this aqueous solution obtained was subjected to pressurized steam sterilization at 120°C x 20 ml, and then left to cool in a sterile room.
Arthrobacter simplex (mrthro)
baeter simplex) (also known as Corynebacterium simplex, Coryne-baet@
rimm mimpl@x ) 1 sat suspension (tris(hydroxymethyl)aminomethane/hydrochloric acid buffer pH 7.5) 20 ft: Pour and stir for 7 ml. The polyvinyl alcohol concentration of this suspended aqueous solution is 7 W.
There is t To te.

この懸濁水溶液190ft、無菌室において、ラシヒリ
ング(8■×8箇)成型用鋳型(630個分)へ注入し
−48℃Xα5hの冷却(ak結・成型)を施した後、
成型体を取り出し、6hの真空脱水を施した。解凍後、
132t(含水率89wtl51脱水率5owt*)の
ゲルを得た)このゲルを、あらかじめ滅菌したα2%グ
ルコース水溶液(リン酸緩衝液、pH7)100−に7
h浸漬した結果、成型ゲルに吸水して1stf(含水率
90vtlG)に達したO [11径SeIm、高さ60国のガラス製円筒(カラム
)へ上記ラシヒリング139ft−不規則光てんLAあ
らがじめ120℃×15m1nの滅菌処理を施したグレ
ドニゾロン(prednlsolona、′ 11β、
17α、21−トリヒドロキシ−t4−プレグナジェン
−420−ジオン)合成用基質溶液(コルチゾルcor
t1sol三11β、17ffs21−トリヒドロキシ
−4−ルグネンーへ2o−ジオン(L I M、メチル
アspコ−h4%、pH7,34℃)t12゜d/hの
流速で塔底から送入すると共に、無菌フィルターを通へ
空気を塔底へ2005g/hの流速で送入した力ζ搭頂
流出液は、2〜20hにわなり、プレドニゾロン濃度I
IL3wt−以下にすぎなかった。
After injecting 190 ft of this aqueous suspension into a mold for molding (630 pieces) Raschig rings (8 x 8 pieces) in a sterile room and cooling (ak condensation and molding) at -48°C x α5 hours,
The molded body was taken out and subjected to vacuum dehydration for 6 hours. After thawing,
A gel of 132t (water content 89wtl51 dehydration rate 5owt*) was obtained) This gel was diluted with a pre-sterilized α2% glucose aqueous solution (phosphate buffer, pH 7) 100-7.
As a result of immersion, the O which absorbed water into the molded gel and reached 1stf (water content 90vtlG) [11 diameter SeIm, height 60mm, the above Raschig ring 139ft - Irregular phototen LA synopsis Grednisolone (prednlsolona, '11β,
17α,21-trihydroxy-t4-pregnagen-420-dione) substrate solution for synthesis (cortisol cor
t1sol311β, 17ffs21-trihydroxy-4-lugnene-2o-dione (LIM, methyl asp co-h4%, pH 7, 34°C) was fed from the bottom of the column at a flow rate of t12°d/h, and was sterilized. Air was sent through the filter to the bottom of the column at a flow rate of 2005 g/h, and the effluent at the top of the column was produced for 2 to 20 h, and the concentration of prednisolone I
IL was only 3 wt- or less.

次に、このカラムの塔底へ、培地(ペプトン15%、コ
ルチゾ41mM、メチルアルコール4チ、30℃)を2
8sd/hの流速で40に送入後、ゲルの極微量を採取
し走査型電子顕微鏡を用い観察した結果、直径190p
、の細菌集落を認めた。次に、プレドニゾロン合成用基
質溶液を120d/hの流速で塔底から送入すると共に
、無菌フィルター金通じ、空気を塔底へ200d/hの
流速で送入1紫外線吸収スペクトλ分析(285nm吸
光度)、薄層クロマト分析(シリカ・ゲループ党ピレン
グリコールークロロホルム)、高速液体クロマト分析(
クロロホルム抽出)により流出液を分析した結果、20
日間にわたり、プレドニゾpン濃度は1.8〜2.0w
t%(収率55〜61モルチ)であった。しかし、31
日後には、この濃度がt 5 w t %へ低下したた
め、ゲルの極微量につき、光学顕微鏡により観察した結
果、細菌集落が直径約70μ調に収縮していることを知
った。次に、上記カラムの塔底へ、培養液(ペプトンα
5−、グルコース(L29G、塩化マグネシウム1m1
戦塩化カルシウム1mM、コルチゾル1、メチルアルコ
ール4Is、 リン酸緩衝液pH7,30C)1に30
d/hの流速で24に送入後、ゲルの極微量を採取し走
査型電子顕微鏡により観察の結果、直径2201mgの
細菌集落を認めた。
Next, a culture medium (15% peptone, 41 mM cortisol, 4 parts methyl alcohol, 30°C) was added to the bottom of the column.
40 at a flow rate of 8 sd/h, a very small amount of the gel was collected and observed using a scanning electron microscope. As a result, the diameter was 190 p.
, bacterial colonies were observed. Next, a substrate solution for prednisolone synthesis was fed from the bottom of the tower at a flow rate of 120 d/h, and air was fed into the bottom of the tower at a flow rate of 200 d/h through a sterile filter. ), thin layer chromatography (silica gelupe pyrene glycol-chloroform), high performance liquid chromatography (
As a result of analyzing the effluent by chloroform extraction), 20
Over the course of several days, prednisone concentration was 1.8-2.0w.
t% (yield 55-61 mol). However, 31
After a few days, this concentration decreased to t 5 wt %, and as a result of observing a very small amount of gel using an optical microscope, it was found that the bacterial colony had shrunk to a diameter of approximately 70 μm. Next, the culture solution (peptone α
5-, glucose (L29G, magnesium chloride 1ml
Calcium chloride 1mM, cortisol 1, methyl alcohol 4Is, phosphate buffer pH 7, 30C) 1 to 30
24 at a flow rate of d/h, a very small amount of the gel was collected, and as a result of observation with a scanning electron microscope, a bacterial colony with a diameter of 2201 mg was observed.

しかる後、再び前記9基質溶液を送入したところ、前向
同様、流出液の紫外線吸収スペクトル分析により、グレ
ドニゾロン収率61七ルーが達成されたことを知った。
Thereafter, the 9 substrate solution was introduced again, and as in the previous case, ultraviolet absorption spectrum analysis of the effluent revealed that a glednisolone yield of 617 rupees had been achieved.

このような基質溶液の送入および断続的培養液の送入を
8回反復実施した〃ζゲル内の細菌集落包括空洞には、
全く亀裂線発生しなかった。
After repeating the feeding of the substrate solution and the intermittent feeding of the culture solution 8 times, the cavity containing the bacterial colony in the ζ gel was
No crack lines occurred at all.

実施例 5 、市販ポリビニルアルコール(けん化[9114モル−
1粘度平均重合Hzaoo、4−水溶液の粘[(zoc
)2ts@P)の粉末84t(含水率swt−)t、水
916fに溶解I、、、8vt−水溶液(pH7)を得
た。
Example 5 Commercially available polyvinyl alcohol (saponified [9114 mol-
1-Viscosity average polymerization Hzaoo, 4-Viscosity of aqueous solution [(zoc
)2ts@P) powder 84t (water content swt-)t dissolved in 916f of water I...8vt-aqueous solution (pH 7) was obtained.

この水溶液18Fに、120℃X20m1nの加圧水蒸
気滅菌処理を施1次に無菌室において放冷後、ここへサ
ツカロマイセス・セレビシェ(8aeeharomye
@sC@r・マ1g1a・)  20wgを含む懸濁水
(リン酸緩衝液、PH7)2ft−注ぎ、7m1n間か
きまぜた。この懸濁水溶液のポリビニルアルコール濃f
は7.2wt−である。
This aqueous solution at 18F was subjected to pressure steam sterilization at 120°C x 20ml, and then allowed to cool in a sterile room.
2 ft of suspension water (phosphate buffer, pH 7) containing 20 wg of @sC@r・Ma1g1a・) was poured and stirred for 7 ml. The polyvinyl alcohol concentration of this suspended aqueous solution
is 7.2wt-.

この懸濁水溶液18fを、無菌室において、ラシヒリン
グ(8■×8■)成型用鋳型(59個分)へ注入し一3
8℃xo、shの冷却(凍結・成型)を施した後、成型
体を取り出LA 6hの真空脱水を施した。解凍後、1
α4f(含水率86wt%、脱水率42wt%)の成型
ゲルを得た。これをあらかじめ滅菌した(L91G91
α5o−に6h浸漬した結果、ゲルは吸水し12t(含
水率aavt*)に達した。
In a sterile room, pour 18f of this suspended aqueous solution into Raschig ring (8 x 8) molds (59 molds).
After cooling (freezing and molding) at 8°C xo and sh, the molded body was taken out and vacuum dehydrated at LA 6h. After thawing, 1
A molded gel of α4f (water content 86 wt%, dehydration rate 42 wt%) was obtained. This was sterilized in advance (L91G91
As a result of immersion in α5o- for 6 hours, the gel absorbed water and reached 12t (water content aavt*).

直径31、高さ105+のガラス製円筒に上記ラシヒリ
ング12Fを不規側光てんLAあらかじめ120℃×2
0m1nの滅菌処理を施したエチルアルコール合成用基
質水溶液(グルコース10wt1G、硫酸マグネシウム
七水和物10100pp PH!L5.32℃)を、1
0d/hの流速で塔底から送入した力(流出液のエチル
アルコール濃fはl11wt*(理論収率の2−)にす
ぎなかった0次に、この成型ゲルの微量を採り、走査型
電子顕微鏡により観察したが、酵母が個別に分散包括さ
れてはいるものの、酵母集落は全く認められなかった0
続いて、上記カラムの塔底へ、培地(グルコース4−1
酵母エキス1載塩化アンモニウムa2−1硫酸マグネシ
ウム七水和物αOI Ls、塩化カルシウム1004L
P’5.5.28℃)を、5−/hの流速で55h送入
後、ゲルの黴量會採り、同様に観察したところ、直径5
2Qp気の酵母集落を多数認めたが、包括空洞の亀裂は
見られなかつl−0 次に、塔底へ前記エチルアルコール合成用基質水溶液を
20m/にの流速で送入し流出液につきエチルフルコー
ル(ガスハマト分析m>とグルコース(ジニトロサリチ
ル−法)を分析した結束、クル;ドースJ)精舎率は+
111−にすぎず、エチルアルコール1!に度4.7 
w t ’Ik (理論収率の92慢)に達したことを
知った。
The above Raschig ring 12F was placed in a glass cylinder with a diameter of 31 and a height of 105+, and the irregular side light was placed at 120°C x 2 in advance.
0 ml of sterilized substrate aqueous solution for ethyl alcohol synthesis (glucose 10 wt 1 G, magnesium sulfate heptahydrate 10100 pp PH!L 5.32°C) was added to 1
A force was introduced from the bottom of the column at a flow rate of 0 d/h (the ethyl alcohol concentration of the effluent was only 11 wt* (2- of the theoretical yield)). Next, a small amount of this molded gel was taken and a scanning type When observed using an electron microscope, no yeast colonies were observed, although the yeast were individually dispersed.
Subsequently, the culture medium (glucose 4-1
Yeast extract 1 ammonium chloride a2-1 magnesium sulfate heptahydrate αOI Ls, calcium chloride 1004L
After feeding P'5.5.28℃ for 55 hours at a flow rate of 5-/h, the amount of mold on the gel was measured and observed in the same manner.
Although many yeast colonies of 2Qp gas were observed, no cracks in the enclosing cavity were observed.Next, the aqueous substrate solution for ethyl alcohol synthesis was fed to the bottom of the column at a flow rate of 20 m/m, and the effluent was mixed with ethyl fluorol. (Gashamat analysis m> and glucose (dinitrosalicyl method) analysis of unity, cru; Dose J) The spermatozoa rate is +
Only 111-, ethyl alcohol 1! degree 4.7
It was learned that w t 'Ik (the theoretical yield of 92%) was reached.

1力月後に、上記エチルアルコール濃度は′5.5 w
 tチに低下したため、このゲルの微量を採取し走査型
電子顕微鏡により観察した結果、多数の酵母集落がいず
れも直径250p*に収縮したことを知った。
After one month, the above ethyl alcohol concentration was '5.5 w
As a result of collecting a small amount of this gel and observing it with a scanning electron microscope, it was found that many yeast colonies had all shrunk to a diameter of 250p*.

上記カラムの塔底へ再び前記培地t−5m/hの流速で
17に供給後、同様に観察した結果、多数の集落、は、
−いずれも直径300μmに復したことを知った。その
後、塔底へ前記エチルアルコール合成用基質水溶液t−
20sd/にの流速で供給1..4h後、流出液のエチ
ルアル;−ル濃度4.7vt−が再現された0上記諸操
作を通じ、流出液には、酵母は極微量検出されるにすぎ
ず、固定化当初の酵母はもちろん、カラム内で増殖し九
酵母も、ゲル内にほぼすべてhlll虻釧1(い4I仁
と食−かk“I九。
After supplying the medium again to the bottom of the column 17 at a flow rate of t-5 m/h, the same observation revealed that there were a large number of colonies.
-I learned that both of them have returned to a diameter of 300 μm. Thereafter, the substrate aqueous solution for ethyl alcohol synthesis t-
Feed at a flow rate of 20 sd/1. .. After 4 hours, the ethyl alcohol concentration of 4.7vt- in the effluent was reproduced.Through the above operations, only a trace amount of yeast was detected in the effluent, and not only yeast at the time of immobilization but also the column. Almost all of the yeast that proliferate within the gel are contained within the gel.

比較例 1 実施例5のポリビニルアルコール水溶液609に、12
0℃X20m1nの加圧水蒸気滅菌処理を施し無菌室に
おいて放冷後、この水溶液へ実施例5と同様のサツカロ
マイセス嗜セレビシェa02f’i含む懸濁水(リン酸
緩衝液)7f′ft注ぎ、7m1m間かきまぜた0次に
、この懸濁水溶液60fを、底面10a+X 10aw
の容器に注ぎ、2日間放置することにより、湿潤セロノ
・ン紙に供た、全く剛直性に欠ける粘着性フィルム14
.6F(含水率62 w を−)ヲ得た。このフィルム
(厚さ約1.5■)1に1あらかじめ絨麿し九a9チ食
塩水20−に浸漬した結果、4h後に、フィルムは1″
7.5 ? (含水率67wtチ)に達した。このフィ
ルムを多数の細片(8■×8■x t s wa ) 
K裁断後、滅菌処理を施した実施例5の培養液4rJ−
へ投入し焼綿栓を付1.,30〜32℃の恒温室におい
て4sh振とう後、このフィルムの微量を採り、走査型
電子顕微鏡によりフィルム内部を観察したが、酵母の大
集落は認められず、直径25μ餌程度の小集落が点在す
るにすぎず、フィルム内の酵母菌数は101個/−以下
と推算され友。
Comparative Example 1 In the polyvinyl alcohol aqueous solution 609 of Example 5, 12
After applying pressure steam sterilization at 0°C x 20 ml and leaving it to cool in a sterile room, 7 f'ft of suspension water (phosphate buffer) containing Satucharomyces cerevisiae a02f'i as in Example 5 was poured into this aqueous solution and stirred for 7 ml. 0 Next, this suspended aqueous solution 60f is placed on the bottom surface 10a+X 10aw
The adhesive film 14, which lacks any rigidity, was prepared by pouring it into a container and leaving it for two days to apply it to a wet cellon paper.
.. 6F (moisture content: 62 w) was obtained. This film (approximately 1.5 cm thick) was pre-washed and immersed in 20 cm of salt water. After 4 hours, the film was 1" thick.
7.5? (moisture content reached 67 wt). Cut this film into many pieces (8 x 8 x tswa)
After K cutting, culture solution 4rJ- of Example 5 was sterilized.
1. Pour into the tank and attach a cotton plug. After shaking for 4 hours in a thermostatic chamber at 30-32°C, a small amount of this film was taken and the inside of the film was observed using a scanning electron microscope, but no large colonies of yeast were observed, and only small colonies with a diameter of about 25μ bait were observed. The number of yeast bacteria in the film is estimated to be less than 101/-.

実施例50基質水溶液40+dt−坂ロフラスコ(50
G+d)に採り、120℃X15m1nの滅菌処理を施
した後、無菌室で放冷しここへ上記フィルム裁断片17
fe投入後、焼綿栓を付り、、30〜32℃の恒温室に
おいて振とうした力ζ 24h後のエチルアルコール濃
[は[14v t −(理論収率の15−)にすぎず、
また、ポリビニルアルコールが溶出したことを知った。
Example 50 Substrate aqueous solution 40+dt-Sakaro flask (50
G+d), sterilized at 120°C x 15m1n, left to cool in a sterile room, and the above film cut piece 17
After adding fe, a cotton plug was attached and the mixture was shaken in a constant temperature room at 30 to 32°C. After 24 h, the ethyl alcohol concentration was only [14v t - (15- of the theoretical yield),
I also learned that polyvinyl alcohol was eluted.

このようにポリビニルアルコールを用いる公知の手法に
よる場合、増殖効果に、乏しいうえ、ポリビニルアルコ
ール・フィルムの耐水性にも問題があり、解糖(エチル
アルコール生成)活性の高い固定化酵母は得難い。
As described above, when using the known method using polyvinyl alcohol, the growth effect is poor, and the polyvinyl alcohol film has a problem in water resistance, making it difficult to obtain immobilized yeast with high glycolytic (ethyl alcohol production) activity.

比較例 2 実施例5のポリビニルアルコールのかわりに、けん化度
93モル−1粘度平均重合度1,700.4−水溶液の
粘度(20℃) 50 cPの市販ポリビニルアルコー
ルを用い、同様に操作した。凍結・成型1税水体10f
(含水率85w t %、脱水率44vui)が得られ
た力ζ解凍後は、5℃においても軟弱化し少量のゲル層
のほかに1多量のポリビニルアルコール濃厚水溶液が層
分離するのを認めた0したがって、これを、反応用カラ
ムに充てんすることは不可能であり、フラスコに移す操
作によっても、完全に形くずれした。
Comparative Example 2 In place of the polyvinyl alcohol in Example 5, a commercially available polyvinyl alcohol having a degree of saponification of 93 mol, a viscosity average degree of polymerization of 1,700.4, and a viscosity of an aqueous solution (at 20° C.) of 50 cP was used, and the same procedure was carried out. Freezing/molding 1 tax water body 10f
(Water content: 85 wt %, dehydration rate: 44 VUI) After thawing, it softened even at 5°C, and in addition to a small amount of gel layer, a large amount of polyvinyl alcohol concentrated aqueous solution was observed to separate into layers. Therefore, it was impossible to pack this into a reaction column, and even when it was transferred to a flask, it completely lost its shape.

比較例 3 実施例5のポリビニルアルコールのかわりに、けん化度
9 ?、 2モル−1°粘度平均重合度500.4チ水
溶液の粘度(20℃)a6ePの市販ポリビニルアルコ
ールt−用い、そのtSwt−水溶液18Fにつき、同
様に操作した力ζ寒天に似たもろいゲル1αsr(含水
率84 w t 1、脱水率42wt%)が得られたに
すぎず、カラムへ充てんすることはできなかった・−q
l、 比較例 4 比較例3と同じ重合[500のポリビニルアルコール水
溶液の濃[(−50vt−まで高め、その水溶液18t
につき同様に操作し、1a4f(含水率84wt%、脱
水車42vtl&)のゲルを得たが、このゲルは、水中
で著しく軟化μ形くずれした。
Comparative Example 3 Instead of polyvinyl alcohol in Example 5, saponification degree 9? , 2 mol - 1 ° viscosity average degree of polymerization 500.4 t A brittle gel similar to ζ agar 1 α sr which was operated in the same manner using a commercially available polyvinyl alcohol t with a viscosity of an aqueous solution (20 °C) a6eP and an aqueous solution of 18 F (Water content 84 wt 1, dehydration rate 42 wt%) was obtained, and it was not possible to fill the column.
l, Comparative Example 4 Same polymerization as Comparative Example 3 [500% polyvinyl alcohol aqueous solution concentrated [(-50vt-)], the aqueous solution 18t
A gel of 1a4f (water content: 84 wt%, dehydration wheel: 42 vtl) was obtained by the same procedure, but this gel significantly softened and lost its μ shape in water.

比較例 5 市販ポリビニルアルコール(けん化#t99モルー1粘
度平均蓋合[2,600,4−水溶液の粘f(20℃)
、66cP )の粉末65t(含水率8wt%)を、水
935fに溶w4L、、6wt−とした。この水溶液5
4fに加圧水蒸気数ilNを施し放冷後、実施例5と同
様の酵母懸濁水5ft−添加[A−70℃X(L5にの
凍結・成型処理後、常温で2h放置した結果、軟質ゲル
(57t、脱水車0−1含水率94wt9G)を得ため
一弾性を示さず、水中に1晩浸漬することにより形〈ず
れし水層に濁りを生じた0すなわち、たとえ、ポリビニ
ルアルコール水溶液に凍結・成型を施しても、引続きこ
れに凍結・乾燥を施さないかぎり、本発明のタルにルー
耐水性の乏しい軟弱なゲルが生成するにすぎず、酵母を
固定化して実用に供するに耐えないことが明らかである
〇 比較例 6 比較例5の凍結・成型処理後、成型体54f1に常温で
融解させ、しかる後、真空乾燥器に移し減圧脱水を試み
たが融解液の泡立ちが激しく、操作を停止しなければな
らなかった0次に、泡立ち対策として、上記成型体融解
筒のし、。(171)を採取−これをポリエチレン製ビ
ーカー(100sd)の底面に塗布後、減圧乾燥を試み
た。これにより、ビーカーの底面に1fのゲル(含水率
74 w t To、脱水率72wt91)が生成した
力ζその弾性は乏しく、また6oot/−の引張り応力
により直ちに切断された。
Comparative Example 5 Commercially available polyvinyl alcohol (saponified #t99 mole 1 viscosity average lidded [2,600,4-viscosity f of aqueous solution (20°C)
, 66 cP) powder (water content 8 wt%) was dissolved in 935 f of water to give w4L,,6 wt-. This aqueous solution 5
After applying pressurized water vapor to 4F and leaving it to cool, 5ft of the same yeast suspension water as in Example 5 was added [A-70℃ 57t, dehydration vehicle (0-1 water content 94wt9G) did not show any elasticity, and by immersing it overnight in water, the shape shifted and the water layer became turbid. Even if molding is performed, unless it is subsequently subjected to freezing and drying, the roux of the present invention will only form a soft gel with poor water resistance, and yeast will be immobilized and it may not be suitable for practical use. It is clear Comparative Example 6 After the freezing and molding process of Comparative Example 5, the molded body 54f1 was melted at room temperature, and then transferred to a vacuum dryer and dehydration under reduced pressure was attempted, but the molten liquid foamed violently and the operation was stopped. Next, as a measure against foaming, I took the molded product melted into the tube and collected (171). After applying this to the bottom of a polyethylene beaker (100 sd), I tried drying it under reduced pressure. As a result, the force ζ generated by 1f gel (water content 74 wt To, dehydration rate 72 wt 91) on the bottom of the beaker had poor elasticity and was immediately broken by a tensile stress of 6 oot/-.

仁のようにまたとえ、ポリビニルアルコール水溶液を凍
結・成型しても、その後、これを融解させることなく(
凍結状態を維持しつつ)脱水しないかぎり、本発明の高
含水性で、しかも弾力性に富む機械的強健の優れたゲル
(酵母含有ゲル)は得られない。
Even if a polyvinyl alcohol aqueous solution is frozen and molded, it will not be melted (
Unless the gel is dehydrated (while maintaining the frozen state), the gel (yeast-containing gel) with high water content, high elasticity, and excellent mechanical strength of the present invention cannot be obtained.

実施例 6 市販ポリビニルアルコール(けん化[9h4モルー1粘
度平均重合度1,800.4−水溶液の粘[(20℃)
 29.5cP)の粉末84f(含水率5vt憾)を水
916ftIC溶解LA JLOwtチ水溶液CpH&
?)を得た。
Example 6 Commercially available polyvinyl alcohol (saponification [9h4 mol 1 viscosity average degree of polymerization 1,800.4-viscosity of aqueous solution [(20°C)
Dissolve 84f (29.5cP) powder (water content 5vt) in 916ft of water IC LA JLOwt CH aqueous solution CpH &
? ) was obtained.

この水溶液1stに、120℃X20m1mの加圧水蒸
気滅菌処理を施し次に無1室において放冷後、ここへサ
ツカロマイセス・セレビシェ(8acehar@mye
@se@r・マ1aia・) 14ft含む懸濁水(り
ン酸緩衝液、TiH2)2tt−注ぎ、7m1n間かき
まぜた。この懸濁水溶液のポリビニルアルコールIlK
は、7.2vtLsである0この懸濁水溶液18ft、
無菌室において、ポリ エチレン製容器(底面4 X 
4 es )に注ぎ、−53℃×α6hの冷却(凍結・
成型)を施した後、5hの真空脱水を施した。
This aqueous solution 1st was subjected to pressure steam sterilization at 120°C x 20ml, and then left to cool in an empty room.
@se@r・Ma1aia・) Pour 2tt of suspension water (phosphate buffer, TiH2) containing 14ft and stir for 7ml1n. This suspended aqueous solution of polyvinyl alcohol IlK
is 7.2vtLs 0 This suspended aqueous solution 18ft,
In a sterile room, a polyethylene container (bottom 4
4 es) and cooled (freeze/
After molding), vacuum dehydration was performed for 5 hours.

解凍後、1[L5F(含水率84 w t Ss脱水率
42wt1)の白色不透明ゲルを得た。これをあらかじ
め滅菌したα9−食塩水40dllfC6に浸漬した結
果、ゲルは吸水し12f(含水率86wt’lG)に達
した。この浸漬液には前記酵母は検出されなかった。次
に、このゲルを多数の断片(2cNX4awXA■)に
裁断後、あらかじめ滅菌したα9−食塩水40−で洗浄
し この洗浄液を光学顕微鏡により観察した結果、前記
酵母が少数縁められたが、洗浄液の濁度に基づき、これ
を定量し当初の酵母の少なくとも98%がゲル中に確実
に包括されたこと金知った。
After thawing, a white opaque gel of 1 [L5F (water content 84 wt Ss dehydration rate 42 wt1) was obtained. As a result of immersing this in 40 dllfC6 of previously sterilized α9-salt water, the gel absorbed water and reached 12f (water content 86 wt'lG). The yeast was not detected in this soaking solution. Next, this gel was cut into many pieces (2cNX4awXA■) and washed with α9-saline solution 40-, which had been sterilized in advance.As a result of observing this washing solution with an optical microscope, a small number of the yeasts were observed, but the washing solution This was quantified based on the turbidity of the gel to ensure that at least 98% of the original yeast was entrapped in the gel.

次に、このゲル裁断片につき、機械的強[t−測定した
ところ、引張り強度d Kf/cd、また圧縮強度は4
 Kf15#以上であった◇また、指先につまんで強烈
に圧迫しても、全く形(ず些せず、再び元に後した。
Next, for this gel cut piece, mechanical strength [t-measured, tensile strength d Kf/cd, and compressive strength 4
It was Kf15# or above◇Also, even when I pinched it with my fingertips and pressed it intensely, it did not change shape at all and returned to its original shape.

実施例6のゲル強度を、比較例2〜6の場合と比較測定
した。
The gel strength of Example 6 was measured in comparison with that of Comparative Examples 2-6.

引張強度   圧縮強度 (Kf/d)   (jcf/ai) 実施例6(本発明)6〉4 比較例2          くα2    くa22
比較3          <a2     <(12
比較例4           <a2     (a
22比較5           ((L2     
<(L22比較6          くα6    
〈a8本発明の微生物生繭体固定化・増殖用ゲル2>L
%従来公知のポリビニルアルコール系ゲル(比較例5、
比較例6、ならびに本発明によらないポリビニルアルコ
ール系ゲル(比較例2〜4)K比し機械的強度において
格段と優れていることがわかる。
Tensile strength Compressive strength (Kf/d) (jcf/ai) Example 6 (present invention) 6>4 Comparative example 2 Kuα2 Kua22
Comparison 3 <a2 <(12
Comparative example 4 <a2 (a
22 Comparison 5 ((L2
<(L22 comparison 6 α6
<a8 Gel for immobilizing and propagating microbial cocoons of the present invention 2>L
% conventionally known polyvinyl alcohol gel (Comparative Example 5,
It can be seen that the mechanical strength is significantly superior to Comparative Example 6 and polyvinyl alcohol gels not according to the present invention (Comparative Examples 2 to 4) K.

比較例 7 (1)アルギン瞭ナトリウム5wt%f溶解した(19
56食塩水50m(35℃)に、サツカロマイ七ス吻セ
レビシェ(15ft−含む[L?’1食塩水40d(5
5℃)を混合後、これi(LO2M塩化カルシウム水溶
液500dへ ピペットから滴下1球状ゲル(直径3−
1計If、000個)會得た。
Comparative Example 7 (1) Sodium alginate dissolved at 5 wt% (19
56 Salt water 50m (35℃) contains Satsukalomy seven proboscis cereviche (15 ft- [L?'1 salt water 40d (5
After mixing 1 spherical gel (diameter 3 -
1 If, 000 pieces in total) were obtained.

(2)K−カラゲナン4 w t *を溶解したα9嘩
食塩水(35℃)40−へ上記酵母懸濁液20mg(5
5℃)を添加嶋混合ム底面55IX5cmのポリスチレ
ン灸容器へ注ぎ、20℃に冷却して、板状ゲル(厚さ2
.451 ) f得た。
(2) Add 20 mg (5 ml) of the above yeast suspension to α9 saline solution (35°C) in which 4 wt* of K-carrageenan has been dissolved.
5℃) was poured into a polystyrene moxibustion container with a 55IX x 5cm bottom surface, cooled to 20℃, and plate-shaped gel (thickness 2
.. 451) I got f.

(滲 上記ゲル2t(t2X2.4X[L2ow)t、
硬化剤水溶液(5−塩化カリウム) 2 Q−(30℃
)に2h浸漬した。
(The above gel 2t(t2X2.4X[L2ow)t,
Hardening agent aqueous solution (5-potassium chloride) 2 Q- (30°C
) for 2 hours.

(4)  前畝2)のゲに2f(4,2X2.4×@2
as)t、硬化剤水溶液(ヘキサメチレンジアミン0.
05 M、グルタアルデヒド(LIM)20+d(50
℃)に2h浸漬後、水洗した0 (5)  寒天粉末2wtチを溶解したa9嗟食塩水(
36℃)40−へ(1)の酵母懸濁液20w1(56℃
)を添加・混合L%底面5cIRX55+のポリスチレ
ン製容器へ注ぎ、0℃に冷却して、板状ゲル(厚さ2.
4 cm )t−得た。
(4) 2f (4,2X2.4x@2) on the front ridge 2)
as) t, curing agent aqueous solution (hexamethylene diamine 0.
05 M, glutaraldehyde (LIM) 20+d(50
℃) for 2 hours and then washed with water.
36℃) to 40-20w of yeast suspension (1) (56℃
) was poured into a polystyrene container with a bottom surface of 5c IRX55+, cooled to 0°C, and a plate-shaped gel (thickness 2.
4 cm) t-obtained.

(6)ペクチン(レモン系)粉末4wt%を溶解したα
9−食塩水(36℃)40−へ(りの酵母懸濁液2〇−
°(56℃)を添加・混合し底面5cmX5cM1のポ
リスチレン製容器へ注ぎ、55℃に冷却して板状ゲ#(
厚さ2、4 cm )を得た。
(6) α in which 4wt% of pectin (lemon type) powder was dissolved
9- Salt solution (36℃) 40- To (Rino's yeast suspension 20-
° (56 °C), mix, pour into a polystyrene container with a bottom surface of 5 cm x 5 cm, and cool to 55 °C.
A thickness of 2.4 cm) was obtained.

上11)、(2入(3)、 (4)、(5)、(6)の
ゲルはいずれも軟弱でもろく、指先でつまみ、軽く指圧
を加えることにより、直ちに押しつぶされた。を九、引
張抄強度は、共に1.5 V4/dに耐えず、直ちに破
断さnた。
Above 11), (2 gels (3), (4), (5), and (6)) were all soft and brittle, and were crushed immediately by pinching them with the fingertips and applying light finger pressure.9. Both tensile strength did not withstand 1.5 V4/d and broke immediately.

比較例 8 比較例7(1)、(2)、(3)、(4入(5)、(6
)のゲル細片(球または3X3X5m立方体)につき実
施例5に準医増殖用培地を送入した。4−4)llの観
察給米で、すべてのゲルに亀裂が見らへいずれの場合の
流出液も着しく懸濁し、酵母の流失が確認された。
Comparative example 8 Comparative example 7 (1), (2), (3), (4 pieces (5), (6
) gel strips (spheres or 3×3×5 m cubes) were delivered with paramedical growth medium in Example 5. 4-4) After 1 liter of observed rice feeding, cracks were observed in all the gels, and the effluent in each case was firmly suspended, confirming that the yeast had washed away.

直ちに培地の供給を停止1がわりに、エチルアルコール
合成用基質水溶液を送入したが、それぞれのゲルの亀裂
は消失することなく、むしろ亀l!!箇所数は増加し酵
母の流失か12h以上持続した。特に比較例7(へ(3
入(4入(5)、(6)のゲルでに、成形体の表面が更
に軟弱化し徐々に脱落するのが認められた。
Immediately, the supply of the medium was stopped and an aqueous solution of the substrate for ethyl alcohol synthesis was introduced instead, but the cracks in each gel did not disappear, and instead, they became worse! ! The number of spots increased and the yeast was washed away for more than 12 hours. In particular, Comparative Example 7 (to (3)
With gels (5) and (6), it was observed that the surface of the molded product became even softer and gradually fell off.

手続補正書 昭和56年11月17日 特許庁長官 島 1)春 S+  殿 1、事件の表示 昭和56年特許劇第143983号 2、発明の名称 微生物生鉋体の固定化・増殖法 3、補正をする者 事件との関係  特許出願人 名称 (444)  日本石油株式会社゛、・  り゛ 5、補正により増加する発明の数   な し   −
′6、補正の対象 7、補正の内容 (1)  特許請求の範囲を別紙の通9補正する。
Procedural amendment November 17, 1980 Director General of the Patent Office Shima 1) Haru S+ Mr. 1, Indication of the case 1983 Patent Drama No. 143983 2, Name of the invention Method for immobilization and propagation of microorganism live aceae bodies 3, Amendment Relationship with the case involving a person who does
'6, Subject of amendment 7, Contents of amendment (1) The scope of claims is amended in Annex 9.

(2) q#細書の下記の箇所を補正する。(2) Correct the following parts of the q# specification.

特許請求の範囲 けん化度95モル係以上で、しかも粘度平均重合度i、
so。
Claims: Saponification degree is 95 molar or more, and viscosity average polymerization degree i,
So.

以上のポリビニルアルコールの水溶液と微生物生菌体よ
り成る懸濁水酪滌を、成型用鉤皺・\注入し、仁れt−
6υ工り帆一温度で凍結・成型し、しかる後、この凍結
・成型体を融解させることなく脱水率5w14以上に真
空脱水し、必要に応じ水中に浸漬することによフ、含水
率20〜92wtfb (湿潤体基準)に到達させ、微
生物生菌体を包括(包埋)したゲルを得て擲工このゲル
に微生物増殖用培地を供給し、これによ多形成される増
殖微生物菌体集落や直径を50μS〜550μ愼の範囲
にまで拡大させることを特徴とする微生物生菌体の固定
化・増殖法。
The above-mentioned aqueous solution of polyvinyl alcohol and a suspension of living microorganisms were injected into a molding mold.
A 6υ manufactured sail is frozen and molded at one temperature, then vacuum dehydrated without thawing to a dehydration rate of 5w14 or more, and if necessary, immersed in water to obtain a water content of 20~ 92 wtfb (wet body standard) to obtain a gel that encloses (embeds) viable microorganisms, and then supplies a microorganism growth medium to this gel, which forms a large number of proliferating microbial cell colonies. A method for immobilizing and propagating living microorganisms, which is characterized in that the diameter of the microorganism is expanded to a range of 50 μS to 550 μS.

Claims (1)

【特許請求の範囲】[Claims] けん化度95モル−以上で、しかも粘度平均重合度1、
500以上のポリビニルアルコールの水溶液と微生物生
菌体より成る懸濁水溶液を、成!1341鋳型へ注入し
、これを−6℃より低い![で凍結・成型し、しかる後
、この凍結・成型体を融解させることなく脱水率5uy
tes以上に真空脱水し必要に応じ水中に浸漬すること
により、含水率20〜? 2 w t % (湿潤体基
準)に到達させ微生物生菌体を包括(包11)したゲル
を得て後このゲルに微生物増殖用培地を供給しこれによ
り形成される増殖微生物画体集落の直径fsQp隋〜5
50 p@の範囲にまで拡大させることt−特徴とする
微生物生菌体の固定化φ層端法〇
saponification degree of 95 mol or more, and viscosity average polymerization degree of 1,
Create a suspended aqueous solution consisting of an aqueous solution of polyvinyl alcohol of 500 or more and living microorganisms! Pour into the 1341 mold and keep it below -6℃! Freeze and mold the product, and then reduce the dehydration rate to 5uy without thawing
By vacuum dehydrating to more than tes and immersing in water as necessary, the water content is 20~? After obtaining a gel that has reached 2 wt % (wet body basis) and enclosing living microorganisms (package 11), a microorganism growth medium is supplied to this gel, and the diameter of the grown microorganism colony formed by this is fsQp Sui~5
Expansion to the range of 50 p@t-Featured microbial cell immobilization φ layer end method〇
JP14398381A 1981-09-14 1981-09-14 BISEIBUTSUSEIKINTAINOKOTEIKA * ZOSHOKUHO Expired - Lifetime JPH0244514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14398381A JPH0244514B2 (en) 1981-09-14 1981-09-14 BISEIBUTSUSEIKINTAINOKOTEIKA * ZOSHOKUHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14398381A JPH0244514B2 (en) 1981-09-14 1981-09-14 BISEIBUTSUSEIKINTAINOKOTEIKA * ZOSHOKUHO

Publications (2)

Publication Number Publication Date
JPS5847492A true JPS5847492A (en) 1983-03-19
JPH0244514B2 JPH0244514B2 (en) 1990-10-04

Family

ID=15351580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14398381A Expired - Lifetime JPH0244514B2 (en) 1981-09-14 1981-09-14 BISEIBUTSUSEIKINTAINOKOTEIKA * ZOSHOKUHO

Country Status (1)

Country Link
JP (1) JPH0244514B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146589A (en) * 1985-12-19 1987-06-30 Nippon Oil Co Ltd Fermentation and production with gel containing embedded microorganism
JPS6443188A (en) * 1987-08-10 1989-02-15 Kuraray Co Production of spherical molded product of immobilized microorganism
JPH0699186A (en) * 1992-09-18 1994-04-12 Ngk Insulators Ltd Production of carrier for immobilization
JP2016522221A (en) * 2013-06-13 2016-07-28 バイオマトリカ,インク. Cell stabilization
US10568317B2 (en) 2015-12-08 2020-02-25 Biomatrica, Inc. Reduction of erythrocyte sedimentation rate
US10772319B2 (en) 2014-06-10 2020-09-15 Biomatrica, Inc. Stabilization of thrombocytes at ambient temperatures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146589A (en) * 1985-12-19 1987-06-30 Nippon Oil Co Ltd Fermentation and production with gel containing embedded microorganism
JPH058669B2 (en) * 1985-12-19 1993-02-02 Nippon Sekyu Kk
JPS6443188A (en) * 1987-08-10 1989-02-15 Kuraray Co Production of spherical molded product of immobilized microorganism
JPH0699186A (en) * 1992-09-18 1994-04-12 Ngk Insulators Ltd Production of carrier for immobilization
JP2016522221A (en) * 2013-06-13 2016-07-28 バイオマトリカ,インク. Cell stabilization
US10772319B2 (en) 2014-06-10 2020-09-15 Biomatrica, Inc. Stabilization of thrombocytes at ambient temperatures
US10568317B2 (en) 2015-12-08 2020-02-25 Biomatrica, Inc. Reduction of erythrocyte sedimentation rate
US11116205B2 (en) 2015-12-08 2021-09-14 Biomatrica, Inc. Reduction of erythrocyte sedimentation rate

Also Published As

Publication number Publication date
JPH0244514B2 (en) 1990-10-04

Similar Documents

Publication Publication Date Title
EP0017565B1 (en) Process for the inclusion of microorganisms in a polymer matrix and product so obtained
CA1179618A (en) Process for the inclusion of organisms of the mycorrhizae and actinorrhizae groups
CN110282903A (en) Microcapsules of repairing concrete crack and preparation method thereof
KR920009499B1 (en) Process for preparation of porous matters containing an enzyme immobilized by means of pva-gel
JPS60137289A (en) Production of immobilized microbial cell or enzyme
JPS59113889A (en) Preparation of immobilized enzyme or immobilized microbial cell
JPS5847492A (en) Immobilization and propagation of mold of microorganism
AU779420B2 (en) Porous structure comprising fungi cell walls
EP2783008A1 (en) Methods for the preparation of hydrogels using lipase enzymes
WO1989010397A1 (en) Process for culturing animal cells on a large scale and process for preparing supporting substrate for that process
JPS6244914B2 (en)
JPH07247365A (en) Particulate aqueous gel of high polymer and production thereof
EP0060052A1 (en) Method of immobilizing live microorganisms
BR102016029351A2 (en) microencapsulated production processes of microorganism consortia and microencapsulated microorganism consortia
JP3060010B2 (en) Ice nucleating bacteria and their use
JPS58107181A (en) Immobilization and proliferation of living microbial cell
JPH0244513B2 (en) BISEIBUTSUSEIKINTAINOKOTEIKAHO
RU2754927C1 (en) Method for immobilizing microorganisms on montmorillonite clays
JPH04320685A (en) Polymeric gel
JPS60180587A (en) Preparation of porous material containing enzyme immobilized with pva gel
JP2710816B2 (en) Biocatalyst-immobilized polyvinyl alcohol gel fiber and method for producing the same
JPS63109779A (en) Immobilization and forming of microbial cell and/or enzyme
JP2002253228A (en) Method for producing polymeric functional gel
JPS5944037B2 (en) Method for producing immobilized glucose isomerase
JPH02211872A (en) Production of formed spherical product immobilizing biocatalyst