JPS5847112A - Two-cycle internal combustion engine - Google Patents

Two-cycle internal combustion engine

Info

Publication number
JPS5847112A
JPS5847112A JP56143440A JP14344081A JPS5847112A JP S5847112 A JPS5847112 A JP S5847112A JP 56143440 A JP56143440 A JP 56143440A JP 14344081 A JP14344081 A JP 14344081A JP S5847112 A JPS5847112 A JP S5847112A
Authority
JP
Japan
Prior art keywords
valve
cylinder
pressure
port
admission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56143440A
Other languages
Japanese (ja)
Other versions
JPS60534B2 (en
Inventor
Kanemichi Itou
伊藤 鐘陸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56143440A priority Critical patent/JPS60534B2/en
Publication of JPS5847112A publication Critical patent/JPS5847112A/en
Publication of JPS60534B2 publication Critical patent/JPS60534B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/28Component parts, details or accessories of crankcase pumps, not provided for in, or of interest apart from, subgroups F02B33/02 - F02B33/26
    • F02B33/30Control of inlet or outlet ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To provide free degrees on the operation of an admission valve and make scavinging efficiency more favorable in such a way that the valve body of the admission valve is formed by being integrally combined with a differential pressure piston, in an engine which scavenges residual exhaust air in the cylinder by a piston pump. CONSTITUTION:When a pre-pump 601 closes a suction port 23, and it comes into its compression stroke, admission pressure P1 in an admission port 701 climbs, and when an exhaust port 27 is opened, inner pressure P2 gets suddenly near to the atmospheric pressure. Therefore, the admission pressure P1 is enlarged, force-F1 in the valve opening direction which is produced from the pressure difference according to P1-P2 is applied to a valve body 16, and force-F2 in the valve opening direction which is produced from the pressure difference according to P1-Po applied thereto. In consequence, when component of force-F1 and -F2 grows larger than force F in the valve closing direction of a valve spring 19, an admission valve 151 is operated in the valve opening direction. After the exhaust port 27 has been opened, when the admission port 701 is opened, new mixed air is fed under pressure through the admission port 701 into a cylinder 501, and the mixed air pushes out residual exhaust gas to the side of the exhaust port 27 and scavenges it. In the meantime, the cylinder 501 and the port 701 are interrupted.

Description

【発明の詳細な説明】 この発明は、自動車、航空機等に用いられる2サイクル
内燃エンジンの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in two-stroke internal combustion engines used in automobiles, aircraft, and the like.

2サイクルエンジンはその構造、作動が簡単なことから
重量も軽く、取扱いも容易である。しかし掃気作動が完
全でないと残留排気ガスが次回の燃焼を阻害する。更に
、シリンダ内に新しい混合ガスを供給するのと排気ガス
の排出とを同時に行なうため、混合ガスの一部が排気口
から逃げ出し、いわゆる吹抜けを生じるため燃料消費、
料が多くなるという欠点がある。このような2サイクル
エンジンの欠点を除去できる2サイクル内燃エンジンを
、先に、本出願人は特願昭51−155858号に開示
した。その2サイ2ル内燃エイシンはクランクシャフト
に駆動されるピストン式ポンプを用い、燃焼シリンダ内
の残留排ガスをピストン式ポンプで加圧した混合ガスに
よシ掃気するものである。
Two-stroke engines are simple in structure and operation, so they are light in weight and easy to handle. However, if the scavenging operation is not complete, residual exhaust gas will inhibit the next combustion. Furthermore, since new mixed gas is supplied into the cylinder and exhaust gas is discharged at the same time, part of the mixed gas escapes from the exhaust port, causing so-called blow-by, which increases fuel consumption and
The disadvantage is that it costs more. The present applicant previously disclosed in Japanese Patent Application No. 51-155858 a two-stroke internal combustion engine that can eliminate the drawbacks of the two-stroke engine. The 2-size, 2-ru internal combustion engine uses a piston-type pump driven by a crankshaft to scavenge residual exhaust gas in the combustion cylinder with a mixed gas pressurized by the piston-type pump.

これによシ燃焼シリンダ内の掃気叫効果的に行なわれ、
特に、燃焼シリンダ上部の点火プラグ周辺の排気ガスは
吹き飛ばされ、完全に新しい混合気で囲まれるため、着
火性や燃焼性が優れる。しかし、このようなエンジンで
は、燃焼シリンダ側と吸気ボート側との圧力差による弁
開方向への力がパルプスプリングによる弁閉方向への力
を上まわった際にのみ弁開作動する給気弁を用いておシ
、そ・の弁開作動期間や弁開量が比較的限定されるとい
う不都合がある。
This effectively scavenges the air inside the combustion cylinder,
In particular, the exhaust gas around the spark plug at the top of the combustion cylinder is blown away and surrounded by a completely new air-fuel mixture, resulting in excellent ignition and combustibility. However, in such engines, the intake valve opens only when the force in the valve opening direction due to the pressure difference between the combustion cylinder side and the intake boat side exceeds the valve closing force due to the pulp spring. However, there is a disadvantage that the valve opening period and the amount of opening of the valve are relatively limited.

この発明は給気弁の作動に比較的自由度を持たせ、より
掃気性の良好な2サイクル内燃エンジンを提供すること
を目的とする。
It is an object of the present invention to provide a two-stroke internal combustion engine that allows relatively more freedom in the operation of an intake valve and has better air scavenging performance.

この発明による2サイクル内燃エンジンはクランクシャ
フトに駆動されると共に、混合気吸気系からの混合気を
加圧し、これを給気ポートを通し燃焼シリンダに圧送す
るピストン式ポンプと、給気ボートを断続する給気弁と
を備え、ピストン式、ポンプにより燃焼シリンダ内の残
留排気ガスを掃気し、しかも、給気弁は燃焼シリンダ側
と給気ボート側との圧力差により゛弁開方向への力を受
ける弁本体と、大気と給気ボート側との圧力差によシ弁
開方向への力を受ける差圧ビス°トンとを一体的に連結
して形成される。このため、給気弁は差圧ピストンによ
り弁開方向への力を追加して受けることになり、この差
圧ピストンが倍力装置として作用する。゛即ち、差圧ピ
ストンの形状を変えることによシ、給気弁の弁開作動期
間や弁開量を調整し、燃焼シリンダ内への混合気の供給
タイミングや量を所望値に設定し、出力増加に寄与する
ことができる。
The two-stroke internal combustion engine according to the present invention is driven by a crankshaft, and includes a piston-type pump that pressurizes the air-fuel mixture from the air-fuel mixture intake system and pumps it into the combustion cylinder through the air intake port, and an air intake boat that connects the engine intermittently. The air supply valve is equipped with a piston type pump to scavenge residual exhaust gas in the combustion cylinder, and the air supply valve is equipped with a pressure difference between the combustion cylinder side and the air supply boat side, which generates a force in the valve opening direction. It is formed by integrally connecting the valve body that receives the air pressure, and the differential pressure biston that receives the force in the valve opening direction due to the pressure difference between the atmosphere and the air supply boat side. Therefore, the air supply valve receives an additional force in the valve opening direction from the differential pressure piston, and this differential pressure piston acts as a booster. In other words, by changing the shape of the differential pressure piston, the valve opening period and valve opening amount of the intake valve can be adjusted, and the timing and amount of air-fuel mixture supplied into the combustion cylinder can be set to desired values. It can contribute to increase in output.

以下、この発明を添付図面と共に説明する。The present invention will be described below with reference to the accompanying drawings.

第1図にはこの発明の一実施例としての2サイクル内燃
エンジン(以後単にエンジンと記す)1を示した。この
;ンジン1は自動車用であり、第1図中左方を前方向と
した水冷直列4気筒型である。エンジン1は中央にシリ
ンダブロック2を、その上側に7リングヘツド3を、シ
リンダブロック2の下側にオイルパン4を配置させ、こ
れらを一体的に固定している。シリンダブロック2内に
は4つのシリンダ5が前後方向に列設され、前方の第1
および第2シリンダ501 、502と、後方の第3お
よび第4シリンダ503,504とには、それぞれ、混
合気を供給するピストン式ポンプ6が2つ(後方のポン
プは図示せず)対設される(第2図参照)。即ち、前ピ
ストン式ポンプ(以後単に前ポンプと記す)601の吐
出側、は2つの曽路を有し、一方は第1シリンダ501
の給気ポート701に、他方は第2シリンダ502の給
気ポート702にそれぞれ連通する。同様に図示しない
後ピストン式ポンプ(以後単に・□後ポンプと記す)の
吐出側の一方は第3シリンダ503の給気ポートに、他
方は第4シリンダ504の給気ポートにそれぞれ連通す
る。
FIG. 1 shows a two-stroke internal combustion engine (hereinafter simply referred to as engine) 1 as an embodiment of the present invention. This engine 1 is for an automobile, and is a water-cooled inline four-cylinder type with the left side in FIG. 1 facing forward. The engine 1 has a cylinder block 2 in the center, a seven-ring head 3 above the cylinder block, and an oil pan 4 below the cylinder block 2, which are integrally fixed. Inside the cylinder block 2, four cylinders 5 are arranged in a row in the front-rear direction.
The second cylinders 501 and 502 and the rear third and fourth cylinders 503 and 504 are each provided with two piston-type pumps 6 (the rear pumps are not shown) that supply the air-fuel mixture. (See Figure 2). That is, the discharge side of the front piston type pump (hereinafter simply referred to as the front pump) 601 has two channels, one of which is connected to the first cylinder 501.
The other side communicates with the air supply port 701 of the second cylinder 502, and the other side communicates with the air supply port 702 of the second cylinder 502. Similarly, one side of the discharge side of a rear piston type pump (hereinafter simply referred to as the rear pump), which is not shown, communicates with the air supply port of the third cylinder 503, and the other side communicates with the air supply port of the fourth cylinder 504, respectively.

両ポンプは第2図に示すようにクランクシャフト8側の
スプロケット9と、ポンプ側のスプロケット10と、こ
れらを連結するチェーン11とからなるチェーンドライ
ブ方式を用いることによシ駆動第1および第2シリンダ
501 、502はその両シ1ノンダヘッド3部分にお
いて連通孔12で連通されており、かつ、両ピストン1
31. 132の作動タイミングも同一である。同様に
第3および第4シリンダ503 、504も連通孔14
で連通され、かつ両ピストン133 、134の作動タ
イミングも同一である。
As shown in FIG. 2, both pumps use a chain drive system consisting of a sprocket 9 on the crankshaft 8 side, a sprocket 10 on the pump side, and a chain 11 connecting these. The cylinders 501 and 502 communicate with each other through a communication hole 12 at the cylinder head 3 portion, and both pistons 1
31. The operation timing of 132 is also the same. Similarly, the third and fourth cylinders 503 and 504 also have communication holes 14
The actuation timing of both pistons 133 and 134 is also the same.

このようにエンジンlは4気筒エンジンであるがその作
動からみると、直列2気筒エンジンであシ、前側の第1
おjび第2クリくダ501 、502に対し、後側の第
3および第4シリンダ503−、504はそのランク角
で180°ずらすよう構 成される。このため以下の説明では第1シリンダ第1シ
リイダ501、および、これに挿嵌されたピストン13
1は従来の2サイ−クルエンジンのシリンダ、ピストン
と同様にり?ンク角360°ごとに吸入、圧縮、爆発、
排気の各作用を完了させる。この第1シリンダ501は
そのシリンダヘッド3側に給気ポート701を配設し、
この給気ポート701と第1シリンダ501内とは給気
弁151により断続操作される。この給気弁151は逆
止弁として作用する弁本体16と、これより延出するス
テム17と、ステム17の先端に一体的に連結される差
圧ピストン18と、弁本体16側に対し、閉弁方向への
力Fを加える弁ばね19とにより構成される。差圧ピス
トン18はシリンダヘッド3側に一体的に形成された差
圧シリンダ20内に挿嵌される。差圧シリンダ20の一
方空間には給気ポート701の給気圧P1が加わるよう
通気路201が連結形成され(第2図参照)、他方の空
間には開口202が形成され、この開口202を通し大
気開放される。
Engine 1 is a 4-cylinder engine as described above, but looking at its operation, it appears to be an in-line 2-cylinder engine.
The third and fourth cylinders 503-, 504 on the rear side are configured to be shifted by 180 degrees in rank angle with respect to the second cylinders 501 and 502. Therefore, in the following description, the first cylinder 501 and the piston 13 inserted therein will be described.
Is 1 the same as the cylinder and piston of a conventional 2-cycle engine? Inhalation, compression, explosion,
Complete each action of exhaust. This first cylinder 501 has an air supply port 701 arranged on the cylinder head 3 side,
The air supply port 701 and the inside of the first cylinder 501 are operated intermittently by the air supply valve 151. This air supply valve 151 includes a valve main body 16 that functions as a check valve, a stem 17 extending from this, a differential pressure piston 18 that is integrally connected to the tip of the stem 17, and a valve main body 16 side. The valve spring 19 applies a force F in the valve closing direction. The differential pressure piston 18 is inserted into a differential pressure cylinder 20 that is integrally formed on the cylinder head 3 side. An air passage 201 is connected to one space of the differential pressure cylinder 20 so that the air supply pressure P1 of the air supply port 701 is applied thereto (see FIG. 2), and an opening 202 is formed in the other space. Opened to the atmosphere.

給気ホー1701に吐出口21を連通させた前ポンプ6
01はそのポンプシリンダ22の側壁面に吸入口23、
を形成しており、この吸入口23には混合気吸気系側の
気化器24が接続される。このポンプ601のピストン
25はクランクシャフト26にょシ上下動され、下死点
前65°で吸入口23を開口させる(第3図参照)。
Front pump 6 with discharge port 21 communicating with air supply hole 1701
01 has a suction port 23 on the side wall surface of the pump cylinder 22,
The intake port 23 is connected to a carburetor 24 on the side of the air-fuel mixture intake system. The piston 25 of this pump 601 is moved up and down by the crankshaft 26 to open the suction port 23 at 65 degrees before the bottom dead center (see FIG. 3).

第1シリンダ501の裾部には排気孔27が穿設されて
おり、シリンダからの排気ガスは同排気孔27より排気
管28を経て外部に排出される(第2図参照)。
An exhaust hole 27 is formed in the bottom of the first cylinder 501, and exhaust gas from the cylinder is discharged from the exhaust hole 27 to the outside through an exhaust pipe 28 (see FIG. 2).

第1シリンダ501の回シには冷却水の流動するウォー
タジャケット29が形成され、これはウォーータポンプ
30を含む冷却系に連結される。この他、エンジン1に
は点火系、潤滑系などの通常の補助機構が付設される。
A water jacket 29 through which cooling water flows is formed in the rotor of the first cylinder 501, and is connected to a cooling system including a water pump 30. In addition, the engine 1 is provided with usual auxiliary mechanisms such as an ignition system and a lubrication system.

第1図に示したエンジンlの作動を説明する。The operation of the engine 1 shown in FIG. 1 will be explained.

まず第3図に示すように前ポンプ601の吸入口23は
ポンプのクランク角下死点前65°で開口し、下死点通
過後65゛まで混合気を吸入する。この時、第1シリン
ダ501内のピストン131は上死点より爆発膨張行程
を行なう。即ち、第1シリンダのピストン131に対し
、前ポンプのピストン25は常に115°だけ先回シし
て回転し、かつ、第1シリンダのクランクシャフト8と
前ポンプのクランクシャフト26とは同一角速度で同一
回転方向に回転する。
First, as shown in FIG. 3, the intake port 23 of the front pump 601 opens at a crank angle of 65 degrees before the bottom dead center of the pump, and sucks the air-fuel mixture up to 65 degrees after passing the bottom dead center. At this time, the piston 131 in the first cylinder 501 performs an explosive expansion stroke from the top dead center. That is, the piston 25 of the front pump always rotates 115 degrees earlier than the piston 131 of the first cylinder, and the crankshaft 8 of the first cylinder and the crankshaft 26 of the front pump rotate at the same angular velocity. Rotate in the same direction.

第3図に示す位置では、前ポンプ601は吸入直前にあ
り、最も大きな負圧を示すため、給気ポート701の給
気圧P1も負圧となる。一方、第1シリンダ501内の
圧力P2はプラグ31に着火された混合気の爆発により
最も大きな正圧を示している。この時、給気弁151に
は、その弁本体16にP2−PIによる圧力差から生じ
る弁閉方向へのカF1と、差圧ピストン18に加わる大
気圧POより′低い給気圧P1によシ生じる弁閉方向へ
の力F2と、弁ばね19の力Fとが加わシ、給気ポー)
 701を完全に遮断する。第4図に示すように前ポン
プ601の吸入口23が開口すると給気ポート701側
は大気圧に近づき、給気弁151の差圧ピストン18へ
は差圧にょる力F2は加わらなくなり、弁本体16に加
わる力F1と弁ばね19の力Fとによシ給気ポート70
1は第1シリンダ501内と遮断される。
In the position shown in FIG. 3, the front pump 601 is just before suction and exhibits the largest negative pressure, so the supply pressure P1 of the air supply port 701 also becomes negative pressure. On the other hand, the pressure P2 inside the first cylinder 501 shows the largest positive pressure due to the explosion of the air-fuel mixture ignited by the plug 31. At this time, the air supply valve 151 receives a force F1 in the valve closing direction generated from the pressure difference between P2 and PI on the valve body 16, and an air supply pressure P1 that is lower than the atmospheric pressure PO applied to the differential pressure piston 18. The force F2 generated in the valve closing direction and the force F of the valve spring 19 are added (the air supply port)
701 is completely blocked. As shown in FIG. 4, when the intake port 23 of the front pump 601 opens, the air supply port 701 side approaches atmospheric pressure, and the force F2 due to the differential pressure is no longer applied to the differential pressure piston 18 of the air intake valve 151, and the valve Air supply port 70 due to force F1 applied to main body 16 and force F of valve spring 19
1 is cut off from the inside of the first cylinder 501.

第5図に示すように、前ポンプ601は下死点後−65
°を越えると吸入口23を閉じ、圧縮行程に入り、給気
ポート701の給気圧P1は上昇する。一方、ピストン
131が下死点前65  より下死点後65°にある間
、第1シリンダ501はその排気孔27を開放するため
、内部の圧力P2は大気圧に急激に近づく。
As shown in FIG. 5, the front pump 601 is at -65
When the temperature exceeds 0.degree., the suction port 23 is closed, a compression stroke begins, and the supply pressure P1 of the supply air port 701 increases. On the other hand, while the piston 131 is between 65 degrees before the bottom dead center and 65 degrees after the bottom dead center, the first cylinder 501 opens its exhaust hole 27, so the internal pressure P2 rapidly approaches atmospheric pressure.

このため、大気圧に近いP2に対し給気ポートの給気圧
PIは大きくなり、弁本体16にはPI −P2による
圧力差から生じる弁開方向へのカーF1が加わり、差圧
ピストン18には大気圧と給気圧P1トカ加わシ、Pi
 −POによる圧力差から生じる弁開方向へのカーF2
が加わる。このため−Flと−F2の合力が弁ばね19
の弁閉方向への力Fよシ犬さくなった時点で給気弁15
1は弁開方向へ作動する。この場合、差圧ピストン18
の受けるカーF2は給気ポート701が正圧となると同
時に発生する。このため差圧ピストンI8の大きさを変
えることによシ、受。
Therefore, the air supply pressure PI at the air supply port becomes larger than P2, which is close to atmospheric pressure, and a force F1 in the valve opening direction generated from the pressure difference due to PI - P2 is applied to the valve body 16, and the differential pressure piston 18 Addition of atmospheric pressure and supply pressure P1, Pi
-Car F2 in the valve opening direction caused by the pressure difference due to PO
is added. Therefore, the resultant force of -Fl and -F2 is the valve spring 19
When the force F in the valve closing direction is reduced, the air supply valve 15
1 operates in the valve opening direction. In this case, the differential pressure piston 18
The car F2 that is received by the air is generated at the same time that the air supply port 701 becomes positive pressure. Therefore, by changing the size of the differential pressure piston I8.

けるカーF2を調整し、第1シリンダ501内と給気ポ
ート701とを連通させるタイミングを所望時に設定す
ることが容易となる。排気孔27の開放後、給気ボー)
 701が開放されると給気ポート701よ)新しい混
合気が第1シリンダ501内へ圧送され、この混合気は
シリンダヘッド3側よシ排気孔27側に向は流動し、残
留排気ガスを排気孔27側へ押し出し掃気する。この間
給気弁151は開放状態を保持するが、第1シリンダの
排気孔27が閉鎖される直前に弁ばねの力Fが働き第1
シリンダ内と給気ポート701は遮断される。なお、第
1シリンダ501トシリンダヘツド3との接合一部に形
成される環状の空間32は給気弁151を通過してくる
混合気の流入方向を転向させるものであり、これによシ
第1シリンダ501内を混合気が一様に流動することか
でき、これと残留排気ガスとの混合を防止し、新気の吹
抜けを防止することもできる。更に、連通孔12(第1
図参照)は第1あるいは第2シリとれを他方側が着火さ
せるよう働く゛ため、着火の信頼性が高い。′ 第6図に示すように、前ポンプ601が上死点に達し、
これを通過すると、給気ポート701の給気圧P1は負
圧となり低下する。一方、第1シリンダ501内の圧力
P2はピストン131が排気孔27を閉ゆ、圧縮行程に
あるため上昇する。この時、給気弁151の弁本体16
には正圧であるF2と負圧であるPlとの差圧が加わシ
、弁閉方向への力F1が働き、差圧ピストン18には大
気圧POと負圧であるPlとの差圧が加わシ弁閉方向へ
の力F2が働く。
It becomes easy to adjust the car F2 to communicate with the inside of the first cylinder 501 and the air supply port 701 at a desired time. After opening the exhaust hole 27, the air supply bow)
701 is opened, a new air-fuel mixture (from the air supply port 701) is forced into the first cylinder 501, and this air-fuel mixture flows from the cylinder head 3 side to the exhaust hole 27 side, exhausting residual exhaust gas. The air is pushed out to the hole 27 side for scavenging. During this time, the air supply valve 151 remains open, but just before the exhaust hole 27 of the first cylinder is closed, the force F of the valve spring acts to open the first cylinder.
The inside of the cylinder and the air supply port 701 are shut off. The annular space 32 formed in a part of the joint between the first cylinder 501 and the cylinder head 3 is for reversing the inflow direction of the air-fuel mixture passing through the air supply valve 151. The air-fuel mixture can flow uniformly within one cylinder 501, and mixing of this with residual exhaust gas can be prevented, and fresh air can also be prevented from blowing through. Furthermore, the communication hole 12 (first
(see figure) has high ignition reliability because the other side works to ignite the first or second slit. ' As shown in FIG. 6, the front pump 601 reaches top dead center,
After passing through this, the supply pressure P1 of the air supply port 701 becomes a negative pressure and decreases. On the other hand, the pressure P2 inside the first cylinder 501 increases because the piston 131 closes the exhaust hole 27 and is in the compression stroke. At this time, the valve body 16 of the air supply valve 151
A differential pressure between positive pressure F2 and negative pressure Pl is applied to the valve, a force F1 acts in the valve closing direction, and a differential pressure between atmospheric pressure PO and negative pressure Pl acts on the differential pressure piston 18. is applied, and a force F2 acts in the valve closing direction.

このため第1シリンダ501は密封状態で圧縮され、前
ポンプ601は密封状態でピストン25が働き、下死点
前65°までポンプシリンダ22内の容積拡大を行ない
、給気圧PIの負圧を拡大する。この後、第3図に示す
状態に戻シ、2サイクルエンジンの1行程を完了する。
Therefore, the first cylinder 501 is compressed in a sealed state, and the piston 25 of the front pump 601 works in a sealed state, expanding the volume inside the pump cylinder 22 to 65 degrees before bottom dead center, and expanding the negative pressure of the supply pressure PI. do. Thereafter, the state shown in FIG. 3 is returned to complete one stroke of the two-stroke engine.

上述の処において、シリンダ内の残留排気ガスを新しい
混合気によシ掃気する際、その掃気を100−行なう、
ものとして、前ポンプ601の排気量を設定してもよい
。しかし、排気ガス中のNOXの処理対策上、第6図に
示したように一部排気ガスaを残留させるよう、前ポン
プ601の排気量を低減させてもよい。このようにすれ
ば排気ガスを一部シリンダ内に残留させ、即ち、排気還
流を行うことになり、最高燃焼温度を下げることができ
、NOXの発生を低減できる利点がある。更に′、第1
図に示したエンジン1はシリンダのボアに対しストロー
クを従来のものと比べ大きく形成している。
In the above-mentioned place, when scavenging the residual exhaust gas in the cylinder with a new air-fuel mixture, the scavenging is performed 100 times,
Alternatively, the displacement of the front pump 601 may be set. However, in order to deal with NOX in the exhaust gas, the displacement of the front pump 601 may be reduced so that a portion of the exhaust gas a remains as shown in FIG. In this way, part of the exhaust gas is allowed to remain in the cylinder, that is, the exhaust gas is recirculated, which has the advantage of lowering the maximum combustion temperature and reducing the generation of NOx. Further', the first
The engine 1 shown in the figure has a larger stroke relative to the cylinder bore than conventional engines.

このため、シリンダ内での混合気の燃焼時間を十分取る
ことができ、完全燃焼を遂行できると共に、CO,HC
の低減を計ることもできる。
Therefore, sufficient combustion time can be taken for the air-fuel mixture in the cylinder, complete combustion can be achieved, and CO, HC
It is also possible to measure the reduction of

第1図に示したエンジン1はピストン式のポンプを用い
、かつ給気弁151によシ開閉される吸気ポー) 70
1よシ新しい混合気の供給を受け、各シリンダの一裾部
の排気孔27よシ排気ガスを排出させるため、混合気を
残留排気ガスとあまシ混合させずにシリンダ内に供給で
き、掃気を完全に行なうことができる。これによジエン
ジンの燃焼性を高め、エンジンの信頼性を向上させるこ
とができる。
The engine 1 shown in FIG. 1 uses a piston-type pump, and has an intake port (70) that is opened and closed by an intake valve 151.
In order to receive a fresh air-fuel mixture from 1 and exhaust the exhaust gas through the exhaust hole 27 at the bottom of each cylinder, the air-fuel mixture can be fed into the cylinder without being mixed with residual exhaust gas, and scavenging can be achieved. can be done completely. As a result, the combustibility of the engine can be improved and the reliability of the engine can be improved.

しかも、各給気弁15の弁開時期やその期間、および弁
開量を差圧ピストン18の働きにより所望値に容易に設
定することができる。このため混合気のシリンダ内への
流入抵抗を低減することができ、出力の向上に寄与でき
る。
Moreover, the valve opening timing, period, and valve opening amount of each air supply valve 15 can be easily set to desired values by the action of the differential pressure piston 18. Therefore, the resistance to the air-fuel mixture flowing into the cylinder can be reduced, contributing to an improvement in output.

第1図に示したエンジン1は水冷4気筒直列型で形成し
たエンジンや水平対向のエンジンとしても同様に構成で
き、同様の作用効果を得ることができる。
The engine 1 shown in FIG. 1 can be similarly constructed as a water-cooled four-cylinder in-line engine or a horizontally opposed engine, and similar effects can be obtained.

使用すれば給気弁を効果的に働かせることができ、掃気
性をよシ改善でき、出力の向上を計ることができる。
If used, the air supply valve can be operated effectively, the scavenging performance can be improved, and the output can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例としてのエンジンの側面一
部断面図、第2図は同上エンジンの正面一部断面図、第
3図は同上エンジンの爆発時の作動説明図、第4図は同
上エンジンの膨張時の作動説明図、第5図は同上エンジ
ンの排気および掃気時の作動説明図、第6図は同上エン
ジンの圧縮時の作動説明図である。 1・・・エンジン、501・・・第171ノング、60
1・・・前ポンプ、 701・・・給気ボート、 8・
・・クランクシャフト、151・・・給気弁、16・・
・弁本体、  18・・・差圧ピストン、  24・・
・気イヒ器、Fl・・・弁本体の受ける力、 F2・・
・差圧ピストンの受ける力。 幅 2 M
FIG. 1 is a side partial sectional view of an engine as an embodiment of the invention, FIG. 2 is a front partial sectional view of the same engine, FIG. 3 is an explanatory diagram of the operation of the same engine at the time of explosion, and FIG. 4 5 is an explanatory diagram of the operation of the same engine during expansion, FIG. 5 is an explanatory diagram of the operation of the same engine during exhaust and scavenging, and FIG. 6 is an explanatory diagram of the operation of the same engine during compression. 1...Engine, 501...171st nong, 60
1... Front pump, 701... Air supply boat, 8.
...Crankshaft, 151...Air supply valve, 16...
・Valve body, 18...Differential pressure piston, 24...
・Ihihi device, Fl...force received by the valve body, F2...
・The force that the differential pressure piston receives. Width 2M

Claims (1)

【特許請求の範囲】[Claims] クランクシャフトに駆動されると共に、混合気吸気系か
らの混合気を加圧し、この混合気を給気ボートを通し燃
焼シリンダに圧送するピストン式ポンプと、上記給気ポ
ートを断続する給気弁とを備え、上記ピストン式ポンプ
によシ燃焼シリンダ内の残留排気ガスを掃気するよう構
成した2サイクル内燃エンジンにおいて、上記給気弁は
燃焼シリンダ側と給気ポート側との圧力差により弁開力
との圧力差によシ弁開方向への力を受ける差圧ピストン
とを一体的に連結して形成することを特徴とする2サイ
クル内燃エンジン。
a piston type pump that is driven by the crankshaft and pressurizes the mixture from the mixture intake system and pressure-feeds the mixture to the combustion cylinder through the air supply boat; and an air intake valve that connects and connects the air intake port. In a two-stroke internal combustion engine configured to scavenge residual exhaust gas in the combustion cylinder using the piston pump, the intake valve has a valve opening force due to a pressure difference between the combustion cylinder side and the intake port side. A two-stroke internal combustion engine characterized in that it is integrally connected to a differential pressure piston that receives a force in the direction of opening the valve due to a pressure difference between the piston and the piston.
JP56143440A 1981-09-11 1981-09-11 two-stroke internal combustion engine Expired JPS60534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143440A JPS60534B2 (en) 1981-09-11 1981-09-11 two-stroke internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143440A JPS60534B2 (en) 1981-09-11 1981-09-11 two-stroke internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5847112A true JPS5847112A (en) 1983-03-18
JPS60534B2 JPS60534B2 (en) 1985-01-08

Family

ID=15338743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143440A Expired JPS60534B2 (en) 1981-09-11 1981-09-11 two-stroke internal combustion engine

Country Status (1)

Country Link
JP (1) JPS60534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769611A1 (en) * 1995-09-22 1997-04-23 Bernd Scheffel Apparatus for intermittently atomizing and injecting fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769611A1 (en) * 1995-09-22 1997-04-23 Bernd Scheffel Apparatus for intermittently atomizing and injecting fuel

Also Published As

Publication number Publication date
JPS60534B2 (en) 1985-01-08

Similar Documents

Publication Publication Date Title
RU2066379C1 (en) Two-stroke internal combustion engine
US20020104493A1 (en) Two-stroke internal combustion engine
US4242993A (en) 2-Cycle engine of an active thermoatmosphere combustion
US6450135B1 (en) Two-stroke internal combustion engine
US4167161A (en) Directional auxiliary intake injection for internal combustion engine
US4383503A (en) Combustion chamber scavenging system
US4478180A (en) Crankchamber precompression type two-cycle internal combustion engine
US5086734A (en) Cylinder sleeve for two-cycle engine
JP3406119B2 (en) 2-stroke diesel engine with swirl chamber auxiliary combustion chamber
JPS5847112A (en) Two-cycle internal combustion engine
JPS6134951B2 (en)
JP3932267B2 (en) 2-cycle engine
JPH10325321A (en) Two-cycle internal combustion engine
US5540195A (en) Vuka two-stroke engine
JPH03222817A (en) Two-cycle engine with intake air-scavenging air separating and supply device
JPH039288B2 (en)
JPH0385324A (en) Exhaust noise reducing device for two-cycle engine
JP2542021B2 (en) Rotary piston engine
JPS63253114A (en) Exhaust system for two-cycle engine
JP3685907B2 (en) Mixture supply passage structure for a two-cycle internal combustion engine
JPS5827076Y2 (en) 2 cycle engine
JPH0450429A (en) Two cycle combustion
JPH02207129A (en) Two-cycle engine
RU2076931C1 (en) Four stroke internal combustion engine with supercharging and vacuum intake
JPH0335864Y2 (en)