JPS584679B2 - Method for manufacturing composite material wings - Google Patents

Method for manufacturing composite material wings

Info

Publication number
JPS584679B2
JPS584679B2 JP51075765A JP7576576A JPS584679B2 JP S584679 B2 JPS584679 B2 JP S584679B2 JP 51075765 A JP51075765 A JP 51075765A JP 7576576 A JP7576576 A JP 7576576A JP S584679 B2 JPS584679 B2 JP S584679B2
Authority
JP
Japan
Prior art keywords
wing
composite material
manufacturing
resin
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51075765A
Other languages
Japanese (ja)
Other versions
JPS532899A (en
Inventor
坂元勝治
板東舜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP51075765A priority Critical patent/JPS584679B2/en
Publication of JPS532899A publication Critical patent/JPS532899A/en
Publication of JPS584679B2 publication Critical patent/JPS584679B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To provide a process for producing an aerodynamic wing using a composite material by a metal mold having molding inner surfaces to mold once by eliminating the conventional pressure steps more than twice required to obtian uniform product.

Description

【発明の詳細な説明】 本発明は複合材料翼の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method of manufacturing a composite material wing.

本発明による方法は、ヘリコプター主回転翼、尾部操舵
用回転翼、飛行機のプロペラの翼、ガスタービン機関の
回転翼および送風機翼等の製造に最も有利に使用される
が、一般固定翼航空機の翼等にも適用可能である。
The method according to the invention is most advantageously used for manufacturing helicopter main rotors, tail steering rotors, aircraft propeller blades, gas turbine engine rotor blades and blower blades, etc., but also general fixed wing aircraft wings. It is also applicable to

従来、これらの翼を複合材料、すなわちガラス繊維、カ
ーボン繊維、ボロン繊維、有機繊維(ケブラー49等)
、または金属繊維等にエポキシ樹脂、ポリエステル樹脂
、ポリイミド樹脂等の結合材を含浸して種々の特性を持
たせた材料で製造する方法は、いくつか提案され知られ
ている。
Conventionally, these wings were made of composite materials, such as glass fiber, carbon fiber, boron fiber, and organic fiber (Kevlar 49, etc.).
Several methods have been proposed and known in which metal fibers are impregnated with binders such as epoxy resins, polyester resins, and polyimide resins to produce materials with various properties.

例えば、米国特許第3,219,123号、第3,23
7,697号、および第3,782,856号には、幾
つかの接着工程を含む複合材料翼の製造方法が開示され
ているが、これら公知の方法は、複雑で手間を要し、か
つ加熱硬化および冷却を繰り返す必要があるため、好ま
しくない。
For example, U.S. Pat. No. 3,219,123;
No. 7,697 and No. 3,782,856 disclose methods for manufacturing composite wings that include several bonding steps, but these known methods are complicated, labor-intensive, and This is not preferred because it requires repeated heat curing and cooling.

このような観点から、加熱硬化工程を一回で終らせる方
法が特公昭47−10946号公報により提案されてい
る。
From this point of view, Japanese Patent Publication No. 47-10946 proposes a method of completing the heat curing step in one step.

この方法は、大きめに所定の形状を与えた硬質発泡材該
部を半割外皮の間に挾んでプレス型により所定の形状に
成形しながら接着を行なうもので、必然的に熱可塑性樹
脂発泡材の該部すなわちコアを用いる必要があるが、通
常の熱可塑性樹脂発泡材の耐熱限界温度は100℃前後
であるため、複合材翼の成形温度の上限も100℃前後
となり、硬化完了までに通常の樹脂では非常に長時間を
要し、生産性が悪く製造費用が増加する不都合がある。
In this method, the rigid foam material, which has been given a larger predetermined shape, is sandwiched between the half-split shells and bonded while being molded into the predetermined shape using a press mold. However, since the heat-resistant limit temperature of normal thermoplastic resin foam is around 100°C, the upper limit of the molding temperature for composite wings is also around 100°C, and it usually takes about 100°C to complete curing. This resin has disadvantages in that it takes a very long time, has poor productivity, and increases manufacturing costs.

また、この方法では成形圧力として熱可塑性樹脂発泡材
の塑性変形による圧力しか期待できないから、成形圧力
は低く、十分な気泡除去ができず、製品が不均一となり
、強度上の問題があると云う欠点をも有している。
In addition, with this method, only the pressure due to plastic deformation of the thermoplastic resin foam material can be expected as the molding pressure, so the molding pressure is low and bubbles cannot be removed sufficiently, resulting in uneven products and problems with strength. It also has drawbacks.

外皮の如く薄くて金型に直接密着している部材は、この
方法でも早期に加熱され、十分昇温し、発泡材コアがま
だ低温で圧力も高いうちに硬化反応が生ずるから、外皮
の加熱硬化成形には満足な結果が得られるが、主桁のよ
うに厚く、比熱も高く硬化反応の非常に遅れる部分に対
しては、この方法では、翼全体が十分高温になってから
高圧をかけることができない欠点を持つ。
A thin member such as the outer skin that is in direct contact with the mold is heated early with this method, and the temperature rises sufficiently to cause a curing reaction while the foam core is still at a low temperature and high pressure. Satisfactory results can be obtained with hardening molding, but for parts such as the main spar, which are thick, have a high specific heat, and have a very slow hardening reaction, this method requires that the entire blade be heated to a sufficiently high temperature before applying high pressure. It has the disadvantage of not being able to do anything.

また、この発泡材コアを用いる方法は翼断面形状として
主桁の幾何形状がC型のものに限定され捩れ剛性が低く
なると云う不都合もある。
Further, this method of using a foam core has the disadvantage that the main spar geometry is limited to a C-shape as the wing cross-sectional shape, resulting in low torsional rigidity.

さらに、金型を加熱しながら徐々に閉じて圧縮を行なう
方法は、主桁部や外皮のガラス布が圧力によって金型の
合わせ面にはみ出し、はさみ込まれて寸法不良の原因と
なるという問題がある。
Furthermore, the method of compressing by gradually closing the mold while heating the mold has the problem that the glass cloth of the main girder and outer skin protrudes from the mating surface of the mold due to pressure and gets caught, causing dimensional defects. be.

特開昭50−16298号公報に示される方法は、金型
を閉じたのち、内部の弾性袋に圧力を導入して、内部か
ら加圧を行なうことにより、上述の問題を解決するもの
で、温度や寸法にかかわらず独立して圧力を与えること
ができ、均一な複合材料を製作するのに適したものであ
るが、この方法は、一つの金型により一工程で遂行する
のは困難である。
The method disclosed in JP-A-50-16298 solves the above problem by introducing pressure into the internal elastic bag after the mold is closed and pressurizing from inside. Pressure can be applied independently regardless of temperature or size, making it suitable for producing uniform composite materials, but this method is difficult to perform in one step using one mold. be.

すなわち、弾性袋に供給される高圧力は、主桁部材のみ
ならず、後部のコア部材にも与えられ、コア部材を破壊
してしまう恐れがあるので、主桁のみ別の金型で弾性袋
を用いて成形し、しかる後に別加工の後部組立物を主桁
部に接着結合する方法をとらざるを得ない。
In other words, the high pressure supplied to the elastic bag is applied not only to the main girder member but also to the rear core member, and there is a risk of destroying the core member, so the elastic bag is made in a separate mold only for the main girder. There is no choice but to use a method in which the rear assembly, which is processed separately, is then adhesively bonded to the main girder.

このような2段工程は、接着前処理や熱変形などに関す
る不具合を生ずることは云うまでもない。
Needless to say, such a two-stage process causes problems related to adhesion pretreatment, thermal deformation, and the like.

米国特許第3,713,753号は、金型内で製品内部
からの加圧を行ないながら、一回で加熱硬化を完了する
方法を示している。
U.S. Pat. No. 3,713,753 shows a method in which heat curing is completed in one step while applying pressure from inside the product in a mold.

しかし、この方法では、加圧バッグの周囲に直接巻き付
けられた主桁用の繊維には十分な圧力が作用するが、外
皮には不完全な圧力しかかからない。
However, while this method applies sufficient pressure to the main spar fibers wrapped directly around the pressurized bag, only partial pressure is applied to the outer skin.

すなわち、加圧バッグによって加圧される主桁部は真円
形状に拡張しようとする傾向があり、この主桁部は、翼
型部中央へ移動しようとする。
That is, the main spar section pressurized by the pressurizing bag tends to expand into a perfect circular shape, and this main spar section tends to move toward the center of the airfoil section.

この主桁部を小曲率半径の前縁部に押し付け、主桁の翼
弦方向位置を正確に決定せしめ、前縁部外皮を加圧する
力は、後部に挿入されたコア材の変形による反力によっ
てのみ生み出される。
This main spar is pressed against the leading edge with a small radius of curvature, and the chordwise position of the main spar is accurately determined.The force that presses the leading edge skin is the reaction force caused by the deformation of the core material inserted at the rear. produced only by.

ところが、コア材の変形による翼弦方向の圧力は先にも
述べたように、高温においては弱いものであるから、主
桁部の翼型部中央へ移動する傾向を防止するのは困難で
あり、低温、長時間の成形条件をとらざるを得ず製造費
用の増加を招く結果をも有し不具合である。
However, as mentioned earlier, the pressure in the chord direction due to the deformation of the core material is weak at high temperatures, so it is difficult to prevent the main spar from moving toward the center of the airfoil. However, this is disadvantageous because it requires low temperature and long time molding conditions, resulting in an increase in manufacturing costs.

又、通常回転翼等では翼弦方向重心位置が、翼弦長の1
%程度移動しても大きく特性が変化するので、この方法
のように主桁の翼弦方向位置を正確に決定出来ないのは
決定的な不具合である。
In addition, normally for rotary blades, etc., the center of gravity in the chord direction is 1 of the chord length.
Since the characteristics change significantly even if the main spar is moved by a fraction of a percent, the inability to accurately determine the chordwise position of the main spar using this method is a definite drawback.

本発明は、前記のごとき従来技術に鑑み、これらの有す
るいくたの欠点を排除した複合材料翼の製造方法を提供
するもので、その特性は主桁部材と中空膨脹部材とを可
撓性帯状部材によって包んだ状態で金型内の上下外皮部
材間に配置し、前記帯状部材の両側縁を前記金型に固定
し、前記中空膨脹部材の内部に圧力を供給しつつ加熱硬
化を進行させることにある。
In view of the above-mentioned prior art, the present invention provides a method for manufacturing a composite material wing that eliminates many of these drawbacks. The belt-shaped member is placed between upper and lower outer skin members in a mold in a state of being wrapped by a member, and both side edges of the band-like member are fixed to the mold, and heat curing is progressed while supplying pressure to the inside of the hollow expansion member. It is in.

すなわち、本発明の方法においては、加圧用中空膨脹部
材と、主桁部材とが、可撓性帯状部材に包まれ、該帯状
部材の両側縁が金型に固定されているので、内部からの
加圧にさいして、主桁部材に位置ずれを生ずる恐れがな
く、また主桁部材に対し十分な圧力が与えられる。
That is, in the method of the present invention, the pressurizing hollow expansion member and the main girder member are wrapped in a flexible band-like member, and both side edges of the band-like member are fixed to the mold, so that no leakage from the inside can occur. During pressurization, there is no risk of displacement of the main girder member, and sufficient pressure can be applied to the main girder member.

また、コア部材は可撓性帯状部材より外側において翼後
縁部に配置すれば、該コア部材に作用する力を一定限度
内にとどめ、その塑性変形が過大になるのを防止できる
Furthermore, by arranging the core member at the trailing edge of the blade outside the flexible band member, the force acting on the core member can be kept within a certain limit and its plastic deformation can be prevented from becoming excessive.

さらに、主桁部材を翼長手方向に延びる樹脂含浸繊維に
より形成し、可撓性帯状部材を翼長手方向に対し90°
および45°をなす樹脂含浸繊維により形成することに
より、耐遠心力、耐曲げ荷重、捩れ剛性のいずれについ
ても、十分な強度を保持することが可能になる。
Furthermore, the main spar member is formed of resin-impregnated fibers extending in the longitudinal direction of the wing, and the flexible band member is formed at an angle of 90° to the longitudinal direction of the wing.
By forming the resin-impregnated fibers with an angle of 45°, it is possible to maintain sufficient strength in terms of centrifugal force resistance, bending load resistance, and torsional rigidity.

以下本発明を図面に示す実施例によって詳細に説明する
The present invention will be explained in detail below with reference to embodiments shown in the drawings.

第1図には、本発明の適用される複合材料翼が示されて
いる。
FIG. 1 shows a composite material wing to which the present invention is applied.

この翼は、ヘリコプター主回転翼として図示されている
が、他の類似用途にも同等に適用できることは勿論であ
る。
Although the wing is illustrated as a helicopter main rotor, it is of course equally applicable to other similar applications.

複数個の回転翼1は浮揚力を発生させるために回転する
ローターハブから外方に放射状に延びるように取付けら
れる。
A plurality of rotor blades 1 are mounted to extend radially outward from a rotating rotor hub to generate buoyancy.

回転翼1はローターハブへの取付金具2、付根部3、翼
端部4、翼長手軸5、前縁部6、後縁部7を含む。
The rotor 1 includes a fitting 2 for attachment to the rotor hub, a root 3, a wing tip 4, a longitudinal wing axis 5, a leading edge 6, and a trailing edge 7.

第2図は第1図の回転翼1の代表的な断面■−■を示し
、本発明の方法により製造される1つの例を図示するも
のである。
FIG. 2 shows a typical cross section 1--2 of the rotor blade 1 shown in FIG. 1, and illustrates one example manufactured by the method of the present invention.

回転翼1は耐摩耗前縁カバー8、翼上面外皮9a、翼下
面外皮9b、後縁補強部材10、コア11、羽ばたき方
向剛性補強上面材12a、同下面材12b、可撓性帯状
部材13、主桁部材14、前縁釣合錘15および必要に
応じて配置される発泡接着剤16を含む。
The rotor blade 1 includes a wear-resistant leading edge cover 8, a blade upper surface skin 9a, a blade lower surface skin 9b, a trailing edge reinforcing member 10, a core 11, a stiffening upper surface material 12a in the flapping direction, a lower surface material 12b, a flexible strip member 13, It includes a main beam member 14, a leading edge counterweight 15, and a foam adhesive 16 disposed as required.

主桁14は適当な繊維、例えばガラス繊維を強化材とし
た合成樹脂によって作られ、その目的のために第3図の
ようにガラス繊維17を巻いたリール18から、エポキ
シ樹脂、フェノール樹脂等の未硬化合成樹脂を含む浴1
9内を通してこの樹脂を含浸し、ローラ一群20により
偏平輪状にマンドレル21に自動的に巻き付けられる。
The main girder 14 is made of a synthetic resin reinforced with suitable fibers, such as glass fibers, and for this purpose, as shown in FIG. Bath 1 containing uncured synthetic resin
9 and is impregnated with this resin, and is automatically wound around a mandrel 21 in the form of a flat ring by a group of rollers 20.

そして、巻き付け終った樹脂含浸ガラス繊維束22は、
適当な処理により取り扱い性を向上させた後、マンドレ
ル21より取外す。
Then, the resin-impregnated glass fiber bundle 22 that has been wrapped is
After improving handling properties through appropriate treatment, it is removed from the mandrel 21.

第4図はこのようにして巻き上げられた樹脂含浸ガラス
繊維束22を示すが、この一方の端部ループ23は翼の
取付部として利用される。
FIG. 4 shows a resin-impregnated glass fiber bundle 22 wound up in this manner, one end loop 23 of which is used as a wing attachment.

第5図は、翼取付部の構成例を示すもので同図aは1つ
のループを用いたもの、bないしdは2個のループを用
いたもので、いずれの場合でもローターハブの回転翼取
付ボルトをこのループに挿入して取付けを行なう。
Figure 5 shows an example of the configuration of the blade attachment part. Figure a shows the configuration using one loop, and Figures b to d use two loops. In either case, the rotor blade of the rotor hub is used. Install by inserting the mounting bolt into this loop.

尚、第5図aの1つのループを用いる場合には、このル
ープ部を包むように金属製金具を配置し結合することが
望ましい。
In addition, when using one loop shown in FIG. 5a, it is desirable to arrange and connect a metal fitting so as to wrap this loop portion.

いずれの場合にも、この樹脂含浸繊維束22は端部ルー
プ部23から翼長手方向に延びるにつれて、前縁部に押
し付けられ、塊状に成形されて主桁14を構成する。
In either case, as the resin-impregnated fiber bundle 22 extends from the end loop portion 23 in the longitudinal direction of the blade, it is pressed against the leading edge portion and formed into a lump to constitute the main spar 14 .

端ループ部から塊状部に至る中間部では、充填材24が
挿入されており、ループ部から塊状部すなわち主桁部1
4へなだらかな変化を行なうように構成するこのように
、主桁の構造は、きわめて単純であり、この主桁は均一
にかつきわめて廉価に製造できる。
A filler material 24 is inserted in the intermediate part from the end loop part to the lump part, and from the loop part to the lump part, that is, the main girder part 1.
4, the structure of the main girder is extremely simple and can be manufactured uniformly and at a very low cost.

第6図は、本発明に用いられる可撓性帯状部材13の製
造方法の一例を示すもので、帯状部材13は、炭素繊維
等の高弾性、高強度繊維を強化材として合成樹脂によっ
て作られる。
FIG. 6 shows an example of a method for manufacturing the flexible strip member 13 used in the present invention. The strip member 13 is made of synthetic resin with high elasticity and high strength fibers such as carbon fibers as reinforcement materials. .

すなわち、第6図のように、繊維25はリール26から
、合成樹脂を含む浴27に通し、樹脂を含浸させたのち
、円筒状マンドレル28に巻き付けられる。
That is, as shown in FIG. 6, the fibers 25 are passed from a reel 26 to a bath 27 containing synthetic resin, impregnated with resin, and then wound around a cylindrical mandrel 28.

繊維の配列は、円周方向に巻かれた層と、捩れ剛性を得
るために±45°方向に巻かれた層を含むように配置さ
れる。
The array of fibers is arranged to include circumferentially wound layers and ±45° wound layers for torsional stiffness.

巻き終えた樹脂含浸繊維シート29はカッター30によ
り円筒マンドレルの軸方向に切り開かれ、帯状部材13
を構成する素材となる。
The finished resin-impregnated fiber sheet 29 is cut open in the axial direction of the cylindrical mandrel by a cutter 30, and the strip member 13 is cut open in the axial direction of the cylindrical mandrel.
It becomes the material that makes up the.

この工程も又、簡単な機械により自動的に行われるので
製品は均一で費用のかからないことが明らかである。
It is clear that this process is also carried out automatically by simple machinery so that the product is uniform and inexpensive.

この帯状部材は、後の翼製造工程において高圧を受けて
展張されるため、普通の方法で製造されたガラス繊維や
、炭素繊維の織布では強度が弱いと云う欠点がある。
Since this band member is expanded under high pressure in the subsequent blade manufacturing process, glass fiber or carbon fiber woven fabric manufactured by ordinary methods has a disadvantage in that its strength is low.

すなわち、織布繊維に屈曲部があると、この屈曲部に高
圧による展張力が作用して荷重が集中し、かつガラス繊
維や炭素繊維はきわめて摩擦に弱いので強度が低下する
のである。
That is, if the woven fibers have a bent part, the bending part is subjected to expansion tension due to high pressure and the load is concentrated, and glass fibers and carbon fibers are extremely susceptible to friction, resulting in a decrease in strength.

そこで、本発明においては、前記の如く円筒マンドレル
28に繊維を巻き付けることにより繊維を屈曲させない
シート29を製作し、その強度を向上させるのである。
Therefore, in the present invention, the sheet 29 is manufactured so that the fibers are not bent by winding the fibers around the cylindrical mandrel 28 as described above, and its strength is improved.

しかし、ケブラー49繊維の如く、屈曲にも摩擦にもき
わめて優れた特性を持つ繊維で作られた織布の場合、前
記の如きフィラメントワインデイングエ法を用いずとも
、織布によって十分耐圧部材13の目的を満足させるこ
とが可能である。
However, in the case of a woven fabric made of a fiber such as Kevlar 49 fiber, which has extremely excellent properties in terms of bending and friction, the woven fabric can be used as a sufficient pressure-resistant member 13 without using the above-mentioned filament winding method. It is possible to satisfy the purpose of

次に、本発明による翼の成形方法の一例を説明する。Next, an example of the blade forming method according to the present invention will be explained.

まず、第7図に示すように、下側金型30に樹脂を含浸
したガラス布31が置かれる。
First, as shown in FIG. 7, a resin-impregnated glass cloth 31 is placed on the lower mold 30.

これは加熱硬化後に、翼の外皮9を構成するものである
から、翼の捩れ剛性の一部と、翼の空気力学的形状を保
つために必要な剛性と強度を有していなくてはならない
After being heated and hardened, this will constitute the outer skin 9 of the wing, so it must have a part of the torsional rigidity of the wing and the necessary rigidity and strength to maintain the aerodynamic shape of the wing. .

このガラス布31の前縁部は金型上で正確に切りそろえ
られ、所要の翼型部以外にはみ出さない様わずかに短か
く配置される。
The leading edge of this glass cloth 31 is precisely trimmed on the mold and placed slightly short so that it does not protrude beyond the required airfoil portion.

又、このガラス布31は手扱い性を向上させるためあら
かじめ反応を進め、半硬化状態にしておく。
Further, in order to improve the ease of handling, this glass cloth 31 is subjected to a reaction in advance to be in a semi-hardened state.

次いで、このガラス布31上に、その繊維方向を翼長手
軸方向に平行に引きそろえられ、樹脂を含浸された高弾
性繊維布32が置かれる。
Next, on this glass cloth 31, a highly elastic fiber cloth 32 impregnated with resin is placed, the fiber direction of which is aligned parallel to the longitudinal axis direction of the blade.

この高弾性繊維布32は、加熱硬化後に、羽ばたき方向
剛性補強上下面材12を構成して、複合材翼の羽ばたき
方向剛性を補強する。
After being heated and cured, this high elastic fiber cloth 32 constitutes the upper and lower side members 12 for reinforcing stiffness in the flapping direction, thereby reinforcing the stiffness in the flapping direction of the composite wing.

この羽ばたき方向剛性補強上下面材12の厚さ、巾およ
び長さ等は、あくまで翼の剛性要求によって決定される
ものであるから、部分的に変化しており、場合によって
は不必要なことも当然有り得るものである。
The thickness, width, length, etc. of the upper and lower surface members 12 reinforcing stiffness in the flapping direction are determined by the stiffness requirements of the wing, so they may vary partially and may be unnecessary in some cases. Of course it is possible.

次に第8図に示すように、この樹脂含浸ガラス布31な
らびに高弾性繊維布32の上に、まず前述の帯状部材1
3と、コア材11と、後縁部補強材10か置く。
Next, as shown in FIG.
3, the core material 11, and the trailing edge reinforcing material 10 are placed.

部材13とコア材11の間には発泡性接着剤16を挿入
しておく。
A foam adhesive 16 is inserted between the member 13 and the core material 11.

部材13は金型30の前縁部空洞38内の定められた位
置にその自由端の一方を正確に置き一まず押え板35と
取付ボルト36により端部を金型30に固定する。
The member 13 is placed precisely with one of its free ends in a defined position within the leading edge cavity 38 of the mold 30 and is first secured to the mold 30 by means of a retaining plate 35 and a mounting bolt 36.

コア材11は、本実施例では硬質樹脂発泡材であり、正
規の寸法よりやや巾広く、かつ楔形断面を有するように
作られている。
The core material 11 is a hard resin foam material in this embodiment, and is made to be slightly wider than the normal size and to have a wedge-shaped cross section.

後縁部補強材10は樹脂を含浸した高強度繊維で作られ
、その繊維方向は全て翼長手方向に向けられている。
The trailing edge reinforcing material 10 is made of resin-impregnated high-strength fibers, and all of the fiber directions are oriented in the longitudinal direction of the blade.

本実施例では、樹脂が未硬化であっても、又すでに別の
金型上で成形加工済みのものでもよい。
In this embodiment, the resin may be uncured or may have already been molded in another mold.

この後縁部補強材10は、翼の翼弦方向曲げ振動数を調
整し、又同方向曲げ荷重に耐えるために配置されるもの
であって、必要に応じて配置すればよく、場合によって
は省略してもよい。
This trailing edge reinforcing material 10 is arranged to adjust the chordwise bending frequency of the blade and to withstand bending loads in the same direction, and may be arranged as necessary. May be omitted.

次に、帯状部材13上に、前縁部から順に、前縁釣合錘
15と、前記方法にて製作した未硬化主桁14と中空膨
脹部材すなわち加圧用バッグ33を置いた後、帯状部材
13を第8図のように折り返してかぶせ、その端を金型
30の前縁部空洞38内の定められた位置に先ほど固定
されていた一方の端上に重ねて置き、部材13の両端を
そろえて押え板35と取付ボルト36により金型に固定
する。
Next, after placing the leading edge counterweight 15, the unhardened main girder 14 manufactured by the above method, and the hollow expansion member, that is, the pressurizing bag 33, in order from the leading edge on the belt-shaped member 13, the belt-shaped member 13 is folded over as shown in FIG. Align and fix to the mold using the holding plate 35 and mounting bolts 36.

このようにして前縁釣合錘15、主桁14、加圧用バッ
グ33は帯状部材13に包まれた状態になる。
In this way, the leading edge counterweight 15, the main spar 14, and the pressurizing bag 33 are wrapped in the band member 13.

この場合、加圧用バッグ33は、縮少状態にあり、容易
に部材13で包むことができる。
In this case, the pressurizing bag 33 is in a contracted state and can be easily wrapped with the member 13.

又、加圧用バッグ33は適当な肉厚さを持ち、帯状部材
13にシワが生ずるのを防止する機能も果す。
Further, the pressurizing bag 33 has an appropriate wall thickness and also serves to prevent wrinkles from forming on the band member 13.

その後、上記と同じように樹脂含浸ガラス布31と高弾
性繊維布32をあらかじめ配置した上側金型37を、前
記下側金型上にかぶせる。
Thereafter, the upper mold 37 in which the resin-impregnated glass cloth 31 and the high elastic fiber cloth 32 are placed in advance is placed over the lower mold in the same manner as described above.

上下の金型を合致させ締め付けた時上下の金型は翼型前
縁部の噛み合い部34においてきわめてわずかの隙間を
持つようにされており、この隙間に前記帯状部材13が
挾まれる。
When the upper and lower molds are matched and tightened, there is a very small gap between the upper and lower molds at the engagement portion 34 at the leading edge of the airfoil, and the band member 13 is sandwiched in this gap.

隙間の大きさは部材13を咬み切るほど狭まくなく、部
材13を確実に保持し、後工程で加圧バッグより与えら
れる圧力の全てをこの帯状部材13が受けたとき、該部
材13が隙間から移動したり、抜けたりしない程度に固
定されていなくてはならない。
The size of the gap is not so narrow as to bite the member 13, and when the member 13 is securely held and this band-shaped member 13 receives all the pressure applied from the pressure bag in the later process, the member 13 will close the gap. It must be fixed to the extent that it cannot move or fall out.

金型30および37を組み合わせ締め付けた後、加圧バ
ッグ38に1気圧以下のわずかな圧力を与えてから第9
図のように前縁部を下に向け、徐々に加熱する。
After the molds 30 and 37 are combined and tightened, a slight pressure of 1 atm or less is applied to the pressurized bag 38, and then the ninth
Turn the front edge downwards as shown and heat gradually.

前縁部を下向きにして加熱、加圧することにより、比重
の大きい前縁釣合錘15が前縁部最前方に固定され、ま
た主桁14の樹脂が流出して重心位置が変化したり、主
桁14の形状が上下非対称になったりする不具合が防止
される。
By heating and pressurizing with the leading edge facing downward, the leading edge counterbalance weight 15, which has a large specific gravity, is fixed at the forefront of the leading edge, and the resin of the main girder 14 flows out, causing the center of gravity to change. This prevents problems such as the shape of the main girder 14 becoming vertically asymmetrical.

金型内には加熱手段39が設けられ、これから供給され
る熱は外皮である樹脂含浸ガラス布31を加熱してこの
樹脂の粘度を下げる。
A heating means 39 is provided in the mold, and the heat supplied therefrom heats the resin-impregnated glass cloth 31, which is the outer skin, to lower the viscosity of the resin.

加熱の進行と同時に、加圧バッグの圧力を徐々に増加さ
せると、加圧バッグ33は膨張し、帯状部材13を介し
てやや大き目に作られているコア11を後縁方向に圧す
る。
Simultaneously with the progress of heating, when the pressure of the pressurizing bag is gradually increased, the pressurizing bag 33 expands and presses the slightly larger core 11 toward the trailing edge via the band member 13.

この圧力によって、コア11は後縁方向に移動し、樹脂
含浸ガラス布31と密着し、圧縮される。
Due to this pressure, the core 11 moves toward the trailing edge, comes into close contact with the resin-impregnated glass cloth 31, and is compressed.

このときガラス布31の樹脂には流動性があるのでコア
11により与えられる圧力により樹脂がコア11の毛細
管に浸入してコア11とガラス布31の接着が十分に行
なわれる。
At this time, since the resin of the glass cloth 31 has fluidity, the pressure applied by the core 11 causes the resin to enter the capillary tubes of the core 11, and the core 11 and the glass cloth 31 are sufficiently bonded.

同時に、後縁部材10もしっかりとガラス布31に接着
される。
At the same time, the trailing edge member 10 is also firmly adhered to the glass cloth 31.

ガラス布31は先にも示したように手扱いを良くするた
めあらかじめ反応を進め、半硬化状態であり、金型の熱
はまずこのガラス布31を熱し、さらにガラス布31は
厚さが薄いので温度上昇も早く、硬化反応が早く完了し
て、コア11とガラス布31の接着は十分に行なわれる
As mentioned above, the glass cloth 31 has been subjected to a reaction in advance to make it easier to handle, and is in a semi-hardened state, and the heat from the mold first heats this glass cloth 31, and furthermore, the glass cloth 31 is thin. Therefore, the temperature rises quickly, the curing reaction is completed quickly, and the core 11 and the glass cloth 31 are sufficiently bonded.

さらに加熱を続けると、主桁14の中心部まで樹脂の粘
度が下がり流動状態となるが、主桁14が硬化反応を完
了するまでにはかなりの時間を要する。
If the heating is continued further, the viscosity of the resin decreases to the center of the main girder 14 and becomes a fluid state, but it takes a considerable amount of time for the main girder 14 to complete the curing reaction.

加圧バッグ33から伝達される圧力により前縁釣合錘1
5は十分下方に押しつけられ、その他の隙間には主桁1
4のガラス繊維と樹脂が確実に充填される。
Leading edge counterweight 1 due to pressure transmitted from pressurized bag 33
5 is pressed sufficiently downward, and other gaps are filled with main girder 1.
The glass fiber and resin from step 4 are filled securely.

一方、加圧バッグ33の圧力はさらにコア11を圧する
が、硬質発泡材の温度も上昇する結果、次第に塑性変形
を発生し、第10図のように一部コア11が変形する。
On the other hand, the pressure of the pressurizing bag 33 further presses the core 11, but as a result of the temperature of the hard foam material also rising, plastic deformation gradually occurs, and a portion of the core 11 is deformed as shown in FIG.

この状態では、帯状部材13が展張し、加圧バッグ33
による圧力をそれ以上コア11に伝達しなくなるので、
コア11のこれ以上の変形は防止される。
In this state, the strip member 13 is expanded and the pressurized bag 33
Since the pressure due to is no longer transmitted to the core 11,
Further deformation of the core 11 is prevented.

高温でコア11が塑性変形を行なうために、コア11か
らガラス布31に与えられる圧力は初期の低温状態より
は低下するが、ガラス布31の如く薄い部材には元来あ
まり高圧をかけなくても十分均一な成形を行なうことが
でき、しかも、先に述べた様にガラス布31は硬化反応
が早期に完了するので、高温でコア11の圧力が多少低
下してもなお十分均一な成形を行なうことができる。
Because the core 11 undergoes plastic deformation at high temperatures, the pressure applied from the core 11 to the glass cloth 31 is lower than in the initial low temperature state, but originally it is not necessary to apply very high pressure to a thin member like the glass cloth 31. Furthermore, as mentioned earlier, the curing reaction of the glass cloth 31 is completed early, so even if the pressure of the core 11 is slightly reduced at high temperatures, sufficiently uniform molding can be achieved. can be done.

また、一方加圧バッグ38による圧力は主桁14に均一
に作用し、前工程で含まれていた気泡を押し出し、樹脂
を均一に繊維に含浸させ、前縁釣合錘15と主桁14の
接着を完全なものにする。
On the other hand, the pressure from the pressure bag 38 acts uniformly on the main girder 14, pushes out the air bubbles contained in the previous process, uniformly impregnates the fibers with resin, and causes the leading edge counterweight 15 and the main girder 14 to be uniformly impregnated with resin. Perfect the adhesion.

最終的に主桁14に作用させるべき圧力は10気圧以上
の高圧になるのであるが、帯状部材13が金型前縁噛み
合い部34において固定されており、しかも帯状部材が
一定以上に展張しないために、このような高圧の成形圧
力にもかかわらずコア11に高圧が作用せず、コア11
が破壊されることがない。
The pressure that should ultimately be applied to the main girder 14 is a high pressure of 10 atmospheres or more, but because the strip member 13 is fixed at the mold front edge engagement part 34 and the strip member does not expand beyond a certain level. In spite of such high molding pressure, the high pressure does not act on the core 11, and the core 11
will not be destroyed.

しかも金型があらかじめ十分に固定されているために前
縁部の金型合わせ面から樹脂や繊維が飛び出して寸法不
良が発生することもない。
Moreover, since the mold is sufficiently fixed in advance, resin and fibers do not fly out from the mold mating surface of the leading edge, thereby preventing dimensional defects from occurring.

さらに部材13は加圧バッグによる圧力のため真円状に
変形しようとするが金型前縁部の噛み合い部34で十分
固定されているために、全く主桁14および部材13は
移動することがなく、重心位置に影響しないばかりか、
翼前縁部の樹脂含浸ガラス布31と高弾性繊維布32も
又、十分に加圧される。
Furthermore, the member 13 tries to deform into a perfect circle due to the pressure from the pressurizing bag, but the main girder 14 and the member 13 do not move at all because they are sufficiently fixed by the engagement part 34 at the front edge of the mold. Not only does it not affect the center of gravity position,
The resin-impregnated glass cloth 31 and the high modulus fiber cloth 32 of the wing leading edge are also sufficiently pressurized.

この間発泡接着剤16はコア11と帯状部材13と樹脂
含浸ガラス布31の間にできる隙間を埋め、かつその発
泡圧力でコア11にも部材13にも加圧されない部分の
樹脂含浸ガラス布31に圧力を与えると同時に、コア1
1と部材13の接着結合を行ない、翼後縁部から伝達さ
れる空気外力を主桁14に伝達する。
During this time, the foaming adhesive 16 fills the gap between the core 11, the strip member 13, and the resin-impregnated glass cloth 31, and the foaming pressure applies the resin-impregnated glass cloth 31 to the parts of the resin-impregnated glass cloth 31 that are not pressurized by the core 11 or the member 13. At the same time as applying pressure, core 1
1 and member 13 are bonded together, and the external air force transmitted from the trailing edge of the wing is transmitted to the main spar 14.

硬化が完了した後、加圧バッグ33の圧力を抜くことに
より、加圧バッグ33を容易に除去することができる。
After curing is completed, the pressure bag 33 can be easily removed by releasing the pressure from the pressure bag 33.

次に翼1を金型から取り出して、前縁部、後縁部を寸法
通りにダイヤモンドカッター等で切り整える。
Next, the wing 1 is taken out from the mold, and the leading and trailing edges are cut to size using a diamond cutter or the like.

従来外皮や主桁を成す樹脂含浸繊維物は、加熱硬化以前
にはさみや、カッター等にて切り整えることが多かった
が、未硬化の樹脂を含む繊維物は、手に樹脂がねばり付
き、とうてい正確な寸法に切ることは不可能であり、こ
のため、翼の重量や諸特性のばらつきが大きくなること
もあった。
Conventionally, resin-impregnated fibers that make up the outer skin and main girder were often trimmed with scissors or a cutter before being heated and cured. It was impossible to cut to exact dimensions, which sometimes resulted in large variations in wing weight and properties.

本発明の方法では、前述の如く成形加工後、自動化され
た機械により切り整えられるのであるから、寸法や重量
、諸特性等は正確で、かつ作業条件向上による費用の低
下も得られる。
In the method of the present invention, as described above, after the molding process, the product is trimmed by an automated machine, so the dimensions, weight, various properties, etc. are accurate, and costs can be reduced due to improved working conditions.

次に本発明の他の実施例を第11図により説明する。Next, another embodiment of the present invention will be described with reference to FIG.

本例においては、前例における硬質発泡剤製コア11の
代わりにハニカムコア40が用いられる。
In this example, a honeycomb core 40 is used instead of the hard foaming agent core 11 in the previous example.

複合材料翼は、耐摩耗前縁カバー8と前縁釣合錘15を
除き、全て非金属材料であって腐食に強いのを1つの特
徴としているので、ハニカムコア40も非金属製で例え
ばノーメツクスやFRP等で作られているのが望ましい
One feature of the composite material blade is that, except for the wear-resistant leading edge cover 8 and the leading edge counterweight 15, all of the blades are made of non-metallic materials and are resistant to corrosion. Therefore, the honeycomb core 40 is also made of non-metallic material, such as Nomex. It is preferable that it be made of FRP or other materials.

本発明では、前例と全く同様の工程を用いることが出来
る。
In the present invention, exactly the same steps as in the previous example can be used.

すなわち、ハニカムコア40はその寸法をやや大きく作
られているので、金型30,37を閉じる際に未硬化の
樹脂含浸ガラス布31に食い込み、十分な圧力を上記ガ
ラス布に与える。
That is, since the honeycomb core 40 is made somewhat large in size, it bites into the uncured resin-impregnated glass cloth 31 when the molds 30 and 37 are closed, and applies sufficient pressure to the glass cloth.

しかし、ハニカムコアは、楔状のほぼ三角形をしている
ので、翼前縁方向に移動する効果を生み出し、前記ガラ
ス布31に対する圧力が減少する恐れがあるが、この傾
向に対して、発泡接着剤16と帯状部材13を介して加
圧バッグ33よりの圧力が作用し、前記傾向を打消す。
However, since the honeycomb core has a nearly wedge-shaped triangular shape, it produces an effect of moving toward the leading edge of the wing, which may reduce the pressure on the glass cloth 31. 16 and the belt-like member 13, pressure from the pressurizing bag 33 acts to counteract the above-mentioned tendency.

しかし、ハニカムコア40が正規の位置にとどまる限り
、部材13が過度に展張し移動してハニカムコア40を
圧壊するようなことはあり得ない。
However, as long as the honeycomb core 40 remains in its proper position, the member 13 will not expand and move excessively and crush the honeycomb core 40.

その理由は、帯状部材13が金型前縁噛み合い部34に
て固定され、一定以上に展張することがないからである
This is because the band member 13 is fixed at the mold front edge engaging portion 34 and will not expand beyond a certain level.

従って、本発明の方法によればハニカムコアを用いて、
外皮用の樹脂含浸ガラス布31とハニカムコア40の結
合を十分に行わせ、かつ、主桁14にも十分な成形圧力
を与え、しかもハニカムコア40に必要以上の圧力を与
えないので、きわめて均一で十分に接着結合させた回転
翼を提供することができるのである。
Therefore, according to the method of the present invention, using a honeycomb core,
The resin-impregnated glass cloth 31 for the outer skin and the honeycomb core 40 are sufficiently bonded, and sufficient molding pressure is applied to the main girder 14, and moreover, no more than necessary pressure is applied to the honeycomb core 40, so that it is extremely uniform. Therefore, it is possible to provide a rotor blade that is sufficiently adhesively bonded.

そして最も重要な利点は、上記の成形工程を1回で完了
できることであり、このことによって製造費が安く、寸
法誤差や、接着不良が防止出来ることである。
The most important advantage is that the above-mentioned molding process can be completed in one step, which reduces manufacturing costs and prevents dimensional errors and poor adhesion.

さらに前例とは異なり、耐熱性の良いハニカムコアを用
いるために硬化温度を高くして、短時間で加熱硬化を完
了できるので製造費用が安くなると云う利点がある。
Further, unlike the previous example, since a honeycomb core with good heat resistance is used, the curing temperature can be raised to complete heat curing in a short time, which has the advantage of reducing manufacturing costs.

次に本発明の第3の実施例を第12図および第13図に
示す。
Next, a third embodiment of the present invention is shown in FIGS. 12 and 13.

本実施例はこの翼1の翼端部4付近にバランス調整用の
錘りを取付ける場合や、翼1の固有振動数を調整するた
めに翼の中央部付近に調整用錘りを取付ける場合の構造
例であって、本質的には前記2つの調整用錘りの取付法
に差異はなく、図示実施例は翼端部付近に調整用錘りを
設ける構造例を示す。
This embodiment is suitable for cases where a weight for balance adjustment is installed near the blade tip 4 of the blade 1, or when an adjustment weight is installed near the center of the blade to adjust the natural frequency of the blade 1. This is a structural example, and there is essentially no difference in the mounting method of the two adjustment weights, and the illustrated embodiment shows a structural example in which the adjustment weight is provided near the wing tip.

図において、翼前縁部にバランス調整用錘り43が翼慣
性モーメント付加用錘り42内に配置される。
In the figure, a balance adjustment weight 43 is disposed within a blade inertia moment adding weight 42 at the leading edge of the blade.

回転翼は、エンジン停止時に回転翼を空転させ、安全に
降下着陸するために大きな慣性モーメントを必要とし、
このため翼端部に慣性モーメントを増加させるための付
加錘り42を取付けるのである。
The rotor blades require a large moment of inertia to spin when the engine is stopped and to safely descend and land.
For this reason, an additional weight 42 is attached to the wing tip to increase the moment of inertia.

したがって、この付加錘り42は、チタン合金やステン
レスやタングステンなどの耐食合金の外に、タングステ
ン粉や鉛弾をエポキシ樹脂やゴム等で結合した材料を用
いることがある。
Therefore, for this additional weight 42, in addition to a corrosion-resistant alloy such as titanium alloy, stainless steel, or tungsten, a material in which tungsten powder or lead bullets are bonded with epoxy resin, rubber, or the like may be used.

これら実施例の如く、主桁14の位置が大巾に変化して
も、今まで述べて来た翼製造法にはほとんど変化がない
Even if the position of the main spar 14 changes drastically as in these embodiments, there is almost no change in the blade manufacturing method described so far.

このような付加錘り42の取付けに特別な装置や金具を
必要としないばかりか、十分な圧力がかかるので、主桁
14と付加錘り42の接着結合は完全である。
Attaching the additional weight 42 as described above does not require any special equipment or metal fittings, and since sufficient pressure is applied, the adhesive connection between the main girder 14 and the additional weight 42 is perfect.

例えば、この付加錘り42の取付け部を空洞に成形して
おき、翼の成形完了後付加錘り42に接着剤を塗布して
上記空洞に挿入した場合は、その接着剤に十分な圧力が
作用しないばかりか、空洞部と付加錘り42間の寸法誤
差のために接着剤厚さも不安定であり、接着強度の信頼
性も著しく低下し、使いものにならない。
For example, if the mounting portion of the additional weight 42 is molded into a cavity and the additional weight 42 is coated with adhesive and inserted into the cavity after the wing molding is completed, sufficient pressure will be applied to the adhesive. Not only does it not work, but the thickness of the adhesive is unstable due to the dimensional error between the cavity and the additional weight 42, and the reliability of the adhesive strength is significantly reduced, making it useless.

翼端部では、耐摩耗金属カバー8を厚く深く配置するこ
とが要求されるが、本発明では、耐摩耗金属カバー8を
深く成形するのではなく、第12図のように耐摩耗金属
板41を上下に分けて配置し、翼の成形時に同時に接着
することができる。
At the wing tip, the wear-resistant metal cover 8 is required to be disposed thickly and deeply, but in the present invention, instead of forming the wear-resistant metal cover 8 deeply, the wear-resistant metal plate 41 is placed as shown in FIG. can be placed in upper and lower parts and glued together at the same time when forming the wing.

このように配置することによって、第12図に示す成形
工程完了後第13図に示すように両摩耗金属板41と、
付加錘り42をリベット44やボルト等で機械的に結合
し、万一接着剤が破壊された場合の安全性を確保し得る
ように配置することができる。
By arranging it in this way, after the forming process shown in FIG. 12 is completed, both wear metal plates 41 as shown in FIG. 13,
The additional weight 42 can be mechanically coupled with rivets 44, bolts, etc., and arranged so as to ensure safety in the event that the adhesive is destroyed.

耐摩耗金属カバー8を接着して、前記リベット等の頭を
覆い、腐食や摩耗を防止し得るように構成する。
A wear-resistant metal cover 8 is bonded to cover the heads of the rivets and the like to prevent corrosion and wear.

このようにすると摩耗の激しい前縁部だけ交換すること
ができ、しかも厚手の板を加工できるので交換時間も延
びて経済的である。
In this way, only the leading edge, which is severely worn, can be replaced, and since a thick plate can be processed, the replacement time can be extended, which is economical.

以上のように翼付根から翼端に至る種々の回転翼構成部
品の接着結合を耐摩耗前縁カバー8以外について1回の
加熱工程で全て完了し得ることが可能になり、しかも圧
力が均一に十分に作用するので確実な結合を保証し得る
As described above, it is now possible to complete the adhesive bonding of various rotor blade components from the blade root to the blade tip except for the wear-resistant leading edge cover 8 in one heating process, and the pressure is evenly applied. It works well enough to ensure a reliable bond.

以上、実施例について詳細に説明したように、本発明は
、下記の効果を有するものである。
As described above in detail with respect to the embodiments, the present invention has the following effects.

すなわち、帯状部材にて主桁と加圧バッグを包み、帯状
部材を前縁で固定した結果、主桁の如く断面積が大きく
、厚肉で、強度的にも重要で、高い均一性を要求される
部材には高く、均一な圧力が加圧バッグより与えられ、
一方、外皮の如く薄くて、あまり高圧でなくとも問題の
ない部材や、硬質発泡コア、ハニカムコアの如く高圧に
は耐えられない部材には必要以上の圧力が作用しないと
いう成形上の効果が得られ、従来2回以上の加熱工程を
要したものが、1回で成形完了することが可能になり、
しかも均一な製品が得られるようになった1回で成形す
ることによって生産性が上る結果従来の小型航空機程度
の量産規模では金型が1組で済み、金型製造費が安くな
る上、1組の金型により全ての製品が製作されるため、
品質のばらつきがきわめて小さくなった。
In other words, as a result of wrapping the main girder and pressurized bag in a band-shaped member and fixing the band-shaped member at the front edge, the cross-sectional area is large and thick like the main girder, which is important for strength and requires high uniformity. A high, uniform pressure is applied from the pressurized bag to the parts to be treated,
On the other hand, for parts that are thin and do not require high pressure, such as the outer skin, or parts that cannot withstand high pressure, such as hard foam cores and honeycomb cores, the molding effect is that no more pressure than necessary is applied. It is now possible to complete molding in one step, which previously required two or more heating steps.
In addition, productivity is increased by molding in one step, which allows uniform products to be obtained.As a result, one set of molds is required for mass production on the scale of conventional small aircraft, which reduces mold manufacturing costs. Because all products are manufactured using a set of molds,
The variation in quality has become extremely small.

その上、従来2工程以上の加熱冷却工程が存在したとき
には硬化反応や熱収縮による金型との不一致の影響や、
表面処理のばらつきのため接着不良が発生していたが、
本発明によればこの問題が完全に解決され、均質で安全
な複合材翼を提供できるようになった。
In addition, when there were two or more heating and cooling steps in the past, there was a risk of mismatch with the mold due to curing reactions and thermal shrinkage,
Adhesion failure occurred due to variations in surface treatment, but
According to the present invention, this problem has been completely solved, and a homogeneous and safe composite blade can now be provided.

また、帯状部材を前縁部で固定した結果、金型合わせ面
への繊維噛み込みによる寸法過大等の不具合が解消され
、寸法や重曹が均一となり、又主桁部および帯状部材の
位置が正確に定められて翼弦方向重心がばらつかなくな
り、さらに前縁部外皮にも圧力が作用し均一な複合材翼
を製造し得る利点が得られる。
In addition, as a result of fixing the strip member at the front edge, problems such as oversize due to fibers getting caught in the mold mating surface are eliminated, the dimensions and baking soda are uniform, and the position of the main girder and the strip member is accurate. This has the advantage that the center of gravity in the chord direction does not vary, and that pressure also acts on the leading edge skin, making it possible to manufacture a uniform composite blade.

又、耐圧部材は、耐摩耗前縁金属カバーや、外皮に覆わ
れ、主桁により支えられているので雷撃衝撃や局部荷重
に弱い炭素繊維等の高弾性、高強度繊維を用いることが
可能になり、その繊維方向を翼長手方向に対して±45
°に配置することによって捩れ剛性が増大し翼の安定性
が向上した。
In addition, the pressure-resistant members are covered with a wear-resistant leading edge metal cover and outer skin, and are supported by the main girder, making it possible to use highly elastic and high-strength fibers such as carbon fibers, which are vulnerable to lightning strikes and local loads. The fiber direction is ±45 with respect to the longitudinal direction of the blade.
By arranging the blades at 10°, the torsional rigidity was increased and the stability of the wing was improved.

さらに帯状部材は主桁を覆い、D型をしているため、捩
れ剛性がさらに増大する。
Furthermore, since the strip member covers the main girder and is D-shaped, torsional rigidity is further increased.

帯状部材は高圧を受けるので従来の織布ではなく、繊維
が屈曲しないフィラメントワインデイング式成形法によ
り製造するのが好ましく、このため、機械化による費用
の低下と均質性が得られた。
Because the band-shaped member is subjected to high pressure, it is preferable to manufacture it by a filament winding molding method in which the fibers do not bend, rather than using a conventional woven fabric, which reduces costs and provides uniformity through mechanization.

加圧バッグによる加圧法はホットプレスの如き高価な初
期投資を必要とせず試作開発にも適している上、温度条
件と圧力条件を独立に与えることが可能になるので、均
一で安定した製品を得ることができ、雌型のみ製作すれ
ばよいので初期投資を少くし、修理、改造等が容易であ
るという利点を有する。
The pressurizing method using a pressurizing bag does not require expensive initial investment like hot press, and is suitable for prototype development.It also allows temperature and pressure conditions to be applied independently, making it possible to produce uniform and stable products. Since only the female mold needs to be manufactured, the initial investment is small and repairs, modifications, etc. are easy.

また、主桁を前縁部にまとめ、塊状に配置できるので、
重心が前方に移動し、前縁釣り合い錘りを少くし、その
重さ分だけ主桁面積が増加して、強度余裕が増え、安全
性が増大する上、フィラメントワインデイング式主桁成
形法を採ることができ、機械化による製造費低減効果と
、均質性が得られた。
In addition, the main girders can be grouped together at the front edge and arranged in a block, so
The center of gravity moves forward, the leading edge counterweight is reduced, and the area of the main spar increases by that weight, increasing strength margin and safety.In addition, the filament winding type main spar forming method is used. It was possible to reduce manufacturing costs through mechanization and achieve uniformity.

従来、外皮や帯状部材を未硬化状態で正確に切りそろえ
るのは困難な作業であったが、本発明の方法では、硬化
後ダイヤモンドカッターで自動的に切削し得るので正確
な寸法と、作業改善による費用低下と、正確な翼弦方向
重心位置を得ることが可能になった。
Conventionally, it was difficult to accurately cut the outer skin and band-shaped members in an unhardened state, but with the method of the present invention, the cutting can be performed automatically with a diamond cutter after hardening, resulting in accurate dimensions and improved workmanship. This reduced costs and made it possible to obtain an accurate chordwise center of gravity position.

さらに、本発明の方法は、いかなる翼断面形状変化や構
成部品等の変化にも十分なる適応能力を持ち、複合材料
の持つ成形自由度を完全に生かし、空気力学的に洗練さ
れた効率の良い翼を提供し得る利点を持つ。
Furthermore, the method of the present invention has sufficient adaptability to any changes in the cross-sectional shape of the blade or to changes in the component parts, etc., and fully takes advantage of the molding freedom of composite materials, resulting in an aerodynamically sophisticated and efficient method. It has the advantage of providing wings.

なお本発明の方法は、その精神を逸脱しない範囲におい
て種々の変形を行なうことができる。
Note that the method of the present invention can be modified in various ways without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により製造される複合材料翼の全
体を示す斜視図、第2図は第1図の■−■線断面図、第
3図は主桁をフィラメントワインデイング法により製造
する例を示す斜視図、第4図はフィラメントワインデイ
ング法により製造された未硬化の主桁素材を示す斜視図
、第5図は本発明による複合材料翼の付根部構造例を示
す斜視図、第6図は本発明の方法に用いられる帯状部材
の素材をフィラメントワインデイング法で製造する例を
示す斜視図、第7図、第8図、第9図および第10図は
本発明による翼製造方法の諸段階を示す断面図、第11
図はハニカムコアを用いた例を示す断面図、第12図お
よび第13図は他の例を示す断面図である。 11・・・・・・コア、13・・・・・・帯状部材、1
4・・・・・・主桁、33・・・・・・加圧バッグ、3
0・・・・・・下型、31・・・・・・外皮、37・・
・・・・上型。
Fig. 1 is a perspective view showing the entire composite material wing manufactured by the method of the present invention, Fig. 2 is a sectional view taken along the line ■-■ of Fig. 1, and Fig. 3 shows the main spar manufactured by the filament winding method. FIG. 4 is a perspective view showing an uncured main spar material manufactured by the filament winding method; FIG. 5 is a perspective view showing an example of the root structure of a composite material wing according to the present invention; FIG. 6 is a perspective view showing an example of manufacturing the material of the band-shaped member used in the method of the present invention by the filament winding method, and FIGS. 7, 8, 9, and 10 show blade manufacturing according to the present invention. Cross-sectional diagram showing the steps of the method, No. 11
The figure is a sectional view showing an example using a honeycomb core, and FIGS. 12 and 13 are sectional views showing other examples. 11...Core, 13...Band-shaped member, 1
4...Main girder, 33...Pressure bag, 3
0...lower mold, 31...outer skin, 37...
...Upper mold.

Claims (1)

【特許請求の範囲】 1 樹脂含浸繊維からなる複合材料の外皮を用いた空気
力学的翼を、その外面のほぼ全体に対応する成形用内面
を持つ上下金型によって製造する方法において、主桁部
材と中空膨脹部材とを可撓性帯状部材によって包んだ状
態で金型内の上下外皮部材間に配置し、主桁部材と中空
膨脹部材とコア部材とが翼前縁側からこの順序で並ぶよ
うにコア部材を置いて、前記帯状部材の両側縁を前記上
下金型間に挾むことによって固定し、前記中空膨脹部材
の内部に圧力を供給しつつ前記外皮の樹脂の加熱硬化を
進行させることから成ることを特徴とする複合材料翼製
造方法。 2 前記第1項において、前記可撓性帯状部材は最初弛
緩状態で金型内に配置し、コア部材は前記帯状部材の外
側に配置し、前記中空膨脹部材に圧力が与えられたとき
前記可撓性帯状部材が緊張状態になるまで前肥コア部材
を翼弦方向に圧してその塑性変形を生じさせ、然るのち
前記主桁に加圧力が与えられるようにすることを特徴と
する複合材料翼製造方法。 3 前記第2項において、コア部材は楔形断面形状であ
り、翼型の後縁部に配置され、前記可撓性帯状部材を介
して前記膨脹部材により後縁方向に押され、その間に外
皮に対し緊密に接着されることを特徴とする複合材料翼
製造方法。 4 前記第2項において、前記コア部材は発泡樹脂材料
により形成されることを特徴とする複合材料翼製造方法
。 5 前記第1項において、前記可撓性帯状部材の両側縁
は、翼前縁部において重ねて金型に固定されることを特
徴とする複合材料翼製造方法。 6 前記第1項において、偏平輪状に巻かれた樹脂含浸
繊維を包含する主桁部材を全ての繊維が翼長手方向に延
びるように配置することを特徴とする複合材料翼製造方
法。 7 前記第1項において、前記可撓性帯状部材は、円筒
状に巻かれた樹脂含浸繊維を長手方向の線に沿って切り
開いて製作され、該可撓性帯状部材を成す繊維の方向は
、翼長手軸に対して90°を成す様に巻き付けられた部
分と、該翼長手軸に対して45°を成す様に巻き付けら
れた部分とから成ることを特徴とする複合材料翼製造方
法。 8 前記第1項において、主桁部材は翼前縁部に塊状に
配置されることを特徴とする複合材料翼製造方法。 9 前記第1項において、前縁部を下方に向けた状態で
加熱硬化させることを特徴とする複合材料翼製造方法。 10 前記第2項において、コア部材は最終成形時寸度
よりやや大き目に製作されていることを特徴とする複合
材料翼製造方法。
[Scope of Claims] 1. In a method for manufacturing an aerodynamic wing using an outer skin of a composite material made of resin-impregnated fibers using upper and lower molds having molding inner surfaces corresponding to almost the entire outer surface thereof, the main spar member and the hollow inflatable member are placed in a mold between the upper and lower outer skin members while being wrapped by a flexible band-like member, so that the main spar member, the hollow inflatable member, and the core member are lined up in this order from the leading edge side of the wing. A core member is placed, both side edges of the band-like member are sandwiched between the upper and lower molds, and the core member is fixed, and the resin of the outer skin is heated and hardened while supplying pressure to the inside of the hollow expansion member. A method for manufacturing a composite material wing, characterized by: 2. In the above item 1, the flexible band member is initially placed in a relaxed state in a mold, the core member is placed outside the band member, and when pressure is applied to the hollow expandable member, the flexible band member is placed in a mold. A composite material characterized in that the forerunner core member is pressed in the chord direction until the flexible band member is in tension to cause plastic deformation thereof, and then a pressurizing force is applied to the main spar. Wing manufacturing method. 3. In the above item 2, the core member has a wedge-shaped cross-sectional shape, is arranged at the trailing edge of the airfoil, and is pushed toward the trailing edge by the inflatable member via the flexible band-like member, during which the core member A method for manufacturing a composite material wing, characterized in that the wing is tightly bonded to the other material. 4. The method for manufacturing a composite material wing according to item 2, wherein the core member is formed of a foamed resin material. 5. The method for manufacturing a composite material wing according to item 1, wherein both side edges of the flexible band member are fixed to a mold in an overlapping manner at a leading edge of the wing. 6. The method for manufacturing a composite material wing according to item 1 above, characterized in that the main spar member including the resin-impregnated fibers wound into a flat ring shape is arranged so that all the fibers extend in the longitudinal direction of the wing. 7. In the above item 1, the flexible band-like member is manufactured by cutting resin-impregnated fibers wound into a cylindrical shape along a longitudinal line, and the direction of the fibers forming the flexible band-like member is: A method for manufacturing a composite material wing, comprising: a part wound at an angle of 90° to the longitudinal axis of the wing; and a part wrapped at an angle of 45° to the longitudinal axis of the wing. 8. The method for manufacturing a composite material wing according to item 1, wherein the main spar member is arranged in a block at the leading edge of the wing. 9. The method for manufacturing a composite material wing according to item 1 above, characterized in that heating and curing is carried out with the leading edge facing downward. 10. The method for manufacturing a composite material wing according to item 2 above, characterized in that the core member is manufactured to be slightly larger than the final molded size.
JP51075765A 1976-06-26 1976-06-26 Method for manufacturing composite material wings Expired JPS584679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51075765A JPS584679B2 (en) 1976-06-26 1976-06-26 Method for manufacturing composite material wings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51075765A JPS584679B2 (en) 1976-06-26 1976-06-26 Method for manufacturing composite material wings

Publications (2)

Publication Number Publication Date
JPS532899A JPS532899A (en) 1978-01-12
JPS584679B2 true JPS584679B2 (en) 1983-01-27

Family

ID=13585625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51075765A Expired JPS584679B2 (en) 1976-06-26 1976-06-26 Method for manufacturing composite material wings

Country Status (1)

Country Link
JP (1) JPS584679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418843A1 (en) * 1989-09-20 1991-03-27 Fuji Jukogyo Kabushiki Kaisha Method of manufacturing composite material blade

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2430354A1 (en) * 1978-07-07 1980-02-01 Aerospatiale MULTIPALE PROPELLER WITH VARIABLE STEP OF A SIMPLIFIED TYPE
US4366387A (en) * 1979-05-10 1982-12-28 Carter Wind Power Wind-driven generator apparatus and method of making blade supports _therefor
JPS6153332A (en) * 1984-08-23 1986-03-17 Shin Kobe Electric Mach Co Ltd Production of laminate
JPS6153331A (en) * 1984-08-23 1986-03-17 Shin Kobe Electric Mach Co Ltd Production of laminate
FR2574752B1 (en) * 1984-12-19 1987-02-20 Aerospatiale BLADE FOR A HELICOPTER ROTOR MADE OF MULTILONGER COMPOSITE MATERIAL WITH TORSION BOXES AND MANUFACTURING METHOD THEREOF
FR2925015B1 (en) * 2007-12-14 2010-06-04 Eurocopter France ROTOR BLADE OF GIRAVION, ROTOR OF GIRAVION PROVIDED WITH SAID BLADE, AND METHOD OF MANUFACTURING THE BLADE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418843A1 (en) * 1989-09-20 1991-03-27 Fuji Jukogyo Kabushiki Kaisha Method of manufacturing composite material blade

Also Published As

Publication number Publication date
JPS532899A (en) 1978-01-12

Similar Documents

Publication Publication Date Title
US5855709A (en) Method of making a composite flow-straightener vane
EP2121264B1 (en) Helicopter blade mandrel, method for making the mandrel and method for molding a helicopter rotor blade
US5248242A (en) Aerodynamic rotor blade of composite material fabricated in one cure cycle
US5346367A (en) Advanced composite rotor blade
JP3839476B2 (en) Wing structure manufacturing method and manufacturing apparatus
CN106662070B (en) Blade tip system for a wind turbine blade
US3782856A (en) Composite aerodynamic blade with twin-beam spar
US7165945B2 (en) Braided spar for a rotor blade and method of manufacture thereof
US3995080A (en) Filament reinforced structural shapes
US10737760B2 (en) Multi-box wing spar and skin
US3995081A (en) Composite structural beams and method
US5482584A (en) Method for manufacturing rotor blades
US6231941B1 (en) Radius fillers for a resin transfer molding process
EP2441571B1 (en) Proces for manufacturing a composite component
JP4015703B2 (en) Composite tip cap assembly for helicopter main rotor blades
US4247255A (en) Composite rotor blade root end
RU2541574C1 (en) Helicopter rotor and production of rotor from composites
US3549444A (en) Filament wound blade and compressor
JPS584679B2 (en) Method for manufacturing composite material wings
EP3894190A1 (en) Improvements relating to wind turbine blade manufacture
EP3894189B1 (en) Wind turbine blade shear web, method of manufacture and wind turbine blade
CN114829117A (en) Improvements relating to wind turbine blade manufacture
RU162211U1 (en) HELICOPTER STEERING VANE FROM COMPOSITE MATERIAL
US3078911A (en) Apparatus for the assembly of an airfoil
US20240018938A1 (en) Wind turbine blade having buckling-resistant spar caps