JPS5846100A - Plasmid vector having three kinds of marker and its preparation - Google Patents

Plasmid vector having three kinds of marker and its preparation

Info

Publication number
JPS5846100A
JPS5846100A JP56143520A JP14352081A JPS5846100A JP S5846100 A JPS5846100 A JP S5846100A JP 56143520 A JP56143520 A JP 56143520A JP 14352081 A JP14352081 A JP 14352081A JP S5846100 A JPS5846100 A JP S5846100A
Authority
JP
Japan
Prior art keywords
resistant
plasmid
plasmid vector
resistance
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56143520A
Other languages
Japanese (ja)
Other versions
JPS6135831B2 (en
Inventor
Masahiro Iwakura
正寛 巌倉
Yukio Shimura
志村 幸雄
Keishiro Tsuda
津田 圭四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56143520A priority Critical patent/JPS5846100A/en
Publication of JPS5846100A publication Critical patent/JPS5846100A/en
Publication of JPS6135831B2 publication Critical patent/JPS6135831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To plasmid vector having tetracycline-resistant (TC-resistant), amplicillin-resistant (Ap-resistant) and trimethoprim-resistant (Tp-resistant) markers, containing scission sites of various kinds of restricted enzymes, and capable of loading extrinsic DNA fraction. CONSTITUTION:A plasmid vector having Tc-resistant gene, Ap-resistant gene and Tp-resistant gene as markers. The plasmid can be prepared as follows: A plasmid vector pBR 322 having Tc-resistant and Ap-resistant markers is treated with a restricted enzume EcoRI to break the sites other than the insertion inactivated site, and then treated with enzyme nuclease SI to obtain straight-chain DNA having smooth end. Separately, the DNA fraction containing dihydrofolate reductase gene obtained from Escherichia coli K12 strain is shortened, and connected and cyclized with the above straight-chain DNA to obtain mixed plasmid. The plasmid is introduced into Escherichia coli K12 strain and the strain is cultured to obtain plasmid vector pTP30-5 having Tc-resistant, Ap-resistant and Tp-resistant markers and containing 6.3 kilo base pairs.

Description

【発明の詳細な説明】 本発明は、遺伝標識として宿主にテトラサイクリン耐性
、アンピシリン耐性及びトリメトプリム耐性を付与する
ための遺伝子を有するプラスミドベクター及びその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasmid vector having a gene for imparting tetracycline resistance, ampicillin resistance, and trimethoprim resistance to a host as a genetic marker, and a method for producing the same.

近年、遺伝子工学の発展を背景に、遺伝子組替え手法、
例えば大腸菌などの細菌に異種DNAを導入し、その遺
伝子を発現させるなどの手法によって有用な物質を生み
出す方法が脚光を浴びつつあり、最近では、この遺伝子
組替え手法により、インターフェロン、インシュリン、
ヒト成長ホルモン、グルタチオンなどの極めて有用な物
質の実用化に向けて研究開発が行われている。
In recent years, with the development of genetic engineering, genetic recombination methods,
For example, methods of producing useful substances by introducing foreign DNA into bacteria such as Escherichia coli and expressing their genes are gaining attention.Recently, this gene recombination method has been used to produce interferon, insulin,
Research and development is underway to commercialize highly useful substances such as human growth hormone and glutathione.

上記の異種DNAを導入し、その遺伝子を発現させるた
めの手段として、一般にプラスミドと呼ばれる環状DN
Aが利用されているが、このプラスミドのうち、外来性
遺伝子を宿主細胞に移入し、その中でこれを増やす役割
をもつように改造されたものがプラスくドベクターであ
って、このものは、宿主に導入された場合、導入されて
ない宿主と識別しうるように宿主に薬剤などに対する抵
抗性を与える遺伝子、すなわち遺伝標識(以下マーカー
と略す)を有することが必要である。例えばプラスミド
ベクターpBR322はテトラサイクリン耐性(以下T
c耐性と略す)及びアンピシリン耐性(以下Ap耐性と
略す)を、pMB 9はTc耐性及びコリシンEI免疫
性を、またpACYo 184はクロラムフェニコール
耐性及びTc耐性を、それぞれ宿主に付与する遺伝子を
マーカーとして有している。
A circular DNA generally called a plasmid is used as a means to introduce the above-mentioned heterologous DNA and express the gene.
Among these plasmids, a plasmid that has been modified to have the role of transferring foreign genes into host cells and increasing them therein is a plasmid vector. When introduced into a host, it is necessary to have a gene, that is, a genetic marker (hereinafter abbreviated as a marker), that confers resistance to a drug or the like on the host so that it can be distinguished from a host to which it has not been introduced. For example, plasmid vector pBR322 is tetracycline resistant (T
pMB 9 confers Tc resistance and colicin EI immunity, pACYo 184 confers chloramphenicol resistance and Tc resistance to the host, respectively. I have it as a marker.

ところで、プラスミドベクターに異種遺伝子を挿入する
方法として、適当な制限酵素によってプラスミドベクタ
ーを切断し、直鎖状となったDNAの両端に直鎖状の異
種DNAを連結して再び環状化する方法が、一般に行わ
れている。この異種DNAを挿入する際に、プラスミド
ベクターのマーカーな不活性化することによって異種D
NA挿入の成否な検討することができる。例えば、プラ
スミドベクターpBR322における制限酵素BamH
Iの切断部位へ異種DNAを導入することにより、Tc
耐性マーカーが不活性化する。このような部位は挿入失
活部位と呼ばれ、この挿入失活部位へ異種DNAを挿入
すればマーカーが1個失われることになる。したがって
、プラスミドベクターは、なるべく多くの種類のマーカ
ーを有することが望ましい。
By the way, one method for inserting a heterologous gene into a plasmid vector is to cut the plasmid vector with an appropriate restriction enzyme, connect linear heterologous DNA to both ends of the linear DNA, and circularize it again. , is commonly practiced. When inserting this heterologous DNA, the heterologous DNA is inactivated by inactivating the plasmid vector marker.
The success or failure of NA insertion can be examined. For example, restriction enzyme BamH in plasmid vector pBR322
By introducing heterologous DNA into the cleavage site of Tc
Resistance markers are inactivated. Such a site is called an insertion deactivation site, and if a foreign DNA is inserted into this insertion deactivation site, one marker will be lost. Therefore, it is desirable for a plasmid vector to have as many types of markers as possible.

本発明者らは、このような事情に鑑み、多種のマーカー
を有するプラスミドベクターを得るべく鋭意研究を重ね
た結果、プラスミドベクターpBR322はTc耐性及
びAp耐性の2種のマーカーを有していること、ジヒド
ロ葉酸還元酵素はトリメトプリムによって強力に阻害さ
れるが、その遺伝子を細胞内において増幅させることに
よりトリメトプリム耐性(以下’rp耐性と略す)を獲
得できること、さらにこの遺伝子はi ooo塩基対以
下の大きさであって有利であることなどに着目し、プラ
スミドベクターpBR322にジヒドロ葉酸還元酵素遺
伝子を含むDNAを挿入することによってTc耐性、A
p耐性及びTp耐性の3種のマーカーを有するプラスミ
ドベクターが得られることを見出し、この知見に基づい
て本発明を完成するに至った。
In view of these circumstances, the present inventors have conducted intensive research to obtain plasmid vectors having various markers, and have found that plasmid vector pBR322 has two types of markers: Tc resistance and Ap resistance. , dihydrofolate reductase is strongly inhibited by trimethoprim, but trimethoprim resistance (hereinafter abbreviated as 'rp resistance) can be acquired by amplifying the gene in cells. By inserting DNA containing the dihydrofolate reductase gene into plasmid vector pBR322, Tc resistance and A
It was discovered that a plasmid vector having three types of markers, p-resistant and Tp-resistant, could be obtained, and the present invention was completed based on this finding.

すなわち、本発明はマーカーとしてTc耐性遺伝子。That is, the present invention uses a Tc resistance gene as a marker.

Ap耐性遺伝子及び’rp耐性遺伝子を有するプラスミ
ドベクター及びプラスミドベクターpBR322にジヒ
ドロ葉酸還元酵素遺伝子を含むDNAを挿入することに
よって上記3種のマーカーを有するプラスミドベクター
を製造する方法を提供するものである。
The present invention provides a plasmid vector having an Ap resistance gene and an 'rp resistance gene, and a method for producing a plasmid vector having the above three types of markers by inserting DNA containing a dihydrofolate reductase gene into plasmid vector pBR322.

本発明に用いるプラスミドベクターpBR322’4゜
分子量が2.6XI C1’ダルトンでTc  耐性及
びAp耐性の2種のマーカーを有し、そのTc耐性遺伝
子上に制限酵素Hind nLBamHI及び5all
によってそれぞれ認識される挿入失活部位を、またA、
p耐性遺伝子上に制限酵素Pst I及びPvu Iに
よってそれぞれ認識される挿入失活部位を有しており、
これまで開発されたベクターのなかで、最も広く利用さ
れているベクターである。
Plasmid vector pBR322'4° used in the present invention has a molecular weight of 2.6XI C1' Daltons and has two markers, Tc resistance and Ap resistance, and restriction enzymes Hind nLBamHI and 5all on the Tc resistance gene.
The insertion deactivation site recognized by A,
It has insertion inactivation sites recognized by restriction enzymes Pst I and Pvu I on the p-resistant gene,
It is the most widely used vector among all the vectors developed to date.

ところでトリメトプリムはジヒドロ葉酸還元酵素の強力
な阻害剤であり、例えば大腸菌などの細菌においては、
トリメトプリムによってジヒドロ葉酸還元酵l″−阻害
され、その生成物であってアミノ酸及び核酸の生合成反
応に必須なテトラヒドロ葉酸の供給が止められる。この
ことからトリメトプリムは抗細菌剤として用いられる。
By the way, trimethoprim is a strong inhibitor of dihydrofolate reductase, for example in bacteria such as Escherichia coli.
Trimethoprim inhibits dihydrofolate reducing enzyme l''-, thereby stopping the supply of its product, tetrahydrofolate, which is essential for amino acid and nucleic acid biosynthesis reactions.For this reason, trimethoprim is used as an antibacterial agent.

上記の理由から、このトリメトプリムに対する抵抗性を
宿主に付与させるためには、ジヒドロ葉酸還元酵素遺伝
子をプラスミドベクターに組み込んで宿主に挿入し、細
胞内におけるこの遺伝子の含量を高めてジヒドロ葉酸還
元酵素を多量に生産させればよい。
For the above reasons, in order to impart resistance to trimethoprim to the host, the dihydrofolate reductase gene is incorporated into a plasmid vector and inserted into the host, increasing the content of this gene in the cell and increasing the dihydrofolate reductase gene. All you have to do is produce it in large quantities.

したがって、本発明の宿主にTc耐性、Ap耐性及びT
p耐性を付与するためのプラスミドベクターを得るには
、Tc耐性及びAp耐性の2種のマーカーを有するプラ
スミドベクターpBR322の挿入失活部位以外の制限
酵素切断部位へジヒドロ葉酸還元酵素遺伝子を含むDN
Aを挿入すればよい。
Therefore, the host of the present invention has Tc resistance, Ap resistance and Tc resistance.
To obtain a plasmid vector for imparting p resistance, insert a DNA containing the dihydrofolate reductase gene into the restriction enzyme cleavage site other than the insertion inactivation site of the plasmid vector pBR322, which has two markers of Tc resistance and Ap resistance.
Just insert A.

また、ジヒドロ葉酸還元酵素の分子量(ま約2万ダルト
ン程度であることが知られている。したが塩基対以下で
あると考えられ、このことは、Tp耐性遺伝子をマーカ
ーとすることが有利であることを意味する。しかしなが
ら、現在まで’rp耐性遺伝子をマーカーとしたプラス
ミドベクターはまだ開発されていなかった。
In addition, the molecular weight of dihydrofolate reductase (which is known to be about 20,000 Daltons) is thought to be less than a base pair, which makes it advantageous to use the Tp resistance gene as a marker. However, until now, a plasmid vector using the 'rp resistance gene as a marker has not yet been developed.

次に本発明の実施態様について説明する。Next, embodiments of the present invention will be described.

まず、プラスミドベクターpBR322に、大腸菌に1
2株から得られたジヒドロ葉酸還元酵素遺伝子を含む約
9200塩基対より成るDNA断片を、制限酵素Bam
HT及びT4DNAIJガーゼを用いて挿入し混成プラ
スミドを得る。pB、R322の制限酵素BamHTに
よる切断部位は、Tc耐性遺伝子上の挿入失活部位であ
るため、得られた混成プラス゛ミドは宿主に’rp耐性
及びAp耐性を付与する。この混成プラスミドを大腸菌
に12株に導入し、その菌体をアンピシリンナトリウム
及びトリメトプリムを含む栄養寒天培地を用いて培養し
、成長した菌体から約13.6 キロ塩基対の大きさの
プラスミド(pTP[と呼称する)を分離する。このプ
ラスミドは宿主にAp耐性及び’rp耐性を与える遺伝
子を有しており、また、第1図に示すように制限酵素E
coRIHindjll 、 BamHI、 5alI
、Pstl: イBstEI[,5stH1XhoI 
、によって切断される部位を有している。
First, add 1 to E. coli to plasmid vector pBR322.
A DNA fragment of approximately 9200 base pairs containing the dihydrofolate reductase gene obtained from the two strains was treated with the restriction enzyme Bam.
Insert using HT and T4 DNA IJ gauze to obtain a hybrid plasmid. Since the cleavage site of pB, R322 with the restriction enzyme BamHT is the insertion inactivation site on the Tc resistance gene, the resulting hybrid plasmid confers 'rp resistance and Ap resistance to the host. This hybrid plasmid was introduced into 12 E. coli strains, and the cells were cultured using a nutrient agar medium containing ampicillin sodium and trimethoprim. [referred to as)]. This plasmid has a gene that confers Ap resistance and 'rp resistance to the host, and also contains the restriction enzyme E as shown in Figure 1.
coRIHindjll, BamHI, 5alI
, Pstl: iBstEI[,5stH1XhoI
It has a part that is cut by .

次に上記プラスミドpTPIを制限酵素BamHIによ
って2か所切断し、次いで2本鎖DNAに特異的に働い
て両端から核酸を分解する酵素ヌクレア究BAL31を
作用させ、Tp耐性遺伝子を含む直鎖状DNAの断片を
得る。この直鎖状DNAの両端は平滑末端である。
Next, the above plasmid pTPI was cut at two places with the restriction enzyme BamHI, and then the enzyme Nuclease BAL31, which acts specifically on double-stranded DNA and degrades nucleic acids from both ends, was applied to transform the linear DNA containing the Tp resistance gene. Get a fragment of. Both ends of this linear DNA are blunt ends.

一方、プラスミドベクターpBR322に制限酵素j占 EcoRI、を作用させ、挿入失格部位以外の部位を切
断して直鎖DNAとし、次いで一本鎖DNAに特異的に
働く酵素ヌクレアーゼstを作用させ、直鎖DNAの両
端に突出している一本鎖部分を消去として平滑末端とす
る。この際、EcoRI切断部位は消去される。
On the other hand, plasmid vector pBR322 is treated with restriction enzyme EcoRI to cut sites other than the insertion disqualification site to make linear DNA, and then nuclease ST, an enzyme that specifically acts on single-stranded DNA, is treated to make linear DNA. The single-stranded portions protruding from both ends of the DNA are deleted to create blunt ends. At this time, the EcoRI cleavage site is deleted.

このようにして得られた直鎖状DNAと、前記のp’r
p ■から得られた’rp耐性遺伝子を含む直鎖状DN
A断片とを、T4DNAIJガーゼを用いて平滑末端連
結を行い、環化して混成プラスミドを得る。この混成プ
ラスミドを大腸菌に12株に導入し、その菌体をアンピ
シリンナトリウム、塩酸テトラサイクリン及びトリメト
プリムを含む栄養寒天培地を・用いて培養し、成長した
菌体からプラスミドを分離して分子量の最も小さい約6
.3キロ塩基対の大きさのプラスミドを選び、目的のプ
ラスミドベクター(、pTP30−5と呼称する)を得
る。
The linear DNA thus obtained and the p'r
Linear DN containing the 'rp resistance gene obtained from p
A fragment is blunt-end ligated using T4 DNA IJ gauze and circularized to obtain a hybrid plasmid. This hybrid plasmid was introduced into 12 E. coli strains, and the cells were cultured using a nutrient agar medium containing ampicillin sodium, tetracycline hydrochloride, and trimethoprim. 6
.. A plasmid with a size of 3 kilobase pairs is selected to obtain the desired plasmid vector (referred to as pTP30-5).

このようにして得られたプラスミドベクターpTP30
−5は、宿主に謝して’rc耐性、Ap耐性及び’rp
耐性を付与し、また第2図に示すように制限酵素Eco
RI 、旧ndlll、BamHr 1Sal I 1
Pst I、BstEIIによって切断される部位を有
している。
Plasmid vector pTP30 thus obtained
-5 has 'rc resistance, Ap resistance and 'rp resistance to the host.
The restriction enzyme Eco
RI, former ndlll, BamHr 1Sal I 1
It has a site that is cleaved by PstI and BstEII.

また、次の方法によっても本発明のプラスミドベクター
は得られる。
The plasmid vector of the present invention can also be obtained by the following method.

すなわち、プラスミドベクターpBR322に制限酵素
EcoRI を作用させ、挿入失透部位以外の部位を切
断して直鎖状DNAとし、次いで酵素ヌクレアーゼSI
を作用させ、両端に突出している一本鎖部分を消去して
平滑末端とする。一方、大暢菌に12  株から得られ
たジヒドロ葉酸還元酵素遺伝子を含む約9200塩基対
より成るDNA断片を酵素ヌクレアーゼBAL31によ
って短縮する。この短縮されたDNAの両端は平滑末端
となっており、このものと、前記のpBR322にEc
oRI 及びヌクレアーゼsrを作用させて得られた平
滑末端を有する直鎖状DNAとを、T 4 DNAリガ
ーゼを用いて平滑末端連結を行い、環化して混成プラス
ミドを得る。
That is, plasmid vector pBR322 is treated with restriction enzyme EcoRI to cleave sites other than the insertion devitrification site to obtain linear DNA, and then treated with enzyme nuclease SI.
to remove the single-stranded parts protruding from both ends to create blunt ends. On the other hand, a DNA fragment of approximately 9,200 base pairs containing the dihydrofolate reductase gene obtained from 12 strains of Bacillus Daenobu is shortened using the enzyme nuclease BAL31. Both ends of this shortened DNA are blunt ends, and this and the above-mentioned pBR322 are
A linear DNA with blunt ends obtained by the action of oRI and nuclease sr is ligated with blunt ends using T 4 DNA ligase, and circularized to obtain a hybrid plasmid.

この混成プラスミドを大腸菌に12株に導入し、その菌
体をアンピシリンナトリウム、塩酸テトラサイクリン及
びトリメトプリムを含む栄養寒天培地を用いて培養し、
成長した菌体からプラスミドを分離し、分子の大きさに
ついてスクリーニングして約6.3キロ塩基対の大きさ
のプラスミドをベクターとして得る。このプラスミドベ
クターは宿主に、対してTc 耐性、Ap耐性及び’r
p耐性を付与する。
This hybrid plasmid was introduced into 12 E. coli strains, and the cells were cultured using a nutrient agar medium containing ampicillin sodium, tetracycline hydrochloride, and trimethoprim.
A plasmid is isolated from the grown bacterial cells and screened for molecular size to obtain a plasmid with a size of about 6.3 kilobase pairs as a vector. This plasmid vector provides host with Tc resistance, Ap resistance and 'r resistance.
Provides p resistance.

本発明のプラスミドベクターは、これを含む宿主細胞を
容易に識別しうるマーカーを3種、すなわちTc耐性、
Ap耐性及び’rp耐性のマーカーを有し、かつ多種の
制限酵素による切断部位を有しているため、外来性DN
A断片を負荷する能力が大きく、そのうえ分子量が小さ
くて不必要な遺伝情報をもたらすことの少ない極めて優
れたベクターである。
The plasmid vector of the present invention has three types of markers that can easily identify host cells containing it: Tc resistance,
Because it has markers for Ap resistance and 'rp resistance, and cleavage sites for various restriction enzymes, foreign DNA
It is an extremely excellent vector that has a large ability to load the A fragment, has a small molecular weight, and does not bring in unnecessary genetic information.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、実施例における菌体からのプラスミドの分離はT
anaka及びWeisblumの方法(T 、 Ta
naka 。
In addition, in the examples, isolation of plasmid from bacterial cells was carried out using T.
anaka and Weisblum's method (T, Ta
Naka.

B、Weis’blum ; J、Bacteriol
ogy、 121 、354 t(1975))に従っ
た。“ 実施例 5aito及びMiuraの方法(H,5aito 、
 K、MiuraBiochim、 Biophys、
 Acta、 72+ 619 (1963)、)に従
って、Kscherichia coli ’K 12
株から得たジヒドロ葉酸還元酵素遺伝子を含むDNA約
1μ2とプラス汁ドベクターpB、R’322約1μり
を、75μtの反応液(7mM Tris−HCI p
H7,4,7mMMgC12t 7 m M 2−メル
カプトエタノール、60mMMail)中で、1〜5ユ
ニツトのBamH1金用いて隻り7℃、1時間消化させ
た。さらに65℃で5分間保ってBamHIを失活させ
たのち、水中に保ち、15μtの50 mM MgO1
2+ 15 μlの0.1Mジチオトレイトール(以下
DTTと略す)、15μtの5mMATP、7μtのl
 M Tris−Mol pH7,4,23μtの水及
び1〜2ユニツトのT4DNAリガーゼを加え、4℃で
18時間反応させることによってBamHlで消化した
DNA混合物を連結した。この連結混合物をNorga
rdらの方法(M、V、Norgard、に、Keem
+J、J、Monahan; Gene、 3 、27
9 、 (1978))に従ってFJ8cherich
ia coli k 12 C600株に取り込ませた
。この処理した菌体を20μy/mtアンピシリンナト
リウム及び2μ?/mLトリメトプリムを含む栄養寒丙
培地上にまき、生長する菌体(Ap耐性及びTp耐性菌
)を得だ。この菌体から約13.6キロ塩基対の大きさ
のプラスミドを分離した。このプラスミドをプラスミド
pTPI (以下pTPlと略す)と呼称する。
B, Weis'blum; J, Bacteriol
ogy, 121, 354 t (1975)). “Example 5aito and Miura's method (H, 5aito,
K, Miura Biochim, Biophys,
Acta, 72+ 619 (1963), ).
Approximately 1μ2 of DNA containing the dihydrofolate reductase gene obtained from the strain and approximately 1μ of plus vector pB and R'322 were added to a 75μt reaction solution (7mM Tris-HCI p
Digestion was performed using 1 to 5 units of BamH1 gold in H7,4,7mM MgC12t (7mM 2-mercaptoethanol, 60mM Mail) at 7°C for 1 hour. After further inactivating BamHI by keeping it at 65°C for 5 minutes, it was kept in water and added with 15μt of 50mM MgO1.
2+ 15 μl of 0.1 M dithiothreitol (hereinafter abbreviated as DTT), 15 μt of 5mM ATP, 7 μt of l
The BamHl-digested DNA mixture was ligated by adding M Tris-Mol pH 7, 4, 23 μt of water and 1 to 2 units of T4 DNA ligase and reacting at 4° C. for 18 hours. This ligation mixture was
The method of rd et al. (M. V. Norgard, Keem
+J, J, Monahan; Gene, 3, 27
9, (1978))
It was introduced into IA coli K12 C600 strain. The treated bacterial cells were mixed with 20μy/mt ampicillin sodium and 2μy/mt ampicillin sodium. The cells were plated on a nutrient agar medium containing /mL trimethoprim to obtain growing bacterial cells (Ap-resistant and Tp-resistant bacteria). A plasmid with a size of approximately 13.6 kilobase pairs was isolated from this bacterial cell. This plasmid is called plasmid pTPI (hereinafter abbreviated as pTPl).

pTPlの制限酵素FlicoR1,Hindl 、 
BamHl rSal l 、 Pst l 、 Bs
tEll 、 5stIl、Xholによる切断切回を
第1図に示す。
pTPl restriction enzyme FlicoR1, Hindl,
BamHl rSal l, Pst l, Bs
The cutting turns by tEll, 5stIl, and Xhol are shown in FIG.

このpTPIをEscherichia coli K
12 0600株に導入1するとAp耐性及びTp耐性
菌に変態すること、pBR322のTc耐性遺伝子はB
amHIによって切断されること、及びpBR322は
宿主にAp耐性及びTc耐性を付与することから%pT
PIのTp耐性は、pBR322のBamHI切断部位
へFischer−ichia cori K 12株
から得たDNAのBamHlによって切りとられた断片
が挿入されることによって得られたものであると結論さ
れる0 上記pTP1約5μrを4ooptの反応液(7mMT
ris−HCI  pH7,4、7m、M  MgCl
2.7mM  2 − メ メルカプトエタノール、 
60mM Na1l)中で、5−10ユニツトのBam
HIを用いて37℃1時間l肖イヒさせたのち、8pt
のI M Tris−HC!1’ pH8、4μtのj
’M MgO12、5pLのI M CaCl2.8μ
tの5 M NaC1及び1μtの0.25MEDTA
を加えて25℃に保った。この反応液に1μtのヌクレ
アーゼBAL31を2ユニット加え、5.’10.’1
5,20.25+30分後に各50μtずつとり、これ
に50μtの水飽和フェノールを加えて5分間かきまぜ
たの・ち、水層を集めた。このようにして得た水層をす
べてまとめて、50mMのTris−HOI pH7,
4に透析した。透析されたDNA混合物は後述の処理に
用いる〇 一方、pBR322約1μ2を100μtの反応液(7
mM Tris−HCI pH7,4、7mM MgC
l2 、7mM 2−メルカプトエタノール、60 m
、M Na1l )中で、1〜5ユニツトのKcoRl
を用いて37℃、1時間消化させたのち、18℃に保ち
、あらかじめ18℃に保持された24mMZnS○4及
び60mMNa01を含んだ0.2M酢酸ナトリウム緩
衝液pH5,0を100 Pl 加工1.次イで100
ユニツトのヌクレアーゼS1を1時間作用させて、Ec
oR’lの消化によって生じた両端の一本鎖部分を除去
した0次に2ooptの水飽和フェノールを加えてヌク
レアーゼS1による消化を停止させ、さらに5分間力1
きまぜたのち、遠心分離により水層とフェノール層とに
分け、水層を分取して50mMのTris−HOIpH
7,>;’f、町透析した。このようにして得られた液
40ptと肇1.前述のpTPl f:BamHlで消
化したのち、ヌクレアーゼBAL31で処理して得た液
50μtとを混ぜ、さらに15ptの50mM MgO
12、15μtの0.1MDTT、15/ljtの5m
M ATP 、 7ptのI MTris−)(C1p
H7,4、8μtの水及び10〜20ユニツトのT4D
NAリガーゼを加え、4℃で18時間反応させて混合D
NAを連結した。
This pTPI was added to Escherichia coli K
12 When introduced into 0600 strain, it transforms into Ap- and Tp-resistant bacteria, and the Tc-resistant gene of pBR322 is B
%pT because it is cleaved by amHI and pBR322 confers Ap and Tc resistance to the host.
It is concluded that the Tp resistance of PI was obtained by inserting a fragment of DNA obtained from Fischer-ichia coli K 12 strain cut with BamHl into the BamHI cleavage site of pBR322. Approximately 5μr was added to 4oopt of reaction solution (7mMT
ris-HCI pH7,4,7m,M MgCl
2.7mM 2-memercaptoethanol,
5-10 units of Bam in 60mM Na1l)
After incubating at 37°C for 1 hour using HI, 8pt
I M Tris-HC! 1' pH 8, 4 μt j
'M MgO12, 5 pL I M CaCl2.8μ
t of 5 M NaCl and 1 μt of 0.25 MEDTA
was added and kept at 25°C. 5. Add 2 units of 1 μt nuclease BAL31 to this reaction solution. '10. '1
5, 20. After 25+30 minutes, 50 μt of each was taken, 50 μt of water-saturated phenol was added thereto, and the mixture was stirred for 5 minutes, and then the aqueous layer was collected. All the aqueous layers thus obtained were combined and added to 50 mM Tris-HOI pH 7,
Dialysis was carried out at 4. The dialyzed DNA mixture is used for the treatment described below. Meanwhile, approximately 1 μ2 of pBR322 was added to 100 μt of reaction solution (7
mM Tris-HCI pH 7,4, 7mM MgC
l2, 7mM 2-mercaptoethanol, 60 m
, MNa1l), 1 to 5 units of KcoRl
After digestion at 37°C for 1 hour using 100 Pl of 0.2M sodium acetate buffer pH 5.0 containing 24mM ZnS○4 and 60mM Na01, which had been kept at 18°C, 1. 100 in the next step
Unit nuclease S1 was allowed to act for 1 hour, and
After removing the single-stranded portions at both ends resulting from the digestion of oR'1, 2 oopt of water-saturated phenol was added to stop the digestion by nuclease S1, and the mixture was incubated for an additional 5 min at 1 p.p.
After mixing, centrifuge to separate the aqueous layer and phenol layer, separate the aqueous layer and add 50mM Tris-HOI pH.
7,>;'f, I underwent dialysis. 40 pt of the liquid thus obtained and 1. After digesting the aforementioned pTPl f: with BamHl, it was mixed with 50 μt of the solution obtained by treatment with nuclease BAL31, and further 15 pt of 50 mM MgO
12, 15μt 0.1MDTT, 15/ljt 5m
M ATP , 7pt I MTris-) (C1p
H7, 4, 8 μt of water and 10-20 units of T4D
Add NA ligase and react at 4℃ for 18 hours to mix D.
NA was ligated.

この連結混合物をNorgardらの方法に従って、K
scherichia coli K I 20600
株に取り込ませた。この処理菌体を20μy/mtナン
ピ/リンナトリウム、10μf 7m l塩酸テトラサ
イクリン及び2μy/mtト’)メトプリムを含む栄養
寒天培地上にまき、生長する菌体(Ap耐性、TC耐性
及び’rp耐性菌)を数10株得た。これらの菌体から
プラスミドを分離したところ、  13.6キロ塩基対
から6.3キロ塩基対の大きさに分布していた。このプ
ラスミドのなかから分子量の最も小さい6.3キロ塩基
対の大きさのプラスミドをベクターとして選んだ0この
ものをプラスミドベクターpTP30−5と呼称する。
This ligation mixture was prepared according to the method of Norgard et al.
scherichia coli K I 20600
It was incorporated into the stock. The treated bacterial cells were sown on a nutrient agar medium containing 20 μy/mt Nanpi/Phosphate sodium, 10 μf 7 ml tetracycline hydrochloride, and 2 μy/mt Methoprim, and the growing bacterial cells (Ap-resistant, TC-resistant, and 'rp-resistant bacteria ) were obtained. When plasmids were isolated from these bacterial cells, they ranged in size from 13.6 kilobase pairs to 6.3 kilobase pairs. Among these plasmids, a plasmid with the smallest molecular weight of 6.3 kilobase pairs was selected as a vector and is referred to as plasmid vector pTP30-5.

pTP30−5の制限酵素KcoR1、Hind l 
、 BamHl 、 5all 、 Pst l 、 
BstK[lによる切断地図を第2図に示す。
pTP30-5 restriction enzymes KcoR1, Hindl
, BamHl, 5all, Pstl,
The cleavage map by BstK[l is shown in FIG.

このpTP30−5をEscherichia cor
i K12C600株に導入すると、アンピシリン、テ
トラサイクリン及びトリメトプリムの3種の薬剤に対し
て抵抗性に変態しだ。
This pTP30-5 was transformed into Escherichia cor.
i When introduced into the K12C600 strain, it became resistant to three types of drugs: ampicillin, tetracycline, and trimethoprim.

また、pTP30−5のEc oRl切断部位に異種D
NAを挿入したプラスミドをEscherichia 
coriK12 C600株に導入すると、もはやトリ
メトプリムに対する抵抗性は失われた。
In addition, a heterologous D was added to the EcoRl cleavage site of pTP30-5.
The plasmid with NA inserted was transformed into Escherichia
When introduced into the coli K12 C600 strain, the resistance to trimethoprim was lost.

pTPl又はpTP30−5を導入したEscheri
chiacoli K 120600株から得たジヒド
ロ葉酸還元酵素の量は、これらプラスミドをもたないE
scheri−chia coli K120600株
から得た量の約10倍であった。したがって、Tp耐性
はジヒドロ葉酸還元酵素が細胞内で増産されたため、ト
リメトプリムによる同酵素への阻害が解除又は緩和され
たためと考えられる。
Escheri introduced with pTPl or pTP30-5
The amount of dihydrofolate reductase obtained from Chiacoli K 120600 strain was different from that of E.
The amount was about 10 times that obtained from Scheri-chia coli K120600 strain. Therefore, Tp resistance is thought to be due to increased intracellular production of dihydrofolate reductase, which releases or alleviates the inhibition of this enzyme by trimethoprim.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はpTPlの制限酵素による切断地図、第2図は
pTP30−5の制限酵素による切断地図であり、図中
符号は制限酵素を表わし、EはKCORIIH3はHi
nd l 、 BはBamHl 、 Sa’lは5al
l、BstFilはBstFli[、PθtはPstl
 、E18tllは5stl及びxho)はXholを
示す。また、数字の単位はキロ塩基であり、内部の円弧
はプラスミドベクターpBR322に由来するDNAを
示す。 特許出願人  工業技術院長  石 坂 誠 −指定代
理人  工業技術院繊維高分子材料研究所間  太  
  昭 第1図 第2図
Figure 1 is a restriction enzyme cleavage map of pTPl, and Figure 2 is a restriction enzyme cleavage map of pTP30-5. The symbols in the figure represent restriction enzymes, E is KCORIIH3 is Hi
nd l, B is BamHl, Sa'l is 5al
l, BstFil is BstFli[, Pθt is Pstl
, E18tll indicates 5stl and xho) indicates Xhol. Furthermore, the unit of numbers is kilobases, and the internal arc represents DNA derived from plasmid vector pBR322. Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Designated agent Futoshi Hama, Institute of Textile and Polymer Materials, Agency of Industrial Science and Technology
Showa 1st figure 2nd figure

Claims (1)

【特許請求の範囲】 1 遺伝標識としてテトラサイクリン耐性遺伝子、アン
ピシリン耐性遺伝子及びトリメトプリム耐性遺伝子を有
するプラスミドベクター。 2 プラスミドベクターpBR322にジヒドロ葉酸還
元酵素遺伝子を含むDNAを挿入することを特徴とする
テトラサイクリン耐性遺伝子、アンピシリン耐性遺伝子
及びトリメトプリム耐性遺伝子を有するプラスミドベク
ターの製造方法。
[Scope of Claims] 1. A plasmid vector having a tetracycline resistance gene, an ampicillin resistance gene, and a trimethoprim resistance gene as genetic markers. 2. A method for producing a plasmid vector having a tetracycline resistance gene, an ampicillin resistance gene, and a trimethoprim resistance gene, which comprises inserting DNA containing a dihydrofolate reductase gene into plasmid vector pBR322.
JP56143520A 1981-09-11 1981-09-11 Plasmid vector having three kinds of marker and its preparation Granted JPS5846100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143520A JPS5846100A (en) 1981-09-11 1981-09-11 Plasmid vector having three kinds of marker and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143520A JPS5846100A (en) 1981-09-11 1981-09-11 Plasmid vector having three kinds of marker and its preparation

Publications (2)

Publication Number Publication Date
JPS5846100A true JPS5846100A (en) 1983-03-17
JPS6135831B2 JPS6135831B2 (en) 1986-08-15

Family

ID=15340644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143520A Granted JPS5846100A (en) 1981-09-11 1981-09-11 Plasmid vector having three kinds of marker and its preparation

Country Status (1)

Country Link
JP (1) JPS5846100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198979A (en) * 1983-04-28 1984-11-10 Agency Of Ind Science & Technol Stabilization of host microbial cell containing specific plasmid
JPH09117293A (en) * 1986-07-19 1997-05-06 Behringwerke Ag Preparation of human anti-thrombin iii (atiii)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198979A (en) * 1983-04-28 1984-11-10 Agency Of Ind Science & Technol Stabilization of host microbial cell containing specific plasmid
JPH028712B2 (en) * 1983-04-28 1990-02-26 Kogyo Gijutsuin
JPH09117293A (en) * 1986-07-19 1997-05-06 Behringwerke Ag Preparation of human anti-thrombin iii (atiii)

Also Published As

Publication number Publication date
JPS6135831B2 (en) 1986-08-15

Similar Documents

Publication Publication Date Title
FI86886C (en) NYA EXPRESSIONSPLASMIDER OCH DERAS ANVAENDNING I FOERFARANDET FOER EXPRESSERING AV PROKYMOSIN KODERANDE GEN I E. COLI
Morisato et al. Tn10 transposition and circle formation in vitro
JPH0253489A (en) Dna sequence encoding alcohol oxidase ii control region of methylotroph yeast
IWASAKI et al. Molecular cloning of a xylanase gene from Streptomyces sp. No. 36a and its expression in streptomycetes
JP2574142B2 (en) Recombinant ricin toxin fragment
JPS5846100A (en) Plasmid vector having three kinds of marker and its preparation
Little Isolation of recombinant plasmids and phage carrying the lexA gene of Escherichia coli Kl 2
EP0198645A1 (en) Human pancreatic elastase
IE863080L (en) Expression in lactic acid bacteria
JPH06189769A (en) Variant aox2 promoter, vector carrying the promoter, transformant and production of foreign protein
EP0154350A2 (en) Novel expression plasmids containing the full cDNA sequence of calf prochymosin
IE57985B1 (en) Improved plasmid vector and use thereof
US4585739A (en) Plasmid for foreign gene expression in B. subtilis
de Mendoza et al. One-step gene amplification by Mu-mediated transposition of E. coli genes to a multicopy plasmid
Hoshino et al. Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes
Pereira et al. Purification of Neurospora crassa alkaline phosphatase without DNAse activity for use in molecular biology
JP2759209B2 (en) Recombinant DNA containing xylanase gene
JPS60126087A (en) Plasmid ptp18-2, ptp18-4 and ptp18-6 for promoter cloning
JP3024766B2 (en) Lactobacillus with tryptophan-producing ability
EP0154351A2 (en) Expression plasmids useful in B. subtilis
JP3505743B2 (en) Mutant AOX2 promoter, vector carrying the same, transformant, and method for producing heterologous protein
JP2992635B1 (en) Plasmid
JPS6237958B2 (en)
SU1250174A3 (en) Method of producing hybrid plasmides containing structural genes and vector giving stability to hygromycin b i g418
JPS60199385A (en) Plasmid vector ptp20-10