JPS5845680B2 - control rod drive - Google Patents

control rod drive

Info

Publication number
JPS5845680B2
JPS5845680B2 JP54148601A JP14860179A JPS5845680B2 JP S5845680 B2 JPS5845680 B2 JP S5845680B2 JP 54148601 A JP54148601 A JP 54148601A JP 14860179 A JP14860179 A JP 14860179A JP S5845680 B2 JPS5845680 B2 JP S5845680B2
Authority
JP
Japan
Prior art keywords
water
drive
control rod
pressure
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54148601A
Other languages
Japanese (ja)
Other versions
JPS5672392A (en
Inventor
賛 牛島
利夫 玉井
瑞生 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54148601A priority Critical patent/JPS5845680B2/en
Publication of JPS5672392A publication Critical patent/JPS5672392A/en
Publication of JPS5845680B2 publication Critical patent/JPS5845680B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、沸騰水形原子力発電所の制御棒駆動系におけ
る制御棒駆動水圧系の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a control rod drive hydraulic system in a control rod drive system of a boiling water nuclear power plant.

従来の沸騰水形原子力発電所の制御棒駆動系を図を参照
して説明する。
The control rod drive system of a conventional boiling water nuclear power plant will be explained with reference to the drawings.

第1図は制御棒駆動機構1と水圧制御ユニット2を示し
、第2図は制御棒駆動水圧供給系の概略を示す。
FIG. 1 shows a control rod drive mechanism 1 and a hydraulic control unit 2, and FIG. 2 schematically shows a control rod drive hydraulic pressure supply system.

制御棒駆動機構1は水圧ピストン駆動方式であり、駆動
ピストン1a、インデックスチューブ1b、ロッキング
機構1cから構成されている。
The control rod drive mechanism 1 is of a hydraulic piston drive type and is composed of a drive piston 1a, an index tube 1b, and a locking mechanism 1c.

駆動ピストン1aはインデックスチューブ1bの下部に
取り付けられており、上下に受圧面を有し、上面と下面
の圧力差により制御棒の挿入、引抜きを行う。
The drive piston 1a is attached to the lower part of the index tube 1b, has upper and lower pressure receiving surfaces, and inserts and withdraws the control rod based on the pressure difference between the upper and lower surfaces.

インデックスチューブ1bの外面にはロッキング用の溝
が設けてあり、ラチェットタイプのコレットフィンガ等
のロッキング機構1cにより、ある一定のストロークだ
け動いて保持され、制御棒を所定位置に固定することが
できる。
A locking groove is provided on the outer surface of the index tube 1b, and the locking mechanism 1c, such as a ratchet type collet finger, moves and holds the control rod by a certain stroke, thereby fixing the control rod in a predetermined position.

制御棒駆動水圧系は制御棒操作に必要な水圧、流量を供
給し、調整するものである。
The control rod drive hydraulic system supplies and adjusts the water pressure and flow rate necessary for control rod operation.

本系統は制御棒1本ずつについている水圧制御ユニット
と全制御棒に共通な制御棒駆動水圧供給系とから成る。
This system consists of a hydraulic control unit attached to each control rod and a control rod drive hydraulic pressure supply system common to all control rods.

制御棒駆動水圧系は復水貯蔵タンク20の復水を制御棒
駆動機構に供給するための系統であり、ポンプ21.フ
ィルタ22、流量測定器としてのフローノズル23、流
量調整弁23a、23b、圧力調整弁24a、24b、
安定弁25等から構成される。
The control rod drive hydraulic system is a system for supplying condensate from the condensate storage tank 20 to the control rod drive mechanism, and includes pumps 21. Filter 22, flow nozzle 23 as a flow rate measuring device, flow rate adjustment valves 23a, 23b, pressure adjustment valves 24a, 24b,
It is composed of a stabilizing valve 25 and the like.

復水貯蔵タンク20からポンプ21により送り込まれた
駆動水は駆動機構等の誤動作その他の原因となる異物を
取り除くフィルタ22を通り、一部はスクラム水圧系と
しての充填水へラダ26へ流れる。
Drive water sent by a pump 21 from a condensate storage tank 20 passes through a filter 22 that removes foreign substances that may cause malfunctions of the drive mechanism, etc., and a portion flows to the rudder 26 to fill water as a scram hydraulic system.

又一部は充填水圧力を保持するための流量調整弁23a
、23bを経て、制御棒駆動機構を作動させる駆動水圧
系である駆動水ヘッダ27および駆動機構ピストンクー
ルの冷却水圧系である冷却水ヘッダ2Bへ流れる。
Also, a part is a flow rate adjustment valve 23a for maintaining the filling water pressure.
, 23b, the water flows to the drive water header 27, which is a drive water pressure system that operates the control rod drive mechanism, and to the cooling water header 2B, which is a cooling water pressure system for the drive mechanism piston cool.

安定弁25は並列に設けた2個の電磁弁で、通常時は、
一方の安定弁流量は駆動機構の挿入動作に必要な流量と
等しく、他方の安定弁流量は引抜に必要な流量と等しく
調整されている。
The stability valve 25 is two solenoid valves installed in parallel, and under normal conditions,
One stable valve flow rate is adjusted to be equal to the flow rate required for the insertion operation of the drive mechanism, and the other stable valve flow rate is adjusted to be equal to the flow rate required for withdrawal.

そして安定弁25を出た水は冷却水配管へ循環している
The water exiting the stabilizing valve 25 is circulated to the cooling water pipe.

すなわち駆動動作時に、一方の安定弁を閉じると所定の
流量が駆動機構の方へ流れ、駆動水圧力調整弁24aで
の水圧を一定に保ったまS動作を行うことができる。
That is, when one of the stabilizing valves is closed during the driving operation, a predetermined flow rate flows toward the driving mechanism, and the S operation can be performed while keeping the water pressure at the driving water pressure regulating valve 24a constant.

さらに安定弁下流側には排水ヘッダ29かもの配管がつ
ながっており、駆動時、駆動水ヘッダ27から制御棒駆
動機構を通り排水ヘッダ29へ流れる排出水を冷却水ヘ
ッダ28へ送り、他の水圧制御ユニット2を通して原子
炉圧力容器内へ放出する。
Furthermore, piping for a drainage header 29 is connected to the downstream side of the stabilizing valve, and during operation, the drainage water flowing from the driving water header 27 to the drainage header 29 through the control rod drive mechanism is sent to the cooling water header 28, and other water pressure is It is discharged into the reactor pressure vessel through the control unit 2.

通常運転時は冷却水のみが流れており、すべての駆動機
構を冷却する分だけの定常流量が流れる。
During normal operation, only cooling water flows, and a steady flow of water flows to cool all drive mechanisms.

それぞれのヘッダからはさらに制御棒と同数の配管が各
水圧制御ユニット2へ通じている。
Each header further leads to each hydraulic control unit 2 with the same number of pipes as control rods.

水圧制御ユニットは駆動水圧供給系からの充填水、冷却
水、駆動水を制御棒駆動機構に供給するもので、1本の
制御棒に対し1個設けられている。
The water pressure control unit supplies filling water, cooling water, and drive water from the drive water pressure supply system to the control rod drive mechanism, and one water pressure control unit is provided for each control rod.

図面上では充填水は充填水ヘッダ26からヘッダ16へ
、駆動水は駆動水ヘッダ27からヘッダ1Tへ、冷却水
は冷却水ヘッダ28からヘッダ18へ排水は逆に排水ヘ
ッダ19からヘッダ29へと流れる。
In the drawing, the filling water goes from the filling water header 26 to the header 16, the driving water goes from the driving water header 27 to the header 1T, the cooling water goes from the cooling water header 28 to the header 18, and the draining water goes from the drainage header 19 to the header 29. flows.

水圧制御ユニットは4個の電磁選択弁4゜5.6,7.
2個のスクラム弁8,9をまとめてユニット化したもの
である。
The water pressure control unit consists of four electromagnetic selection valves 4°5.6, 7.
Two scram valves 8 and 9 are combined into a unit.

制御棒挿入動作の際は、挿入用の電磁選択弁5,7を開
き、駆動水ヘッダ17にかかる水圧を駆動ピストン1a
の下面に与えて上面の水を排水ヘッダ19へ放出する。
When inserting a control rod, the solenoid selection valves 5 and 7 for insertion are opened, and the water pressure applied to the drive water header 17 is transferred to the drive piston 1a.
water on the upper surface is discharged to the drainage header 19.

逆に引抜動作には挿入用の電磁選択弁を短時間開き、駆
動機構をわずかに上昇させてコレットフィンガのロック
をはずし易くした後、引抜選択弁4゜6(第1図)を開
いて駆動水圧をピストン上面にかげ、下面の水を排水ヘ
ッダへ放出させる。
On the other hand, for the extraction operation, the insertion solenoid selection valve is opened for a short time, the drive mechanism is slightly raised to make it easier to unlock the collet fingers, and then the extraction selection valve 4°6 (Fig. 1) is opened and driven. Apply water pressure to the top of the piston and release water from the bottom to the drain header.

同時にコレットフィンガをガイドに沿って押し広げ、イ
ンデックスチューブから離すので自由に引抜が行える。
At the same time, the collet fingers are pushed apart along the guide and separated from the index tube, allowing for free withdrawal.

そしてスクラム動作にはスクラム弁8゜9を開キ、充填
水ヘッダ16からピストン下面へ高圧水を流しこみ、ピ
ストン上面の水は大気圧のスクラム排出ヘッダ12へ放
出され、急速スクラムが行える。
For scram operation, the scram valve 8.9 is opened to allow high pressure water to flow from the filling water header 16 to the lower surface of the piston, and the water on the upper surface of the piston is discharged to the scram discharge header 12 at atmospheric pressure, allowing rapid scram to be performed.

以上のような機構で制御棒駆動系は手動制御信号に応じ
て、炉心内の制御棒の位置を変えることにより、低出力
時における出力増減、長期的な反応度の調整および炉内
出力分布の調節を行う。
With the mechanism described above, the control rod drive system changes the position of the control rods in the reactor core in response to manual control signals, increasing or decreasing power at low power, adjusting long-term reactivity, and changing the power distribution within the reactor. Make adjustments.

保守、補修のために制御棒駆動機構を隔離することがあ
る。
The control rod drive mechanism may be isolated for maintenance and repairs.

この場合駆動ピストン1aの上面、下面へ通じる配管に
ある隔離弁io、ilを閉じて行う。
In this case, isolation valves io and il in the pipes leading to the upper and lower surfaces of the driving piston 1a are closed.

その際隔離した制御棒の本数が増加すると、駆動水圧系
の流量を減少させても伺、未隔離制御棒1本ずつに流れ
る冷却水流量が増加し、同時に駆動水圧力も増加する。
When the number of isolated control rods increases, even if the flow rate of the drive hydraulic system is reduced, the flow rate of cooling water flowing to each unisolated control rod increases, and at the same time, the drive water pressure also increases.

従って未隔離の制御棒駆動ピストン1aの下面に隔離弁
10を通して過剰な水圧がかかり、コレットフィンガが
アンラッチとなる寸前までピストンが持ち上がることが
ある。
Therefore, excessive water pressure is applied to the lower surface of the unisolated control rod drive piston 1a through the isolation valve 10, and the piston may be lifted to the point where the collet fingers are about to unlatch.

このような状態の制御棒を隔離しようとする場合、隔離
弁10を先に閉じると、駆動水ヘッダ17からの水圧が
選択電磁弁6に加わる。
When attempting to isolate a control rod in such a state, if the isolation valve 10 is closed first, water pressure from the driving water header 17 is applied to the selection solenoid valve 6.

そしてこの弁にシートリークがあると、隔離弁11を閉
じるまでの間、制御棒が自重も加わり抜けてしまう恐れ
がある。
If there is a seat leak in this valve, there is a risk that the control rod may come out due to its own weight until the isolation valve 11 is closed.

ここで電磁隔離弁10を先に閉じるのは、電磁隔離弁1
1を先に閉じると、電磁隔離弁10が閉じる前にスクラ
ム信号が入るとインデックスチューブの損傷がおきるお
それがあるからである。
Here, the electromagnetic isolation valve 10 is closed first.
1 is closed first, the index tube may be damaged if a scram signal is received before the electromagnetic isolation valve 10 is closed.

本発明は、以上の点を考慮してなされたもので、上述の
隔離しようとする制御棒の引抜げを防止する為に、制御
棒の駆動水ポンプ出口側から復水貯蔵タンクへ流量を制
御できる弁を有する配管を設け、未隔離制御棒駆動系の
駆動水圧力を低下させるものである。
The present invention has been made in consideration of the above points, and in order to prevent the control rod from being pulled out to be isolated as described above, the flow rate is controlled from the drive water pump outlet side of the control rod to the condensate storage tank. This system is designed to reduce the drive water pressure of the non-isolated control rod drive system.

以下図面により本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例に係る制御棒駆動水圧供給系
を示す配管図である。
FIG. 3 is a piping diagram showing a control rod drive hydraulic pressure supply system according to an embodiment of the present invention.

駆動水圧供給系は前述したように復水貯蔵タンクの復水
を駆動水、冷却水、スクラム時の高圧水として、制御棒
駆動機構に供給する為の系統である。
As mentioned above, the drive water pressure supply system is a system for supplying condensate from the condensate storage tank to the control rod drive mechanism as drive water, cooling water, and high pressure water during scram.

復水貯蔵タンク20からの水は駆動水ポンプ21で加圧
され、フィルタ22を通り、一部は充填へラダ26へ送
給される。
Water from the condensate storage tank 20 is pressurized by a drive water pump 21, passes through a filter 22 and is partially delivered to the ladder 26 for filling.

又一部は流量制御弁23a、23bを経て、駆動水ヘッ
ダ、冷却水ヘッダへ送給される。
A portion of the water is also sent to the drive water header and cooling water header via the flow rate control valves 23a and 23b.

一方駆動水ポンプの出口側にあるフローノズル23の下
流から復水貯蔵タンク20へ戻る配管30aを設け、途
中に原子炉圧力容器圧力と駆動水圧力との差に応じて戻
す流量を手動制御する圧力調整弁31を設けている。
On the other hand, a pipe 30a returning to the condensate storage tank 20 from downstream of the flow nozzle 23 on the outlet side of the driving water pump is provided, and the flow rate returned is manually controlled in accordance with the difference between the reactor pressure vessel pressure and the driving water pressure. A pressure regulating valve 31 is provided.

第4図は本発明の他の実施例であり、フローノズル23
の下流から駆動水ポンプ21の吸入側へ配管30bをつ
ないだ例を示す配管図である。
FIG. 4 shows another embodiment of the present invention, in which the flow nozzle 23
FIG. 3 is a piping diagram illustrating an example in which piping 30b is connected from the downstream side to the suction side of the drive water pump 21.

又第5図はさらに他の実施例を示し、炉圧と駆動水圧の
差圧を検出して、差圧信号により流量制御弁35を自動
制御するものである。
FIG. 5 shows still another embodiment, in which the pressure difference between the furnace pressure and the drive water pressure is detected and the flow rate control valve 35 is automatically controlled based on the differential pressure signal.

次に第3図〜第5図に示した駆動水圧供給系の動作につ
いて説明する。
Next, the operation of the drive water pressure supply system shown in FIGS. 3 to 5 will be explained.

隔離した制御棒が増加するにつれて、冷却水ヘッダから
未隔離制御棒の駆動ピストン下部へ流れる冷却水の水圧
が高くなる。
As the number of isolated control rods increases, the water pressure of the cooling water flowing from the cooling water header to the lower part of the drive piston of the unisolated control rods increases.

すなわち第3図駆動水圧供給系の冷却水ライン28aの
水圧が高くなる訳で、同時にその上流側の駆動水ライン
27aの水圧も高まり、駆動水ヘッダを通して水圧制御
ユニットの電磁選択弁にかかる水圧が高まって前述のよ
うな意図しない制御棒が引抜ける可能性が起ってくる。
In other words, the water pressure in the cooling water line 28a of the driving water pressure supply system shown in FIG. This increases the possibility that a control rod may be unintentionally pulled out as described above.

従って、これを防止するには駆動水圧供給系の冷却水、
駆動水ラインの水圧が制御棒隔離時にも上昇しないよう
にすればよい。
Therefore, to prevent this, the cooling water of the drive water pressure supply system,
It is sufficient to prevent the water pressure in the drive water line from rising even when the control rods are isolated.

第3図の実施例では駆動水ポンプ出口側から復水貯蔵タ
ンクへのライン30aにより、制御棒隔離時、炉圧と駆
動水ライン圧力差の変化に応じて余分な冷却水を流量制
御弁23で調節し、復水貯蔵タンクへ戻すことにより駆
動水圧を減少させることができる。
In the embodiment shown in FIG. 3, a line 30a from the drive water pump outlet side to the condensate storage tank is used to drain excess cooling water to the flow rate control valve 23 according to changes in the pressure difference between the reactor pressure and the drive water line when the control rods are isolated. The driving water pressure can be reduced by regulating the water and returning it to the condensate storage tank.

この場合第5図に示すように差圧計23により差圧を検
出し、弁制御器34で、流量制御弁35を自動開閉する
ようにしてもよい。
In this case, as shown in FIG. 5, the differential pressure may be detected by the differential pressure gauge 23, and the flow rate control valve 35 may be automatically opened and closed by the valve controller 34.

ポンプ出口側から復水貯蔵タンクへの配管ラインとして
は、駆動水ポンプ起動時のランアウト防止用のミニマム
フロウライン25が既に設けられている。
As a piping line from the pump outlet side to the condensate storage tank, a minimum flow line 25 for preventing runout when starting the drive water pump is already provided.

従ってこれを用いて圧力を下げてもよいようにみえる。Therefore, it seems possible to use this to lower the pressure.

しかし冷却水流量を常に一定に保つ為には流量制御弁2
3a、23bに開度信号を送っているポンプ出口側フロ
ーノズル23の下流側の位置から引き込む必要がある。
However, in order to keep the cooling water flow constant, the flow control valve 2
It is necessary to draw in from a position on the downstream side of the pump outlet side flow nozzle 23 that sends the opening signal to 3a and 23b.

第4図のライン30aの出口側が直接駆動水ポンプ21
0入口側に帰っている場合はミニマムフロウライン25
を併用して、長時間運転の際の冷却水の加熱防止をはか
ればよい。
The outlet side of the line 30a in FIG. 4 is the directly driven water pump 21.
0 If you are returning to the entrance side, minimum flow line 25
can be used in combination to prevent cooling water from heating during long-term operation.

以上述べたように制御棒駆動水圧系の冷却水流量制御配
管により制御棒駆動時余分な冷却水な復水貯蔵タンクあ
るいは駆動水ポンプの入口側へ戻すことにより、未隔離
制御棒駆動機構にかかる過剰な駆動圧力を除去すること
ができる。
As mentioned above, by using the cooling water flow control piping of the control rod drive hydraulic system to return excess cooling water during control rod drive to the condensate storage tank or the inlet of the drive water pump, the excess cooling water is returned to the unisolated control rod drive mechanism. Excessive driving pressure can be removed.

従って隔離しようとする制御棒が抜は落ちるのを防ぐこ
とができる。
Therefore, the control rod to be isolated can be prevented from being pulled out and falling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水形原子炉の制御棒駆動機構と水圧制御ユ
ニットの構成図、第2図は制御棒駆動水供給系の配管図
、第3図は本発明による余剰冷却水な復水貯蔵タンクへ
戻す配管を備えた制御棒駆動水圧供給系を示す配管図、
第4図は本発明による余剰冷却水をポンプ入口側へ戻す
配管、を備えた制御棒駆動水圧供給系を示す配管図、第
5図は本発明による余剰冷却水を自動制御で復水貯蔵タ
ンクへ戻す配管を備えた制御棒駆動水圧供給系を示す配
管図である。 1・・・・・・制御棒駆動機構、2・・・・・・水圧制
御ユニット、20・・・・・・復水貯蔵タンク、21・
・・・・・駆動水ポンプ、22・・・・・・フィルタ、
23a、23b・・・・・・流量制御弁、16,26・
・・・・・充填水ヘッダ、17゜27・・・・・・駆動
水ヘッダ、18.28・・・・・・冷却水ヘッダ、19
,29・・・・・・排水ヘッダ、23・・・・・・フロ
ーノズル、25・・・・・・ミニマムフロウライン、3
1゜35・・・・・・流量制御弁、30a・・・・・・
復水貯蔵タンクへ戻す配管、30b・・・・・・ポンプ
吸込側へ戻す配管、33・・・・・・差圧計、34・・
・・・・弁制御器。
Figure 1 is a block diagram of the control rod drive mechanism and water pressure control unit of a boiling water reactor, Figure 2 is a piping diagram of the control rod drive water supply system, and Figure 3 is the storage of excess cooling water or condensate according to the present invention. Piping diagram showing the control rod drive hydraulic supply system with piping back to the tank;
Figure 4 is a piping diagram showing a control rod-driven water pressure supply system equipped with piping for returning surplus cooling water to the pump inlet side according to the present invention, and Figure 5 is a piping diagram showing surplus cooling water to a condensate storage tank according to the present invention with automatic control. FIG. 3 is a piping diagram showing a control rod drive hydraulic pressure supply system including piping for returning to the control rod. DESCRIPTION OF SYMBOLS 1... Control rod drive mechanism, 2... Water pressure control unit, 20... Condensate storage tank, 21...
... Drive water pump, 22 ... Filter,
23a, 23b...Flow rate control valve, 16, 26.
...Charging water header, 17゜27...Driving water header, 18.28...Cooling water header, 19
, 29... Drain header, 23... Flow nozzle, 25... Minimum flow line, 3
1゜35...Flow rate control valve, 30a...
Piping returning to the condensate storage tank, 30b... Piping returning to the pump suction side, 33... Differential pressure gauge, 34...
...Valve controller.

Claims (1)

【特許請求の範囲】 1 沸騰水形原子炉の制御棒を駆動する水圧系統におい
て、駆動水ポンプ出口側に設けた流量測定器の下流であ
って該流量測定器で制御される流量制御弁の前より、前
記駆動水ポンプの吸入側又は該駆動水ポンプの水源であ
る復水貯蔵タンクへ、第2の流量制御弁を有する配管を
設けたことを特徴とする制御棒駆動装置。 2 前記原子炉の炉圧と駆動水ラインの水圧との差圧に
より動作する弁制御器で前記第2の流量制御弁を制御す
ることを特徴とする特許請求の範囲第1項記載の制御棒
駆動装置。
[Claims] 1. In a hydraulic system for driving control rods of a boiling water reactor, a flow rate control valve downstream of a flow rate measuring device provided at the outlet side of a drive water pump and controlled by the flow rate measuring device. A control rod drive device characterized in that a pipe having a second flow rate control valve is provided from the front to the suction side of the drive water pump or to a condensate storage tank that is a water source for the drive water pump. 2. The control rod according to claim 1, wherein the second flow control valve is controlled by a valve controller operated by a pressure difference between the reactor pressure of the nuclear reactor and the water pressure of the drive water line. Drive device.
JP54148601A 1979-11-16 1979-11-16 control rod drive Expired JPS5845680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54148601A JPS5845680B2 (en) 1979-11-16 1979-11-16 control rod drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54148601A JPS5845680B2 (en) 1979-11-16 1979-11-16 control rod drive

Publications (2)

Publication Number Publication Date
JPS5672392A JPS5672392A (en) 1981-06-16
JPS5845680B2 true JPS5845680B2 (en) 1983-10-12

Family

ID=15456405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54148601A Expired JPS5845680B2 (en) 1979-11-16 1979-11-16 control rod drive

Country Status (1)

Country Link
JP (1) JPS5845680B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182187U (en) * 1983-05-21 1984-12-05 藤原 千代子 Pickle bucket water collector
JPS6375184U (en) * 1986-11-06 1988-05-19
KR20230047869A (en) * 2021-10-01 2023-04-10 박영석 Joining apparatus of paper tray

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272733A (en) * 1990-06-28 1993-12-21 Kabushiki Kaisha Toshiba Control rod driving system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182187U (en) * 1983-05-21 1984-12-05 藤原 千代子 Pickle bucket water collector
JPS6375184U (en) * 1986-11-06 1988-05-19
KR20230047869A (en) * 2021-10-01 2023-04-10 박영석 Joining apparatus of paper tray

Also Published As

Publication number Publication date
JPS5672392A (en) 1981-06-16

Similar Documents

Publication Publication Date Title
EP0511016B1 (en) Emergency coolant accumulator for nuclear reactor
JP2016513802A (en) Refueling water tank (RWST) with regulated passive emergency core cooling (ECC) flow
JPS5845680B2 (en) control rod drive
JPH0580178A (en) Fluid system for control-rod drive mechanism
CN105806146A (en) Water supplementing constant-pressure system of pipe type heat exchanger and abnormal operation control method
US4239596A (en) Passive residual heat removal system for nuclear power plant
JPS63223591A (en) Method and device for controlling output from natural circulation type reactor
US9478321B2 (en) Method for filling water into a main circuit of a nuclear reactor, and connection device for implementing said method
GB1204660A (en) Hydraulic control rod drive system
JPH0668411B2 (en) Automatic bath equipment
US5748693A (en) Safety feed for borating system for a pressurized water reactor and process for operating such a system
JPH0450694A (en) Method for driving control rod driving mechanism
US6026138A (en) Method and device for safeguarding the discharge of residual heat from a reactor of a nuclear power station
JPS6249599B2 (en)
JPH0225160B2 (en)
JPH0145599B2 (en)
JPS6318715B2 (en)
JPS5913986A (en) Control rod drive hydraulic device
JPS6122276B2 (en)
JPS6066194A (en) Method and device for cooling control rod drive
JPH0350234B2 (en)
JP4064479B2 (en) Control rod drive hydraulic device
CN117854774A (en) Reactor vessel coolant charge and discharge system
KR880000980A (en) Hydraulic Control Rod Drive Mechanism for Water Cooled Reactor
JPS60179691A (en) Control-rod driving hydraulic device