JPS584567B2 - Kneading device - Google Patents

Kneading device

Info

Publication number
JPS584567B2
JPS584567B2 JP53076687A JP7668778A JPS584567B2 JP S584567 B2 JPS584567 B2 JP S584567B2 JP 53076687 A JP53076687 A JP 53076687A JP 7668778 A JP7668778 A JP 7668778A JP S584567 B2 JPS584567 B2 JP S584567B2
Authority
JP
Japan
Prior art keywords
rotor
blade
blades
long
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53076687A
Other languages
Japanese (ja)
Other versions
JPS553837A (en
Inventor
井上公雄
宮岡実
栗山昭正
佐藤紀元
山崎真
正木達雄
浅井俊博
中川和彦
福井二志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP53076687A priority Critical patent/JPS584567B2/en
Priority to GB7921889A priority patent/GB2024635B/en
Priority to DE2925266A priority patent/DE2925266C2/en
Priority to IT23824/79A priority patent/IT1191304B/en
Priority to US06/051,001 priority patent/US4284358A/en
Priority to AU48346/79A priority patent/AU528418B2/en
Priority to FR7916311A priority patent/FR2429087A1/en
Publication of JPS553837A publication Critical patent/JPS553837A/en
Publication of JPS584567B2 publication Critical patent/JPS584567B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

【発明の詳細な説明】 本発明は、いわゆるインターナルミキサにおいて、材料
の種類に拘らず充分な混練が行なわれる混練捏和装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called internal mixer, which is capable of sufficiently kneading materials regardless of their type.

インターナルミキサはゴムやプラスチックの混練に適し
たバッチ式混練機であり、とくにゴムの素練り、カーボ
ンマスターバッチ練りあるいは通常プロ練りと称される
加硫剤の練り込みに適したミキサーとして、タイヤ製造
などのゴム工業にとって欠かせない機械盤備である。
An internal mixer is a batch-type kneading machine suitable for kneading rubber and plastics, and is especially suitable for masticating rubber, mixing carbon master batches, or mixing vulcanizing agents, which is usually called professional mixing, and is used for tires. It is an indispensable mechanical equipment for the rubber industry such as manufacturing.

従来のインターナルミキサは、第1〜3図に示すように
チャンバ1内に一対の逆方向に回転する並列のロータ2
,3を配置してなり、各々のロータには長翼4および短
翼5を各1枚設け、これらの翼はロータの軸周りに螺旋
状に延び、かつその巻き方向は長翼と短翼とで逆方向に
なっている。
A conventional internal mixer includes a pair of parallel rotors 2 rotating in opposite directions in a chamber 1, as shown in FIGS.
. It is in the opposite direction.

そして図示しないホッパから投入された材料はロ−タの
喰込み作用用およびフローチングウェイトの押込み作用
によって供給口16から混練室7内に圧入され、ここで
ロータによりローリング作用をうけた後ロータの羽根先
端とケーシング内壁との間(チップクリアランス6)で
すりつぶされながら通過し、ロータの軸方向に送られる
The material inputted from a hopper (not shown) is press-fitted into the mixing chamber 7 through the supply port 16 by the biting action of the rotor and the pushing action of the floating weight, where it is subjected to rolling action by the rotor and then transferred to the kneading chamber 7 by the rotor. It passes while being crushed between the tip of the blade and the inner wall of the casing (tip clearance 6), and is sent in the axial direction of the rotor.

この作用は長翼および短翼のそれぞれで行なわれ、両翼
は巻方向が逆であるために材料は各ロータについて端部
から中央部に移送され、混練された材料はチャンバの下
部からとり出す。
This action takes place on each of the long and short blades, which have opposite winding directions so that the material is transferred from the ends to the center for each rotor, and the kneaded material is removed from the lower part of the chamber.

また第4〜6図に示すように、各ロータに長翼と短翼と
を各2枚、合計4枚の翼を備えたいわゆる4翼ロータが
ある。
Further, as shown in FIGS. 4 to 6, there is a so-called four-blade rotor in which each rotor has two long blades and two short blades, for a total of four blades.

この構成でも作用はほぼ同じであるが、2翼ロータに比
較して2倍のチップを有するために添加剤のミクロ分散
が進み、混練能率が高いのが一般的である。
This configuration has almost the same effect, but since it has twice the number of chips compared to a two-blade rotor, micro-dispersion of the additives progresses and the kneading efficiency is generally high.

一方、均一な混合物を得るためには、ミクロな分散が行
なわれると共に混練物のどの部分を取っても、添加した
薬品や添加剤の濃度が一定であり、また混練物の濃度が
一定になるように均一に混ぜ合わせる、いわゆるマクロ
な分散作用も重要である。
On the other hand, in order to obtain a homogeneous mixture, micro-dispersion is performed, and the concentration of the added chemicals and additives is constant no matter which part of the kneaded material is taken, and the concentration of the kneaded material is also kept constant. The so-called macro-dispersion effect, which involves uniform mixing, is also important.

例えばタイヤ製造業のプロ練り工程で加硫剤の均一な混
合が行なわれないと最終製品の物性にバラッキが生じ、
一定品質のタイヤを製造することが困難になる。
For example, if the vulcanizing agent is not mixed uniformly during the professional mixing process in the tire manufacturing industry, the physical properties of the final product will vary.
It becomes difficult to manufacture tires of consistent quality.

とくに最近のタイヤは高速走行時の安全性を高めるため
にタイヤ中にスチールコードを配したスチールラジアル
タイヤの比率が増加しているが、このスチールラジアル
タイヤ用のゴムとしては従来のタイヤ用ゴムよりもはる
かに硬質で、均一な混合、分散が困難な材料が使用され
る傾向にある。
In particular, the proportion of recent tires that use steel radial tires, which have steel cords inside them, has been increasing in order to improve safety during high-speed driving. However, materials tend to be much harder and more difficult to mix and disperse uniformly.

そのため従来のインターナルミキサでは混練機の強度が
不足したり、薬品の均一分散性が不足するなどの問題を
起こすケースがある。
For this reason, conventional internal mixers sometimes have problems such as insufficient strength of the kneading machine and insufficient uniform dispersion of chemicals.

本発明はこのような点に鑑み、インターナルミキサの混
練においてミキサ中の材料の動きに着目し、材料の種類
に拘らずマクロ的にも充分な混合が行なえる混練捏和装
置を得ることを目的とするものである。
In view of these points, the present invention focuses on the movement of materials in the mixer when kneading with an internal mixer, and aims to provide a kneading and kneading device that can perform macroscopically sufficient mixing regardless of the type of material. This is the purpose.

インターナルミキサのロータは前記第1〜6図に示すよ
うに、螺旋状の翼査宥し、材料をロータの軸方向に送る
ようにしている。
As shown in FIGS. 1 to 6, the rotor of the internal mixer has spiral blades to feed the material in the axial direction of the rotor.

従って混練室の内部での材料の動きはロータの軸方向の
流れとロー夕を収容する左右の群練室相互間の流れに分
けられる。
Therefore, the movement of the material inside the kneading chamber is divided into a flow in the axial direction of the rotor and a flow between the left and right kneading chambers housing the rotor.

均一な混練物を得るには上記軸方向の流れおよび混練室
相互間の流れを活発にし、混練室内で材料の滞留がおこ
らないようにする必要かある。
In order to obtain a uniform kneaded product, it is necessary to activate the flow in the axial direction and the flow between the kneading chambers to prevent material from stagnation in the kneading chambers.

4翼ロータを備えたインターナルミキサ(内容積236
l)で硬質ゴムのプロ練りを行なったところ、ある種の
ゴムでは薬品の分散が著しく不均一になり、2翼ロータ
のものと比較すると添加剤の均一分散が著しく劣ること
が判明した。
Internal mixer with 4-blade rotor (inner volume 236
When hard rubber was professionally kneaded in step 1), it was found that in certain types of rubber, the distribution of chemicals was extremely uneven, and that the uniform dispersion of additives was significantly inferior to that of the two-blade rotor.

そこでこの理由を解明するためにモデル試験機を製作し
、ミキサ内部における材料の流れの状態を観察した。
In order to find out the reason for this, we created a model testing machine and observed the state of material flow inside the mixer.

なお、モデル試験機のバレルはアクリル樹脂製とし、内
部における材料の流れを直接観察できる構造とした。
The barrel of the model testing machine is made of acrylic resin, and has a structure that allows direct observation of the flow of material inside.

また分散の良し悪しを定量的に評価するため、着色した
プラスチックビーズ(ポリスチレン)を一定量添加し、
混練後一定のサンプルに含まれるビーズ数を繰返し(n
回)測定してビーズ数のバラツキ(σn−1)で表示し
た、モデル試験機は内容積17lのインターナルミキサ
と同一寸法とし、また実用ミキサ中の硬質ゴムと類似し
た流れ挙動を示す材料としてCMC(カルボキシメチル
セルロース)の30%水溶液が適シていることを発見し
、これを使用した。
In addition, in order to quantitatively evaluate the quality of dispersion, a certain amount of colored plastic beads (polystyrene) was added.
After kneading, repeat the number of beads contained in a certain sample (n
The model test machine has the same dimensions as an internal mixer with an internal volume of 17 liters, and the material exhibits flow behavior similar to the hard rubber in a practical mixer. It was discovered that a 30% aqueous solution of CMC (carboxymethylcellulose) was suitable, and this was used.

上記モデル試験機によって2翼ロータおよび4翼ロータ
によるモデル物質の混練実験を行なった結果は第7図イ
,ロに示すとおりであり、イは混練時間40秒、ロは混
練時間60秒の場合のビーズのバラツキ状況を示してい
る。
The results of kneading experiments of model substances using the two-blade rotor and four-blade rotor using the above model test machine are shown in Figure 7 A and B, where A is for a kneading time of 40 seconds and B is for a kneading time of 60 seconds. This shows the variation in beads.

2翼ロータの場合11は4翼ロータの場合12に比較し
て充填率(混練室空間に占める材料の体積比率)が0.
4〜1.0の広い範囲にわたってビーズの分散が良好で
あり、また混練時間が短かくても均一な分散が進むが、
4翼ロータでは充填率が高くなると著しく分散が悪くな
り、また混練時間を延ばしても分散は改善されない。
In the case of the two-blade rotor, 11 has a filling rate (volume ratio of the material occupying the kneading chamber space) of 0.
The beads are well dispersed over a wide range of 4 to 1.0, and uniform dispersion progresses even if the kneading time is short.
With a four-blade rotor, dispersion deteriorates significantly as the filling rate increases, and dispersion is not improved even if the kneading time is extended.

4翼ロータがこのように分散の悪い理由は、1本のロー
タに2枚の長翼と2枚の短翼が各々材料を中央部へ押す
方向に捩られているために、ロータの長翼と短翼が接す
る中央部では各々の翼端は第6図に示すように90°ず
つ位相をずらし、材料の流れをよくするように配置され
ているが、長翼によってロータ軸の一端から中央部へ押
し流された材料は長翼の端部をはずれた後にミキサの他
の端にまで十分移動する余裕もなく、長翼とは反対の方
向に捩られた短翼によって再び長翼の方向に押戻されて
ロータの中央部で押合った状態となり、このため均一な
混合をするために必要な材料の軸方向に流れが不足する
ことが明らかになった。
The reason why the four-blade rotor has such poor dispersion is that each rotor has two long blades and two short blades that are twisted in a direction that pushes the material toward the center. At the center where the short blades contact the blades, the tips of each blade are shifted in phase by 90 degrees as shown in Figure 6, and are arranged to improve the flow of material. After the material has left the end of the long blade, it does not have enough room to move to the other end of the mixer, and is forced back toward the long blade by the short blade, which is twisted in the opposite direction to the long blade. It became clear that the materials were pushed back and pressed together in the center of the rotor, resulting in a lack of axial flow of the material necessary for uniform mixing.

これに対して2翼ロークの場合には第1図に示すように
長翼の端部と短翼の端部がロータの中央部で一部重なる
ように配置されているが、長翼によってロータ軸の中央
部の方向に流された材料は長翼の端部で解放されると短
翼の裏側の空間に流れ込み、再び長翼の部分に押し流さ
れる。
On the other hand, in the case of a two-blade rotor, as shown in Figure 1, the ends of the long blades and the ends of the short blades are arranged so that they partially overlap in the center of the rotor. The material flowing in the direction of the center of the shaft is released at the end of the long wing, flows into the space behind the short wing, and is swept back into the long wing section.

従って材料の動き自体は4翼ロータと同様であるが、長
翼と短翼は各個しかなく、こめため材料の移動する空間
が多く、軸方向の流れが大きくなって混練物の均一な混
合が進むことが判明した。
Therefore, the movement of the material itself is similar to a four-blade rotor, but there are only one long blade and one short blade, so there is a lot of space for the material to move, and the axial flow increases, making it difficult to mix the kneaded material uniformly. It turned out to be moving forward.

4翼ロータはこのような材料の流れ不足にともなう不均
一な混練については、デビット・ゼットタイソン等か特
公昭42−27032号公報において提案している。
A four-blade rotor has been proposed by David Zett Tyson et al. in Japanese Patent Publication No. 27032/1983 to solve the problem of uneven kneading caused by insufficient flow of materials.

即ち、長翼および短翼の断面形状をロータの中心寄りの
端部においてロータの膨らみを減らし、断面積を減少さ
せることによって材料の流れを改善し、均一分散を図っ
ている。
That is, the cross-sectional shapes of the long blades and short blades are designed to reduce the bulge of the rotor at the ends near the center of the rotor and reduce the cross-sectional area, thereby improving the flow of the material and achieving uniform dispersion.

そこで本発明者はこれを実施して硬質ゴムの混練を行な
ってみたが、硬質ゴムに対しては十分な効果は発揮せず
、実用的には不満足な結果しか得られなかった。
Therefore, the inventor of the present invention attempted to knead hard rubber using this method, but the method did not have a sufficient effect on hard rubber and yielded results that were unsatisfactory in practical terms.

そこで本発明者は、硬質ゴムと類似した挙動をするCM
C水溶液を用い、かつ4翼ロータのもつ混練効率の高い
ことを生かすべく、翼形状について種々研究を重ねた。
Therefore, the present inventor developed a CM that behaves similar to hard rubber.
In order to use C aqueous solution and take advantage of the high kneading efficiency of the four-blade rotor, various studies were conducted on the blade shape.

まずモデル試験機で材料の流れを検討し、すぐれた成果
を示したロータ形状について小型インターナルミキサ(
内容積4.3l)で効果を確認の上実用ミキサ(内容積
236l)にスケールアップし、実用性能を確認した。
First, we examined the material flow using a model test machine, and determined the rotor shape, which had shown excellent results, using a small internal mixer (
After confirming the effectiveness with a mixer (with an internal volume of 4.3 liters), it was scaled up to a practical mixer (with an internal volume of 236 liters) and its practical performance was confirmed.

4翼ロータの分散が悪い理由は、材料の軸方向流れが悪
いことに起因するので、まず軸方向流れを改善するため
に、モデル試験機で翼の捩じれ角や断面形状は従来の標
準的なロータと同じ値に固定し、短翼と長翼の長さの比
(翼長比)Ls<Llを変化させて、CMC中へのプラ
スチックビーズの均一分散に及ぼす影善を調べた。
The reason why the dispersion of the four-blade rotor is poor is due to the poor axial flow of the material, so in order to improve the axial flow, the twist angle and cross-sectional shape of the blades were changed from the conventional standard in a model test machine. The effect on uniform dispersion of plastic beads in the CMC was investigated by fixing the same value as that of the rotor and varying the ratio of the lengths of the short blades to the long blades (blade span ratio) Ls<Ll.

その結果、第8図に示す構成において翼長比を一定値以
下にすると混練物中のプラスチックビーズのバラツキが
減少し、均一性が格段に向上することが判明した。
As a result, it was found that in the configuration shown in FIG. 8, when the blade span ratio was set below a certain value, the variation in the plastic beads in the kneaded material was reduced and the uniformity was significantly improved.

すなわち、短翼と長翼の各々軸方向の長さの比率を変え
ることによって混合物の均一性が著しく向上し、従来の
標準的な翼長比0.49では到底達し得ないような良好
な分散性をもつ4翼ロータが製作できることが明らかに
なった。
In other words, by changing the ratio of the axial lengths of the short blades and long blades, the uniformity of the mixture is significantly improved, resulting in good dispersion that could never be achieved with the conventional standard blade length ratio of 0.49. It has become clear that it is possible to produce a four-blade rotor with

なお、従来例として示した第品の構成では翼長比は0.
50、第4図の構成では翼長比は0.58であり、従来
のこの種ロータではいずれも翼長比は0.5程度に設定
されている。
In addition, in the configuration of the first product shown as a conventional example, the blade span ratio is 0.
50. In the configuration shown in FIG. 4, the blade span ratio is 0.58, and in all conventional rotors of this type, the blade span ratio is set to about 0.5.

第9図はビーズのバラツキと翼長比との関係を示し、1
4は混練時間40秒、15は60秒の場合の特性を示し
ていや。
Figure 9 shows the relationship between bead variation and wingspan ratio.
No. 4 shows the characteristics when the kneading time is 40 seconds, and No. 15 shows the characteristics when the kneading time is 60 seconds.

この図からも明らかなように翼長比が0.4を樽えると
バラツキが急激に大きくなり、翼長比が小さくなるほど
分散が良好に行なわれることがわかる。
As is clear from this figure, when the blade length ratio reaches 0.4, the dispersion increases rapidly, and it can be seen that the smaller the blade length ratio is, the better the dispersion is performed.

なお、均一分散を達成するためには短翼の長さを0とし
、連続した長翼のみで構成されるロータが望ましいが亘
翼のみからなるロータでは、材料の混練時にロータが受
けるスラスト荷重が過大となり、またミキサの側壁に材
料を強く圧縮する作用が働いて局部的な加熱を起こすな
どの欠点かある。
In order to achieve uniform dispersion, it is preferable to use a rotor consisting of only continuous long blades with the length of the short blades being 0, but with a rotor consisting of only long blades, the thrust load that the rotor receives when kneading materials is There are also drawbacks such as excessive compression and the effect of strongly compressing the material on the side wall of the mixer, causing local heating.

この様な欠点を生じさせないようにするには、翼長比を
0.1以上にする必要があることが実験で確認ざれた。
It has been confirmed through experiments that in order to prevent such defects from occurring, it is necessary to set the blade span ratio to 0.1 or more.

そこで翼長比を0.4〜0.1、好ましくは0.3〜0
.15の範囲で設定する。
Therefore, the blade span ratio is set to 0.4 to 0.1, preferably 0.3 to 0.
.. Set within the range of 15.

すなわち、本発明はケ−シングとエンドフレームにより
密閉されたミキシングチャンバ内に一対の逆方向に回転
する並列のロータが配置されてなる混練捏和装置であっ
て、各ロータは一対の長翼と短翼とを有し、これらの翼
はロータの中心線周りに螺旋状に伸びており、かつその
螺旋の巻き方向は長翼と短翼とが逆方向で一方のロータ
の長翼と他方のロータの長翼とは同一方向であり長短両
翼のロータ軸方向の長さを、長翼に対する短翼の翼長比
が0.4〜0.1の範囲になるように設定したものであ
る。
That is, the present invention is a kneading device in which a pair of parallel rotors rotating in opposite directions are arranged in a mixing chamber sealed by a casing and an end frame, and each rotor has a pair of long blades. These wings extend in a spiral around the center line of the rotor, and the winding direction of the spiral is such that the long wings and the short wings are in opposite directions, and the long wings of one rotor are connected to the long wings of the other rotor. The long blades of the rotor are in the same direction, and the lengths of the long and short blades in the rotor axial direction are set so that the span ratio of the short blades to the long blades is in the range of 0.4 to 0.1.

また、本発明でのロータの形状は、第8図に示すように
、長翼4と短翼5とが各ロータにそれぞれ一対形成され
、各翼4,5はロータの中心線周りに螺旋状に形成され
ている。
Further, the shape of the rotor according to the present invention is such that each rotor has a pair of long blades 4 and short blades 5, as shown in FIG. is formed.

各翼の横断面形状は第4〜6図に示すものと同様である
が翼長比が従来と異なり、0.4〜0.1の範囲に設定
している。
The cross-sectional shape of each blade is similar to that shown in FIGS. 4 to 6, but the blade span ratio is different from the conventional one and is set in the range of 0.4 to 0.1.

第8図の例ではLs/Llは約0.31である。In the example of FIG. 8, Ls/Ll is approximately 0.31.

翼長比が0.4の場合のモデル物質による混練実験の結
果は第7図の曲線3で示すようになり、従来の2翼ロー
タに匹敵する良好な結果を示す。
The results of the kneading experiment using the model material when the blade span ratio is 0.4 are as shown by curve 3 in FIG. 7, which shows good results comparable to the conventional two-blade rotor.

(実施例) 内容積236lのイシターナルミキサに翼長比(Ls/
Ll)が0.49の標準的なロータと翼長比が0.23
の本願のロータを用い、天然ゴムの素練りおよび加硫剤
を分散させるプロ練り試験を実施した。
(Example) The blade length ratio (Ls/
A standard rotor with Ll) of 0.49 and a blade span ratio of 0.23.
Using the rotor of the present application, a professional kneading test for masticating natural rubber and dispersing a vulcanizing agent was conducted.

その結果は第表に示すとおりであり、プロ練りにおいて
薬品分散性がすぐれているとされる2翼ロータと比較し
ても本願ロータはさらに均一な薬品の分散が達成されて
いることがわかる。
The results are shown in Table 1, and it can be seen that even compared to the two-blade rotor, which is said to have excellent chemical dispersibility in professional kneading, the rotor of the present invention achieves more uniform chemical dispersion.

以上説明したように、本発明はロータの翼の改良によっ
てマクロ的およびミクロ的な混練が良好に行なわれるよ
うにしたものであり、プロ練りのみならず素練り、カー
ボンマスターバッチ練りなど他のゴム混練にもすぐれた
効果を発揮できるものである。
As explained above, the present invention improves macro and micro kneading by improving the rotor blades, and is applicable not only to professional kneading but also to mastication, carbon masterbatch kneading, and other rubber kneading. It can also exhibit excellent effects in kneading.

また上記実施例では4翼の例についてのみ示したが、2
翼その他の翼数を採用してもよいことは勿論である。
In addition, in the above embodiment, only an example of four blades was shown, but two
Of course, other numbers of wings may be used.

また本願では、材料の流れがよいために、上記特公昭4
2−27032号公報に記載のロータのように中心部を
痩せさせる必要がないので、強度面ですぐれ、耐久性に
富むという利点がある。
In addition, in this application, the above-mentioned Japanese Patent Publication No. 4
Unlike the rotor described in Japanese Patent No. 2-27032, there is no need to make the center part thinner, so there are advantages of excellent strength and durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のインターナルミキサのロータの平面図、
第2図および第8図は第1図の■−■線および■−■線
断面図、第4図は従来の他のロータの平面図、第5図お
よび第6図は第4図のV −V線およびVI−VI線断
面図、第7図イ,口は本発明および従来の装置による混
線状態の対比特性図、第8図は本発明のロータの平面図
、第9図はロータの翼長比と混練状態との関係図である
。 2,3……ロータ、4……長翼、5……短翼、6……チ
ップクリアランス、13,14,15……本願の特性曲
線、Ll……長翼の長さ、Ls……短翼の長さ。
Figure 1 is a plan view of the rotor of a conventional internal mixer.
2 and 8 are sectional views taken along the lines ■-■ and ■-■ in FIG. 1, FIG. 4 is a plan view of another conventional rotor, and FIGS. 5 and 6 are -V line and VI-VI line sectional views, Figure 7A and Figure 7 are comparative characteristic diagrams of crosstalk states of the present invention and conventional devices, Figure 8 is a plan view of the rotor of the present invention, and Figure 9 is a diagram of the rotor. FIG. 3 is a relationship diagram between blade length ratio and kneading state. 2, 3...Rotor, 4...Long blade, 5...Short blade, 6...Tip clearance, 13, 14, 15...Characteristic curve of the present application, Ll...Long blade length, Ls...Short blade wing length.

Claims (1)

【特許請求の範囲】 1 ケーシングとエンドフレームにより働閉されたミキ
シングチャンバ内に一対の逆方向に回転する並列のロー
タが配置されてなる混練捏和装置であって、各ロータは
一対の長翼と妬翼とを有し、これらの翼はロータめ中心
線周りに螺旋状に延びており、からその螺旋の巻方向は
長翼と短翼とが逆方向で一方のロータの長翼と他方のロ
ータの長翼とは同一方向であり、長短両翼のロータ軸方
向め長さを、長翼に対する短翼の翼長比が0.4〜0.
1め範囲になるように設定したことを特徴とする混練捏
和装置。 2特許請求の範囲第1項において、長翼に対する短翼の
翼長比を0.3〜0.15の範囲に設定したことを特徴
とする混練捏和装置。
[Claims] 1. A kneading and kneading device comprising a pair of parallel rotors rotating in opposite directions arranged in a mixing chamber operated and closed by a casing and an end frame, each rotor having a pair of long blades. These blades extend in a spiral around the center line of the rotor, and the winding direction of the spiral is such that the long blade and the short blade are in opposite directions, and the long blade of one rotor is connected to the long blade of the other rotor. The long blades of the rotor are in the same direction, and the lengths of the long and short blades in the rotor axis direction are such that the blade length ratio of the short blades to the long blades is 0.4 to 0.
A kneading device characterized by being set to fall within the first range. 2. The kneading and kneading device according to claim 1, characterized in that the blade length ratio of the short blades to the long blades is set in the range of 0.3 to 0.15.
JP53076687A 1978-06-23 1978-06-23 Kneading device Expired JPS584567B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP53076687A JPS584567B2 (en) 1978-06-23 1978-06-23 Kneading device
GB7921889A GB2024635B (en) 1978-06-23 1979-06-22 Mixing and kneading machine
DE2925266A DE2925266C2 (en) 1978-06-23 1979-06-22 Mixing and kneading machine
IT23824/79A IT1191304B (en) 1978-06-23 1979-06-22 MIXER AND MIXER MACHINE
US06/051,001 US4284358A (en) 1978-06-23 1979-06-22 Mixing and kneading machine
AU48346/79A AU528418B2 (en) 1978-06-23 1979-06-25 Mixing and kneading machine
FR7916311A FR2429087A1 (en) 1978-06-23 1979-06-25 MIXING AND MIXING MACHINE, ESPECIALLY USEFUL FOR RUBBER AND THE LIKE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53076687A JPS584567B2 (en) 1978-06-23 1978-06-23 Kneading device

Publications (2)

Publication Number Publication Date
JPS553837A JPS553837A (en) 1980-01-11
JPS584567B2 true JPS584567B2 (en) 1983-01-27

Family

ID=13612356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53076687A Expired JPS584567B2 (en) 1978-06-23 1978-06-23 Kneading device

Country Status (1)

Country Link
JP (1) JPS584567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114810A1 (en) 2012-01-31 2013-08-08 株式会社神戸製鋼所 Kneading rotor and hermetically sealed kneader

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101034A (en) * 1981-12-14 1983-06-16 Yokohama Rubber Co Ltd:The Apparatus for continuously degassing
JPH082530B2 (en) * 1987-05-19 1996-01-17 株式会社ブリヂストン Rubber-like material kneading device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114142U (en) * 1974-07-13 1976-02-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114142U (en) * 1974-07-13 1976-02-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114810A1 (en) 2012-01-31 2013-08-08 株式会社神戸製鋼所 Kneading rotor and hermetically sealed kneader

Also Published As

Publication number Publication date
JPS553837A (en) 1980-01-11

Similar Documents

Publication Publication Date Title
US4300838A (en) Mixing and kneading machine
US4284358A (en) Mixing and kneading machine
JP4568785B2 (en) Kneading rotor
US4859074A (en) Closed mixing machine
KR960010200B1 (en) Internal batch mixing machine
CN104437212B (en) Cell size Preparation equipment
US4834543A (en) Optimized four-wing, non-intermeshing rotors for synchronous drive at optimum phase relation in internal batch mixing machines
US4714350A (en) Two-wing non-intermeshing rotors of increased performance for use in internal batch mixing machines
CA1252083A (en) Continuous mixer
JP5792650B2 (en) Kneading rotor and hermetic kneading machine including the same
TWI710446B (en) Mixing rotor and batch mixer
JP3095656B2 (en) Hermetic rubber kneader
CN108550793A (en) A kind of preparation method of lithium ion battery anode sizing agent
JPS584567B2 (en) Kneading device
US3294733A (en) Process of producing dispersant free carbon black slurries and rubber masterbatches containing same
JPS585094B2 (en) Kneading device
CN212241665U (en) EVA sheet kneading internal mixer with premixing function
CN105473298B (en) Closed mixing and blending machine
JPS58887B2 (en) Kneading device
JPS58888B2 (en) Kneading device
KR820000534B1 (en) Mixing and kneading machine
KR820000537B1 (en) Mixing and kneading machine
KR820000536B1 (en) Mixing and kneading machine
JP3560895B2 (en) Thread-like rubber material, method for producing the same, and method for producing rubber composition constituting rubber product
JPH06285847A (en) Hermetic kneader