JPS5845635B2 - Liquid surface insulation method - Google Patents
Liquid surface insulation methodInfo
- Publication number
- JPS5845635B2 JPS5845635B2 JP12900679A JP12900679A JPS5845635B2 JP S5845635 B2 JPS5845635 B2 JP S5845635B2 JP 12900679 A JP12900679 A JP 12900679A JP 12900679 A JP12900679 A JP 12900679A JP S5845635 B2 JPS5845635 B2 JP S5845635B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid surface
- floating
- liquid
- surface insulation
- insulation method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
【発明の詳細な説明】
本発明は、液面断熱方法の改良、詳しくは、液面の波動
を巧みに利用して六角形の中空浮板をノ・ニカム状に敷
詰め、液面からの熱放散を効果的に防止できる新方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve the liquid surface insulation method, and more specifically, to improve the liquid surface insulation method, in particular, by skillfully utilizing the wave motion of the liquid surface, hexagonal hollow floating plates are arranged in a no-nikum shape. The present invention relates to a new method that can effectively prevent heat dissipation.
液槽に貯留した液の熱放散を防止する技術として最も普
及している方法は、液面に合成樹脂製のシートを浮遊さ
せ外気と液面とを遮断する方法である。The most widespread technique for preventing heat dissipation from liquid stored in a liquid tank is to suspend a synthetic resin sheet on the liquid surface to isolate the outside air from the liquid surface.
しかし、このような方法は、液槽のように液面上方が開
放し、しかも液面の面積が小さい場合には有効であるけ
れども、暖房用の設備等におけるように液槽が大きく、
しかも液面の上方が閉鎖している場合にはシートによる
被覆法は極めて不便であり、実質的に採用することがで
きない。However, although this method is effective when the upper part of the liquid surface is open and the area of the liquid surface is small, such as in a liquid tank, it is effective when the liquid tank is large, such as in heating equipment, etc.
Moreover, when the area above the liquid level is closed, the sheet covering method is extremely inconvenient and cannot be practically adopted.
もつとも、このような場合の対応策としては、発泡スチ
ロール粒を液槽に多数投入して、液面に断熱層を形成し
、それによって熱放散を防止しようとする試みもなされ
たことはあった。However, as a countermeasure for such cases, attempts have been made to put a large number of Styrofoam pellets into the liquid tank to form a heat insulating layer on the liquid surface, thereby preventing heat dissipation.
しかしながら、かよる方法による場合には発泡スチロー
ル粒が小さくて、しかも崩壊し易いところから、液槽内
の液を強制循環させる際にそのスチロール粒(特にその
部層)が液流中に巻き込んで機構的故障の原因になるこ
ともあり、余り実用的な液面断熱方法とはいえなかった
のである。However, when using this method, the styrene foam particles are small and easily disintegrate, so when the liquid in the liquid tank is forced to circulate, the styrene particles (particularly their layers) may get caught up in the liquid flow and cause damage to the mechanism. This was not a very practical method of insulating the liquid surface as it could cause mechanical failure.
本発明は、従来における液面の断熱技術に上記のごとき
欠点があったことに鑑みてなされたものであって、その
要旨とするところは:
厚みが対辺の間隔のH−%倍にして、かつ、表面が滑り
の良い略正六角形の硬質プラスチック薄肉中空体から成
る浮板を、液槽内に多数投入し、液面の波立ちによるシ
ョックで投入されたこれらの浮板を揺振りながら互いに
譲り合せて、対象とする液面全体ヘハニカム状に敷詰め
ることを特徴とする液面断熱方法にある。The present invention was made in view of the above-mentioned drawbacks of conventional liquid surface insulation technology, and its gist is as follows: The thickness is H-% times the distance between opposite sides, In addition, a large number of floating plates made of thin-walled hard plastic hollow bodies having a substantially regular hexagonal shape with smooth surfaces are placed in a liquid tank, and the shock caused by the ripples on the liquid surface causes these floating plates to shake and give way to each other. In addition, there is a liquid surface insulation method characterized in that the entire target liquid surface is laid in a honeycomb shape.
そこで、本発明について注釈すると、先ず本発明方法に
おいて表面が滑りの良い略正六角形の硬質プラスチック
薄肉中空体から成る浮板を使用することとしたのは
(1)多数の浮板を液面に敷詰める場合、浮板の外形が
無定形であったり、あるいは円形であったりすると、必
然的に隣り合う浮板間に間隙部が生じ、液面の断熱効果
が損なわれること;(2) また、浮板が正方形、長
方形など六角形以外の形状だと、液面の波立ちだけでは
浮板を液面に密接して敷詰めることが不可能であり、外
部からの人為的を並べ換えが必要となること;(3)ま
た、強制循環される液に浮板が巻込まれると故障の原因
になるので、浮板には相当の浮力が要求されるとともに
帯熱状態に長期間おかれても崩壊しないことが必要であ
り、その理想的形態は硬質プラスチック中空体であるこ
と;といった理由からである。Therefore, to comment on the present invention, first of all, in the method of the present invention, we decided to use floating plates made of thin-walled hard plastic hollow bodies with a substantially regular hexagonal shape with smooth surfaces. (1) A large number of floating plates are placed on the liquid surface. (2) If the outer shape of the floating plates is amorphous or circular, gaps will inevitably be created between adjacent floating plates, impairing the insulation effect of the liquid surface; (2) If the floating plate is in a shape other than hexagonal, such as square or rectangular, it is impossible to place the floating plate close to the liquid surface just by ripples on the liquid surface, and it is necessary to rearrange the floating plate from outside. (3) Also, if the floating plate gets caught in the liquid that is being forcedly circulated, it may cause a failure, so the floating plate must have considerable buoyancy and will not collapse even if left in a thermal state for a long period of time. This is because the ideal form is a hard plastic hollow body.
浮板について更に詳しく図解すれば、第1図は厚み40
mm、対辺の間隔100 mm、樹脂厚2關の、ポリエ
チレン樹脂中空体からなる浮板の斜視図を示すものであ
るけれども、浮板の具体的な寸法を定めるにあたっては
、この例に示す如く、対辺の間隔りを厚みMのおよそ2
〜4倍程度にしておくと、丁度よい吃水位置で安定的に
浮遊させることができる。To illustrate the floating plate in more detail, Figure 1 shows a thickness of 40 mm.
This is a perspective view of a floating board made of a polyethylene resin hollow body, with a distance of 100 mm between opposite sides, and a resin thickness of 2 mm.When determining the specific dimensions of the floating board, as shown in this example, The distance between the opposite sides is approximately 2 of the thickness M
By making it about 4 times as large, it can be stably suspended at just the right stanchion position.
なお、かよる浮板にはその上下両面に中高状に膨む彎曲
状の膨出部を設けておくと、もし、投入時に浮板同士が
互いに重なり合ったとしても、浮板の自重と膨出部と液
面の波立ちとの微妙な相互作用によって自然に譲り合わ
されハニカム状に整列されることになるのである。In addition, if a floating board is provided with a curved bulge that swells into a mid-height shape on both its upper and lower surfaces, even if the floating boards overlap each other when they are thrown in, the weight of the floating board and the bulging part will be reduced. Due to the subtle interaction between the water and the ripples on the liquid surface, the particles naturally yield to each other and are arranged in a honeycomb pattern.
もつとも、浮板表面が十分良ければ第1図のものでも、
スムーズに液面を浮板で敷詰めることが可能である。Of course, if the surface of the floating plate is good enough, even the one shown in Figure 1 can be used.
It is possible to smoothly cover the liquid surface with floating plates.
本発明者の実験によれば、677LX12mの液面に、
液槽段げた60cfrL×60cIrLの出入口6箇所
から厚み40mm、対辺の間隔100 in1樹脂厚2
間のポリエチレン樹脂中空体からなる7000個の浮板
を敷詰めるに要した時間は、30分前後であった。According to the inventor's experiments, at a liquid level of 677L x 12m,
60cfrL x 60cIrL stepped liquid tank, thickness 40mm from 6 entrances and exits, distance between opposite sides 100 in 1 resin thickness 2
It took about 30 minutes to spread 7,000 floating boards made of polyethylene resin hollow bodies between them.
本発明者は、本発明による液面断熱効果を具体的に測定
するため、更に次のような2種類の実験を行った。In order to specifically measure the liquid surface insulation effect according to the present invention, the inventor further conducted the following two types of experiments.
上面が開放した直方体形状のポリバスに、210eの水
を入れて80℃に30分間保持し、次いで前記ポリバス
を開放したままで80℃に更に2時間保持するために必
要な消費電力と、前述したポリエチレン樹脂中空体から
なる浮板を33個敷詰め、その後80°Cに2時間保持
するために必要な消費電力とを測定したところ、ポリバ
スの開口部を開放したままに置いた場合は4.7KWH
の電力を消費し、他方、ポリバス内の液面に上記規格の
浮板を敷詰めた場合(本発明)には1.8KWHの消費
電力となって著しい節電効果が判明した。The power consumption required to pour 210e water into a rectangular parallelepiped-shaped polybath with an open top and hold it at 80°C for 30 minutes, and then hold the polybath at 80°C for another 2 hours with the open top, and the power consumption as described above. When we measured the power consumption required to spread 33 floating boards made of polyethylene resin hollow bodies and then maintain them at 80°C for 2 hours, we found that if the opening of the polyethylene bath was left open, the power consumption would be 4. 7KWH
On the other hand, when floating plates of the above standard were spread over the liquid surface in the polybath (the present invention), the power consumption was 1.8 KWH, which was found to be a significant power saving effect.
上記実験に代えて、実験室内に熱源を切って放置し、3
0分間毎に水温を測定したところ第2図のグラフに示す
とおりの結果が得られた。Instead of the above experiment, turn off the heat source and leave it in the laboratory for 3
When the water temperature was measured every 0 minutes, the results shown in the graph of FIG. 2 were obtained.
第2図において、1はポリバスを開放したままで液面断
熱をしない場合における温度変化曲線、2はポリバス内
の液面にポリエチレン樹脂中空体からなる浮板を敷詰め
た場合(本発明)における温度変化曲線をそれぞれ示し
ている。In Figure 2, 1 is the temperature change curve when the polyethylene bath is left open and no liquid surface insulation is applied, and 2 is the temperature change curve when the liquid surface in the polyethylene bath is covered with floating plates made of hollow polyethylene resin bodies (the present invention). The temperature change curves are shown respectively.
本発明は以上の説明から明らかな如く、外部からの人為
的操作が困難な密封状の液槽における液面断熱を、小さ
なマンホールから浮板を投入するだけで殆ど完全なまで
に達成出来るので、省資源、省エネルギーの要求される
今日非常に有利であり、しかも、この方法の実施におけ
る手段は極めて簡素で迅速に行える等、産業的利用価値
の頗る高いものである。As is clear from the above description, the present invention can almost completely achieve liquid level insulation in a sealed liquid tank, which is difficult to manually operate from the outside, by simply inserting a floating plate through a small manhole. This method is extremely advantageous in today's world where resource and energy conservation are required, and the means for implementing this method are extremely simple and quick, making it extremely valuable for industrial use.
第1図は本発明に使用する浮板の一例を示す斜視図であ
り、第2図は液槽内の温度変化測定実験の結果を示すグ
ラフである。
L・・・・・・(浮板の)対辺の間隔、M・・・・・・
(浮板の)厚み、1・・・・・・液面断熱をしない状態
の温度変化曲線、2・・・・・・本発明方法で(第1図
の浮板)液面断熱を施した場合の温度変化曲線。FIG. 1 is a perspective view showing an example of a floating plate used in the present invention, and FIG. 2 is a graph showing the results of a temperature change measurement experiment in a liquid tank. L... Distance between opposite sides (of floating plate), M...
Thickness (of the floating plate), 1... Temperature change curve without liquid surface insulation, 2... Temperature change curve with liquid surface insulation applied using the method of the present invention (floating plate in Figure 1) Temperature change curve for case.
Claims (1)
面が滑りの良い略正六角形の硬質プラスチック薄肉中空
体から成る浮板を、液槽内に多数投入し、液面の波立ち
によるショックで投入されたこれらの浮板を揺振りなが
ら互いに譲り合せて、対象とする液面全体ヘハニカム状
に敷詰めることを特徴とする液面断熱方法。1. A large number of floating plates made of thin-walled hard plastic hollow bodies with a thickness M 1% times the distance between the opposite sides and a substantially regular hexagonal shape with smooth surfaces are placed in a liquid tank, and the liquid surface ripples. A liquid surface insulation method characterized by shaking and yielding these floating plates introduced by the shock caused by the shock, and spreading them over the entire target liquid surface in a honeycomb shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12900679A JPS5845635B2 (en) | 1979-10-06 | 1979-10-06 | Liquid surface insulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12900679A JPS5845635B2 (en) | 1979-10-06 | 1979-10-06 | Liquid surface insulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5652691A JPS5652691A (en) | 1981-05-11 |
JPS5845635B2 true JPS5845635B2 (en) | 1983-10-11 |
Family
ID=14998816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12900679A Expired JPS5845635B2 (en) | 1979-10-06 | 1979-10-06 | Liquid surface insulation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5845635B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0330331Y2 (en) * | 1984-07-31 | 1991-06-27 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6029210A (en) * | 1983-06-20 | 1985-02-14 | Fanuc Ltd | Electric discharge machining power source |
JPS6029213A (en) * | 1983-07-24 | 1985-02-14 | Inoue Japax Res Inc | Electric discharge machining circuit |
JPS60180718A (en) * | 1984-02-29 | 1985-09-14 | Fanuc Ltd | Discharge machining power supply |
JPS60180724A (en) * | 1984-02-29 | 1985-09-14 | Fanuc Ltd | Discharge machining power supply |
JPS60180722A (en) * | 1984-02-29 | 1985-09-14 | Fanuc Ltd | Discharge voltage detection circuit |
JPS63114812A (en) * | 1986-10-30 | 1988-05-19 | Mitsubishi Electric Corp | Electric discharge machine |
-
1979
- 1979-10-06 JP JP12900679A patent/JPS5845635B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0330331Y2 (en) * | 1984-07-31 | 1991-06-27 |
Also Published As
Publication number | Publication date |
---|---|
JPS5652691A (en) | 1981-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ATE12536T1 (en) | RAISED FLOOR. | |
FR2435964B1 (en) | MIXER AND HEAT EXCHANGER FOR FLOWING MEDIA | |
JPS5845635B2 (en) | Liquid surface insulation method | |
BE860338A (en) | THERMAL ENERGY STORAGE PROCESS | |
US5188550A (en) | Apparatus and method for creating a floatable thermal and evaporation barrier | |
BR8201804A (en) | DEVICE FOR THE DISTRIBUTION OF MATERIALS IN POINT FORM FOR A THERMAL PROJECTION INSTALLATION AND THERMAL PROJECTION INSTALLATION | |
FR2549215B1 (en) | MOLDED HEAT EXCHANGERS IN REFRACTORY MATERIAL | |
FR2647187B1 (en) | FRINGE THERMAL PROTECTION DEVICE FOR A STRUCTURE, AND METHOD SUITABLE FOR THE PRODUCTION THEREOF | |
BE877445A (en) | CATION-EXCHANGING MEMBRANE IN THERMALLY TREATED SULFONAMIDE FLUOROCARBON AND METHOD FOR THE THERMAL TREATMENT | |
BE851315A (en) | HEAT EXCHANGER FOR THERMAL TREATMENT OF FINE AND WET GRANULAR MATERIALS | |
MA23981A1 (en) | THERMAL ENERGY STORAGE PROCESS | |
ES259680Y (en) | WALL-MOUNTED RADIATOR ELEMENT WITH FIN AND INTERNAL SPACE TRAVELED BY HEATING WATER | |
IT8467359A0 (en) | PROCEDURE AND DEVICE FOR MANUFACTURING BY MOLDING A WATER TANK OF A HEAT EXCHANGER PARTICULARLY FOR AUTOMOBILE AND THE WATER TANK SO OBTAINED | |
FR2492056B1 (en) | RETENTION WALL HAVING HEAT EXCHANGE CHARACTERISTICS FOR A THERMAL REGENERATION INSTALLATION | |
JPS6020637B2 (en) | Heat storage tank insulation structure | |
KR870001323B1 (en) | Heating apparatus using heat accumulated | |
RU1788401C (en) | Apparatus for preventing ice crack freezing | |
JPH0210196A (en) | Nuclear reactor container | |
ATE33670T1 (en) | MIXTURES FOR HEAT ENERGY STORAGE. | |
JPH0335758Y2 (en) | ||
JPS5920468Y2 (en) | Thermal insulation structure of the top lid of the water meter case | |
IT1167858B (en) | HEAT EXCHANGE DEVICE IN A FLAT CIRCULATION FLAT FORM FOR COOLING THE WALLS OF ALTIFORNI | |
KR20240064099A (en) | Energy-saving Gudeuljang | |
JPS6331358Y2 (en) | ||
JPS6050386A (en) | Heat accumulating device |