JPS5845531A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS5845531A
JPS5845531A JP14375481A JP14375481A JPS5845531A JP S5845531 A JPS5845531 A JP S5845531A JP 14375481 A JP14375481 A JP 14375481A JP 14375481 A JP14375481 A JP 14375481A JP S5845531 A JPS5845531 A JP S5845531A
Authority
JP
Japan
Prior art keywords
pressure
diaphragm
vibrating membrane
displacement
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14375481A
Other languages
Japanese (ja)
Other versions
JPS6322530B2 (en
Inventor
Mitsuru Tamai
満 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14375481A priority Critical patent/JPS5845531A/en
Publication of JPS5845531A publication Critical patent/JPS5845531A/en
Publication of JPS6322530B2 publication Critical patent/JPS6322530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0016Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To draw out the displacement consisting of the analog quantity changing in response to pressure directly as a change in frequency by displacing a vibration membrane according to the displacement proportional to the pressure of a pressure detecting diaphragm. CONSTITUTION:One side surface of a detecting diaphragm 10 is used as s surface to be acted with external pressure P, and the other side surface is joined to the central projecting part 18 of a permanent magnet 16. A vibration membrane 20 constituted of a flat plate of a ferromagnetic material is disposed in a reference chamber 14. An excitation electrode 24 and a detection electrode 26 are provided by facing the membrane 20 on the top surface of an insulator 22 as a means for exciting said membrane and a means for drawing signals to the outside. When the membrane 20 is excited by the electrostatic force generated by the electrode 24, the natural frequency thereof is detected with the electrode 26. Then the natural frequency of the membrane 20 by the magnetic force of the magnet 16 is changed by the change in the pressure of the diaphragm 10, and said change is drawn out as a frequency signal, and the pressure P is measured.

Description

【発明の詳細な説明】 この発明は、7つの被測定流体の圧力もしくは一つの異
なる被測定流体の圧力の差(差圧)を周波数で取出す周
波数発信形圧力センナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency transmission type pressure sensor that extracts the pressure difference (differential pressure) between seven fluids to be measured or one different fluid to be measured as a frequency.

従来、水晶等の振動子に圧力を加えることによって振動
子の共振周波数が変化することを利用した振動式圧力セ
ンサが種々開発されている。
Conventionally, various vibrating pressure sensors have been developed that utilize the fact that the resonant frequency of a vibrator, such as a crystal, changes when pressure is applied to the vibrator.

しかしながら、この種の従来における圧力センサは構造
が複雑となるばか)でなく、圧力変化に対する共振周波
数特性が直線性とならず、また圧力の比較や絶対圧力の
測定も可能な多機能を有していない郷の難点があった。
However, this type of conventional pressure sensor does not have a complex structure, does not have linear resonance frequency characteristics with respect to pressure changes, and has multiple functions that can compare pressures and measure absolute pressure. There was a drawback of not having a village.

そこで、本発明者は、前述し九従来の圧力センナの問題
点を克服すると共にその適用範囲を拡大し得る圧力セン
ナを得るべく種々検討を重ねた結果、圧力検出ダイア7
2ムの一側面に永久磁石を固定し、?−Q永久磁石と対
向してその磁力により変位する強磁性体からなる振動膜
を配置し、しか奄この振動膜を所要の手段で1励振動さ
せておくことによp、前記圧力検出ダイアフラムに作用
する圧力に対してダイア72ムが比例的に変位すると共
に永久磁石が変位して振動膜に対する磁力作用が変化す
ることから、振動膜が変位してその固有振動数が変化し
、この固有振動数の変化を圧力の変化として比例的に取
出すことができる圧力センナの開発に成功し九。
Therefore, as a result of various studies in order to obtain a pressure sensor that can overcome the above-mentioned problems of the nine conventional pressure sensors and expand its range of application, the present inventor has discovered that the pressure detection dial 7.
A permanent magnet is fixed on one side of the 2mm. - By arranging a vibrating membrane made of a ferromagnetic material that faces a permanent magnet and is displaced by its magnetic force, and causing the vibrating membrane to vibrate once by the required means, the pressure detecting diaphragm The diaphragm is displaced proportionally to the applied pressure, and the permanent magnet is also displaced, changing the magnetic force on the diaphragm.As a result, the diaphragm is displaced and its natural frequency changes, and this natural vibration Succeeded in developing a pressure sensor that can proportionally extract changes in number as changes in pressure.

従って、本発明の目的は、圧力に感応して変動するアナ
ログ量からなる変位を、電圧−周波数変換器等の電子回
路技術的手段に依らず、直接周波数変化として適正に取
出すことができる圧力センナを提供するにある。
Therefore, it is an object of the present invention to provide a pressure sensor that can properly extract the displacement consisting of an analog quantity that changes in response to pressure as a direct frequency change without relying on electronic circuit technical means such as a voltage-frequency converter. is to provide.

前記の目的を達成するため、本発明においては、検出圧
力が作用する圧力検出ダイア72ムと、このダイアフラ
ムの他側面中央部に固着した永久磁石と、永久磁石と対
向配置されその磁力によシ初期変位を与えられる振動膜
と、この振動膜にその変位によシ定まる固有振動を与え
る励振手段とを備え、圧力検出ダイアフラムの圧力に比
例する変位に基づき振動膜を変位させると共に振動膜の
変位をその固有振動数変化として比例的に取出すよう構
成することt−特Wとする。
In order to achieve the above object, the present invention includes a pressure detection diaphragm 72 on which detection pressure acts, a permanent magnet fixed to the center of the other side of the diaphragm, and a permanent magnet arranged opposite to the permanent magnet and driven by its magnetic force. It is equipped with a vibrating membrane to which an initial displacement is applied, and an excitation means which imparts a natural vibration determined by the displacement to this vibrating membrane, which displaces the vibrating membrane based on the displacement proportional to the pressure of the pressure detection diaphragm, and also displaces the vibrating membrane. It is assumed that t-special W is configured to take out proportionally as a change in its natural frequency.

前記の圧力センサにおいて、振動膜は強磁性体の平板で
構成すれに好適である。
In the above-mentioned pressure sensor, the vibrating membrane is suitably composed of a flat plate of ferromagnetic material.

また、振動膜の励振手段は、静電力、圧電物質もしくは
電磁力を利用することができる。
Further, as the excitation means for the vibrating membrane, electrostatic force, piezoelectric material, or electromagnetic force can be used.

さらに、振動膜を真空基準室内に配設することによル絶
対圧力の測定が可能となる。
Furthermore, by placing the vibrating membrane in the vacuum reference chamber, absolute pressure can be measured.

さらに、本発明においては、前記構成からなる圧力検出
ダイアフラム、永久磁石、振動膜および励振手段からな
る圧力センナを対称的に二つ設け、振動膜を所定圧力の
基準室内に保持することにより、各圧力検出ダイア7ツ
ムに作用する異表った二つの圧力の差圧を振動膜の固有
振動数変化として取出す仁とができる差圧力センサを提
供することができる。
Furthermore, in the present invention, two pressure sensors each comprising a pressure detection diaphragm, a permanent magnet, a vibrating membrane, and an excitation means configured as described above are provided symmetrically, and the vibrating membrane is held in a reference chamber at a predetermined pressure. It is possible to provide a differential pressure sensor capable of extracting the differential pressure between two different pressures acting on the pressure detection dial 7 as a change in the natural frequency of the diaphragm.

次に1本発明に係る圧力センサの実施例につき、添付図
面を参照しながら以下詳細に説明する。
Next, an embodiment of the pressure sensor according to the present invention will be described in detail below with reference to the accompanying drawings.

第1I5!ll紘、本発明圧力センナの原理図であり。1st I5! This is a diagram of the principle of the pressure sensor of the present invention.

82図は本発明圧力センナの一実施例を示す断面図であ
る。すなわち、#II図および第2図において、参照符
号ioは検出ダイア72ムを示し、この検出ダイア75
)五線、外周部をケースノコに固定し、−側面を外部圧
力作用面とし、他側面に基準ii/lを両膜する。tた
、検出ダイア72410の他IITrJ中心部には、永
久磁石/lを配置し、永久磁石/ぶに設けた中央突起部
/rが検出ダイア72ム10に接合されている。基準i
i/4’tCa、前記永久磁石/4の下方に、例えば強
磁性体の平板で構成した振動膜λθを配設する。この場
合、振動llF、20は検出ダイア72ム10と平行に
ケースlコに固定する。
FIG. 82 is a sectional view showing an embodiment of the pressure sensor of the present invention. That is, in FIG. #II and FIG.
) The outer periphery of the staff is fixed to a case saw, the - side is used as an external pressure acting surface, and the reference ii/l is attached to both sides on the other side. In addition to the detection diamond 72410, a permanent magnet /l is arranged at the center of the IITrJ, and a central protrusion /r provided on the permanent magnet /r is joined to the detection diamond 72m 10. Criterion i
i/4'tCa, a vibrating membrane λθ made of, for example, a flat plate of ferromagnetic material is disposed below the permanent magnet /4. In this case, the vibration 11F, 20 is fixed to the case 1 parallel to the detection diaphragm 10.

以上が本発明圧力センナの基本構成であル、振動j[J
)を適宜の手段で励振することによシ、検出ダイアフラ
ム10の圧力変化で永久出面/、4の磁力による振動膜
コ0の固有振動数が変化し、この固有振動数の変化を周
波数信号として取出すことによシ容易に圧力P<2)I
IIJ定を行うことができるものである。
The above is the basic configuration of the pressure sensor of the present invention.
) by an appropriate means, the pressure change of the detection diaphragm 10 changes the natural frequency of the vibrating membrane 0 due to the magnetic force of the permanent surface 10, and this change in natural frequency is used as a frequency signal. By taking it out, the pressure P<2)I can be easily reduced.
It is possible to perform IIJ determination.

しかるに、本実施例においては、前記振動膜コOの励振
手段並びに外部への信号取出し手段として、次のように
構成している。すなわち、第2図に示すように、基準室
/Fの底@IIC絶縁体ココを配置し、この絶縁体−2
2の上面に振動膜コ0と対向させて一対の電極244.
26(励振電極−ダ、検出電極コt)を設け、これらの
電極、2ダ、コtから導出されるリード線コt。
However, in this embodiment, the excitation means for the vibrating membrane O and the means for taking out signals to the outside are constructed as follows. That is, as shown in Fig. 2, place the bottom of the reference chamber/F @IIC insulator here, and
A pair of electrodes 244.
26 (excitation electrode, detection electrode) are provided, and lead wires are led out from these electrodes.

30を、それぞれケースlコにハーメチックシール3コ
、3グを施して外部へ取出している。
30 are taken out to the outside after applying 3 hermetic seals and 3 hermetic seals to each case.

なお、第一図において、参照符号3tは基準室/グと外
部とを連通ずるためのケース/コに穿設した通孔であシ
、また3t□□癲振動膜−20の一部に穿設し九通孔で
ある。
In Fig. 1, reference numeral 3t is a through hole drilled in the case/co for communicating the reference chamber/g with the outside. It has nine holes.

次に、このように構成し九本実施例における圧力センナ
の動作につき説明する。
Next, the operation of the pressure sensor constructed in this way and in the nine embodiments will be explained.

まず、振動膜−20は、初期状態において、第3図に示
すように、磁石l乙の磁力作用によって与えられる中央
変位をω。とする。この時、振動膜、20は、励振電極
λ参による静電力によって励振され、固有振動数f0を
保持する。また、この振動膜−〇の固有振動数f0は、
検出電極−2乙で検出される。この振動膜コOO固有振
動数f0は、次式で示される。
First, in the initial state of the vibrating membrane 20, as shown in FIG. 3, the central displacement given by the magnetic force of the magnet 1 is ω. shall be. At this time, the vibrating membrane 20 is excited by the electrostatic force caused by the excitation electrode λ, and maintains the natural frequency f0. In addition, the natural frequency f0 of this diaphragm -〇 is
Detected by detection electrode 2B. The natural frequency f0 of this vibrating membrane is expressed by the following equation.

但し、E=振動膜コQのヤング率 ρ冨振動膜−〇の比重 シ冨振動膜コOのポアソン比 h!振動膜λOの膜圧 11111 島8振動膜−〇の中径 ω3振動膜−〇の変位 一方、磁石14の引力rは、磁石14と振動膜コOとの
隙間gに比較して、検出ダイア72ム10の変位Sが比
較的小さい場合は2次のようになる。
However, E = Young's modulus of the diaphragm Q, ρ, the specific gravity of the diaphragm - Poisson's ratio, h of the diaphragm O! Film pressure of diaphragm λO 11111 Displacement of island 8 diaphragm -〇 Medium diameter ω3 diaphragm -〇 On the other hand, the attractive force r of the magnet 14 is smaller than the detection diaphragm compared to the gap g between the magnet 14 and the diaphragm KO. When the displacement S of the 72mm 10 is relatively small, it becomes quadratic.

F!−ik  @s      ・・・・・・・・・・
・・・・・・・・・・・ (2)(/ > S/g ) これに対し、振動膜λOの変位ωは5次式で与えられる
F! -ik @s ・・・・・・・・・・・・
(2) (/ > S/g) On the other hand, the displacement ω of the vibrating membrane λO is given by a quintic equation.

ω=kt・F =に墨・S =に@P     ・・・・・・・・・・・・・・・・
・・・・・(3)但し、k2〜に4:定 数 P:入力圧力 今、振動膜、20の膜厚りに比し、膜変位ωが充分大き
ければ、前記式(1)における条件は次の ′通りとな
る。
ω=kt・F=ni black・S=ni@P・・・・・・・・・・・・・・・・・・
...(3) However, k2 ~ is 4: Constant P: Input pressure Now, if the membrane displacement ω is sufficiently large compared to the membrane thickness of the vibrating membrane, 20, then the condition in the above formula (1) is satisfied. is as follows.

ω2 / < (0,7+0.にシー0.コシ2)−・・・・
・・・・・ (4)2 従って、前記式(4)の条件により、式(1)は次のよ
うに変形される。
ω2 / < (0,7+0. to sea 0. stiffness 2) −・・・・
(4)2 Therefore, according to the condition of the above equation (4), the equation (1) is transformed as follows.

ω =fo。(/+−)   ・・・・・・・・・・・・・
・・(5)ω0 但し、ω。:振動膜20の初期変位 さらに、前記式(5)を変形すれば。
ω=fo. (/+-) ・・・・・・・・・・・・・・・
...(5) ω0 However, ω. : Initial displacement of the vibrating membrane 20 If the above equation (5) is further modified.

IO”” ’On+Δf    ・・・・・・・・・・
・・・・・ (6)とな夛、これから次の関係が求めら
れる。
IO""'On+Δf ・・・・・・・・・・・・
...(6) Now, the following relationship is required.

前記式(3)の条件から、上記式(7)を変形すれば、
次のようになる。
If we transform the above equation (7) from the conditions of the above equation (3), we get
It will look like this:

4 Δf=−・fo。ΦP   ・・・・・・・・・・・・
・・・(8)ω0 以上の関係から1周波数変化Δfは、圧力変化Pに比例
することが理解できる。従って、本発明によれば1周波
数変化4fを基本周波数f、rlに対してω/ω。のオ
ーダで変化させることができ、極めて大きな周波数変化
(io%〜jO%)が得られる。
4 Δf=-・fo. ΦP・・・・・・・・・・・・
(8) ω0 From the above relationship, it can be understood that the one frequency change Δf is proportional to the pressure change P. Therefore, according to the present invention, one frequency change 4f is ω/ω with respect to the fundamental frequency f, rl. It is possible to change the frequency on the order of 10%, and an extremely large frequency change (io% to j0%) can be obtained.

前述したように、本発明に係る圧力センサは優れた周波
数特性を有するものであるが、その他本実施例における
圧力センサによシ得られる効果を列挙すれば次の通9で
ある。
As mentioned above, the pressure sensor according to the present invention has excellent frequency characteristics, but other effects obtained by the pressure sensor according to this embodiment are as follows.

(1)  検出ダイアフラムの膜厚b、外径寸法aのみ
を変えることによシ任意の圧力測定が可能である。
(1) Any pressure measurement is possible by changing only the film thickness b and outer diameter dimension a of the detection diaphragm.

(2)検出ダイアフラムの材質を適当に選択することに
より、腐蝕性の流体圧力の測写も可能である。この場合
振動膜やその他の構成には全く変更を要しない。
(2) By appropriately selecting the material of the detection diaphragm, it is also possible to measure corrosive fluid pressure. In this case, no changes are required to the vibrating membrane or other configurations.

(3)従来の圧力センナでは測定困難であった水勢の比
重の大きな液体の圧力測定が可能である。
(3) It is possible to measure the pressure of liquids with large specific gravity, which is difficult to measure with conventional pressure sensors.

(4)  ケースの通孔を閉塞して真空基準室を形成す
ることによシ、絶対圧力の測定も可能でおる。ま九、真
空条件下の振動膜は、その機械的Qが高くなるので好適
である。
(4) Absolute pressure can also be measured by closing the hole in the case to form a vacuum reference chamber. Ninth, a vibrating membrane under vacuum conditions is suitable because its mechanical Q is high.

(5)本発明圧力センナは1周波数変化が圧力に対し適
正に比例するので、高精度の圧力測定が可能である。
(5) In the pressure sensor of the present invention, since one frequency change is appropriately proportional to pressure, highly accurate pressure measurement is possible.

(6)  振動膜の励振手段として、静電力を利用する
以外に、圧電物質や電磁力を適宜利用することができる
(6) In addition to using electrostatic force, a piezoelectric material or electromagnetic force can be appropriately used as a means for exciting the vibrating membrane.

(7)振動膜の励振手段として、静電力等を利用する場
合に娘、その動作に必要な電力は数百μW程度であり、
消費電力が極めて小さい。
(7) When electrostatic force or the like is used as an excitation means for the vibrating membrane, the power required for its operation is approximately several hundred μW;
Power consumption is extremely low.

(8)その他、本発明圧力センナは、安定性および再現
性に優れておシ、また2周波数発信のためにコンピュー
タ勢のディジタル機器との整合性がよいため、高精度の
圧力測定器を容易に製作することができる。
(8) In addition, the pressure sensor of the present invention has excellent stability and reproducibility, and has good compatibility with computer-based digital equipment due to its two-frequency transmission, making it easy to create a high-precision pressure measuring device. can be produced.

WJ弘図は本発明による圧力センサの他の実施例の断面
図である。この第参図の実施例は、第3図の実施例に比
較して、検出電極2乙の配置個所が異なっているだけで
ある。すなわち、第3図の実施例においては、振動膜コ
0に対して励振電極−≠および検出電極2tは同じ側に
配置されている。一方、第参図の実施例においては、検
出電極−3は振動膜−〇を挾んで励振電極λダと反対側
に配置されている。この場合。
WJ Hirodia is a sectional view of another embodiment of the pressure sensor according to the present invention. The embodiment shown in FIG. 3 differs from the embodiment shown in FIG. 3 only in the arrangement of the detection electrode 2B. That is, in the embodiment shown in FIG. 3, the excitation electrode ≠ and the detection electrode 2t are arranged on the same side of the vibrating membrane 0. On the other hand, in the embodiment shown in Figure 1, the detection electrode 3 is placed on the opposite side of the excitation electrode λda with the diaphragm 〇 in between. in this case.

この検出電極コロは環状絶縁体23の一方の面に形成さ
れ、この環状絶縁体λ3はケースノコの内壁に固定され
ている。動作は第3図の実施例と同じである。
This detection electrode roller is formed on one surface of the annular insulator 23, and this annular insulator λ3 is fixed to the inner wall of the case saw. The operation is the same as the embodiment shown in FIG.

第!図は8841図の実施例に適用可能である駆動回路
の一例である。励振電極λ≠には、コンデンサC2およ
びリード線−tを介して発振器08Cから励振電圧が印
加される。検出電極コtはリード線JOおよびコンデン
サc、 を介して出力端子に接続され、振動Jl[−2
0の周波数変化itが取出される。なお% Lj l 
L2はチョークコイル、v8は直流電源である。
No.! The figure shows an example of a drive circuit that can be applied to the embodiment shown in FIG. 8841. An excitation voltage is applied to the excitation electrode λ≠ from the oscillator 08C via the capacitor C2 and the lead wire -t. The detection electrode t is connected to the output terminal via the lead wire JO and the capacitor c, and the vibration Jl[-2
A frequency change it of 0 is taken. Note that % Lj l
L2 is a choke coil, and v8 is a DC power supply.

以上の実施例においては、単一の圧力を測定する圧力セ
ンナの基本構成を示したが1本発明圧力センナは、その
構成並びに特性上の特徴から、二つの圧力に対しその差
圧に比例した信号を取出す差圧力センナとしても好適に
実施することができる。
In the above embodiments, the basic configuration of a pressure sensor that measures a single pressure was shown. It can also be suitably implemented as a differential pressure sensor that extracts a signal.

第6図は、この差圧力センナの実施例を示すものである
。すなわち1本実施例においては。
FIG. 6 shows an embodiment of this differential pressure sensor. That is, in one embodiment.

第2図に示す実施例と比較して、ケースノコに中心隔m
弘0を設け、この隔壁aOを軸対称にして左右にそれぞ
れ第2図に示す圧力センサと同様の構成を施したもので
ある。従って、第2図に示す構成部分と同一の構成部に
ついては、同一の参照符号を付して、その詳細な説明を
省略する。なお1本実施例においては、各電極−≠、−
2tから導出されるリード@iF、30を共通のハーメ
チックシールJJを介してケース/Jから取出した点が
構成上若干相違している。また、隔壁poの一部に通孔
4I−2を穿設し。
Compared to the embodiment shown in FIG.
A pressure sensor 0 is provided, and this partition wall aO is made axially symmetrical and has a configuration similar to that of the pressure sensor shown in FIG. 2 on the left and right sides respectively. Therefore, the same reference numerals are given to the same components as those shown in FIG. 2, and detailed explanation thereof will be omitted. Note that in this embodiment, each electrode -≠, -
The structure is slightly different in that the lead @iF, 30 derived from 2t is taken out from the case/J via a common hermetic seal JJ. In addition, a through hole 4I-2 is bored in a part of the partition wall po.

基準室/4tは所定圧力Paに保持されている。The reference chamber/4t is maintained at a predetermined pressure Pa.

前述した構成からなる差圧力センナにおいて。In the differential pressure sensor having the configuration described above.

各振動膜20.20の固有振動数をt、、r、とし、各
検出ダイア72ム10,10には左右から圧力p、、p
、が作用するものとする。この場合、前記実施例の式(
6)において、温度変化、経時変化による変化分子(T
、t)を加えると1次式が求められる。
The natural frequency of each vibrating membrane 20.20 is t,, r, and each detection diaphragm 10, 10 is subjected to pressure p,, p from the left and right.
, shall be in effect. In this case, the formula (
In 6), the molecule (T
, t), a linear equation is obtained.

このようにして得られた周波数f、 、 f、を遍宜建
キシング回路に導入し、ローパスフィルタを通過させる
ことによって差周波数が求められる。
The difference frequency is determined by introducing the frequencies f, , f, obtained in this way into a variable frequency switching circuit and passing them through a low-pass filter.

今、簡単のために%各振動膜20.−〇の物理定数、形
状寸法および定数に4.ω。を勢しくすれば、差周波数
ifは1次式のようになる。
Now, for simplicity, % each vibrating membrane 20. −4 for the physical constants, shape dimensions, and constants of 〇. ω. If we increase the momentum, the difference frequency if becomes like a linear equation.

ノf=:f、−f、=f、 −(P、−P、)  ・・
・・・・・・・ α・ωO 前記式a・から明らかなように1差周波数Δf紘、圧力
差p、−p2に比例した信号であることが理解できる。
ノf=:f, -f, =f, -(P, -P,)...
.....alpha..omega.O As is clear from the above equation a., it can be understood that this is a signal proportional to the one-difference frequency Δf and the pressure differences p and -p2.

このように構成される本発明に係る差圧カ七ンテは、前
述し九実施例の圧力センナと全く同様の優れた作用効果
を発揮し得ることは勿論である。特に、差圧力センサと
して構成し九場合の優れた点は次の通)である。
It goes without saying that the differential pressure sensor according to the present invention constructed in this way can exhibit exactly the same excellent effects as the pressure sensor of the nine embodiments described above. In particular, the advantages of constructing it as a differential pressure sensor are as follows.

(1)  二つの周波数差を検出することによ)、温度
変化や経時変化による永久磁石の引力の変化および温度
変化に伴う磁石と振動膜間の閏!II・。の変化等の外
乱による周波数変動を無視することがで暑ゐ、すなわち
、これらの外乱による変動は、全て同相成分である丸め
(1) By detecting the difference in two frequencies), changes in the attractive force of the permanent magnet due to temperature changes and changes over time, and the jump between the magnet and the vibrating membrane due to temperature changes! II. It is possible to ignore frequency fluctuations due to disturbances such as changes in the frequency, that is, fluctuations due to these disturbances are all in-phase components and are rounded.

二つの周波数差を得ることで相殺することができる。Can be canceled by obtaining the difference between the two frequencies.

(2)また、振動膜の圧力以外の変動成盆1例えばヤン
グ率の(温度)変化、膜力(張力)の変化勢紘、一対の
振動膜が同質材で形成されかつセンナの対称的構造から
、前記と同様に同相的可動成分となh相殺することがで
きる。
(2) In addition, changes other than the pressure of the diaphragm 1, such as changes in Young's modulus (temperature), changes in membrane force (tension), etc. Therefore, h can be canceled out as the in-phase movable component in the same way as above.

第7図は本発明による差圧力センサの他の実施例の断面
図である。この実施例は第参図の圧力センナの考えに基
づいた差圧力センナであハ従って第参図の圧力センナと
同様、検出電極コ4はそれぞれ振動膜−〇を挾んで励振
電極2参と対向して配置されている。
FIG. 7 is a sectional view of another embodiment of the differential pressure sensor according to the present invention. This embodiment is a differential pressure sensor based on the idea of the pressure sensor shown in Fig. 3.Therefore, similarly to the pressure sensor shown in Fig. 1, the detection electrodes 4 are each opposed to the excitation electrode 2 with the vibrating membrane -0 in between. It is arranged as follows.

なお、上述した各実施例においては、励振電極は振動膜
を中心として永久磁石と反対側に配置されているが、永
久磁石と同じ側に配置してもよい、たとえば、第参図に
おいて、検出電極、24の位置に励振電極を配置し、一
方励振電極コ参の位置に検出電極を配置するようにして
もよい。
In each of the embodiments described above, the excitation electrode is placed on the opposite side of the diaphragm to the permanent magnet, but it may be placed on the same side as the permanent magnet. An excitation electrode may be disposed at the position of the electrode 24, and a detection electrode may be disposed at the position of the excitation electrode.

前述した種々の実施例から明らかなように、本発明によ
れば、圧力に感応して変化するアナ四グ量からなる変位
を周波数−電圧変換器等の電子回路的手段に依ることな
く、直接周波数に変換して取シ出すことができ、従来の
圧力センナに比べて極めて多くの優れた利点を有してい
る。従って、その応用は極めて広範であり、前述し九圧
力tiは差圧測定K[もず1例えば検出ダイア72五K
[*力を作用させることにより、力検出用としても応用
することができる。
As is clear from the various embodiments described above, according to the present invention, displacement consisting of an analogue amount that changes in response to pressure can be directly measured without relying on electronic circuit means such as a frequency-voltage converter. It can be converted into a frequency and extracted, and has numerous advantages over conventional pressure sensors. Therefore, its application is extremely wide.
[*By applying force, it can also be used for force detection.

以上、本発明の好適な実施例について説明し九が1本発
明の精神を逸脱しない範囲内において種々の設計変更を
なし得ることは勿論である。
The preferred embodiments of the present invention have been described above, but it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は本発明圧力センサの原理を示す基本構成の説明
図、第2図は本発明圧力センサの一実施例を示す断面図
、第3図は第1図に示すセンサの動作説明図、第参図は
本発明圧力センナの他の実施例を示す断面図、第3図は
本発明圧力センサに適用可能な駆動回路の一例を示す回
路図、第4図は本発明圧力センサの実施例を示す一面図
、第7図は本発明圧力センサの別の実施例を示す断面図
である。 10・・・検出ダイア72ム  ムト・・ケースta・
・・基準!16・・・永久磁石 /r・・・中央突起部   −〇・・・振動膜ココ・・
・絶縁体     コl−4・・・電 極コr、30・
・・リード線3JsJ+・・・ハーメチックシール Jt・・・通 孔     3t・・・通 孔4IO・
・・隔 壁     ダコ・・・通 孔FIG、l  
   p FIG、2 FIG、4 FIG、5 2 Fl、G、6
FIG. 7 is an explanatory diagram of the basic configuration showing the principle of the pressure sensor of the present invention, FIG. 2 is a sectional view showing an embodiment of the pressure sensor of the present invention, and FIG. 3 is an explanatory diagram of the operation of the sensor shown in FIG. 1. Fig. 3 is a sectional view showing another embodiment of the pressure sensor of the invention, Fig. 3 is a circuit diagram showing an example of a drive circuit applicable to the pressure sensor of the invention, and Fig. 4 is an embodiment of the pressure sensor of the invention. FIG. 7 is a cross-sectional view showing another embodiment of the pressure sensor of the present invention. 10...Detection diameter 72mm Mut...Case ta...
··standard! 16...Permanent magnet/r...Central protrusion -〇...Vibration membrane here...
・Insulator 1-4...Electrode 30・
...Lead wire 3JsJ+...Hermetic seal Jt...Through hole 3t...Through hole 4IO・
...Bulkhead Octopus...Through hole FIG, l
p FIG, 2 FIG, 4 FIG, 5 2 Fl, G, 6

Claims (7)

【特許請求の範囲】[Claims] (1)検出圧力が作用する圧力検出ダイアフラムと、こ
のダイア7ラムの他側面中央部に固着した永久磁石と、
永久磁石と対向配置されその磁力によシ初期変位を与え
られる振動膜と。 この振動膜にその変位により定まる固有振動を与える励
振手段とを備え、圧力検出ダイア72ムの圧力に比例す
る変位に基づき振動膜を変位させると共に振動膜の変位
をその固有振動数変化として比例的に取出すよ5#I成
することを特徴とする圧力センサ。
(1) A pressure detection diaphragm on which detection pressure acts, and a permanent magnet fixed to the center of the other side of this diaphragm,
A vibrating membrane that is placed facing a permanent magnet and is given an initial displacement by its magnetic force. The diaphragm is provided with excitation means that gives a natural vibration determined by its displacement, and the diaphragm is displaced based on the displacement proportional to the pressure of the pressure detection diaphragm 72, and the displacement of the diaphragm is proportionally expressed as a change in its natural frequency. A pressure sensor characterized by comprising a 5#I that can be taken out.
(2)  特許請求の範囲第7項記載の圧力センサにお
いて、振動展線強磁性体の平板で構成してなる圧力セン
ナ。
(2) A pressure sensor according to claim 7, which comprises a flat plate of vibrating wire-extended ferromagnetic material.
(3)特許請求の範8籐1項ま九は第一項記載の圧力セ
ンサにおいて、振動膜の励振手段は、静電力、圧電物質
もしくは電磁力を利用してなる圧力センナ。
(3) Claim 8 Rattan Paragraphs 1 and 9 provide a pressure sensor according to claim 1, in which the excitation means of the vibrating membrane utilizes electrostatic force, piezoelectric material, or electromagnetic force.
(4)特許請求の範囲篤1項乃至1sJ項のいずれかに
記載の圧力センナにおいて、振動膜を真空基準室内に配
設してなる圧力センナ。
(4) A pressure sensor according to any one of claims 1 to 1sJ, in which a vibrating membrane is disposed within a vacuum reference chamber.
(5)異なった圧力がそれぞれ作用する一対の圧力検出
ダイア72^と、これらのダイブックムの他側面中央部
にそれぞれ固着した永久磁石と、各永久磁石と対向配置
されその磁力によシ初期変位を与えられゐ振動膜と、各
振動膜にその変位によル定まる固有振動を与える励振手
段とをそれぞれ備え、各振動膜を所定圧力の基準室内に
保持し、各圧力検出ダイアフラムの圧力に比例する変位
に基づき振動膜をそれぞれ変位させると共に各振動膜の
変位を固有振動数変化としかつその差を比例的に堆出す
よう構成することを特徴とする差圧力センチ。
(5) A pair of pressure detection diamonds 72^ on which different pressures act respectively, permanent magnets each fixed to the center of the other side of these die books, and a pair of pressure detection diamonds 72^ which are arranged opposite to each permanent magnet and whose initial displacement is determined by their magnetic force. Each vibrating membrane is provided with a given vibrating membrane and an excitation means that gives each vibrating membrane a natural vibration determined by its displacement, each vibrating membrane is held in a reference chamber at a predetermined pressure, and the pressure is proportional to the pressure of each pressure detection diaphragm. A differential pressure centimeter characterized in that the vibrating membranes are respectively displaced based on the displacement, the displacement of each vibrating membrane is treated as a natural frequency change, and the difference is proportionally output.
(6)  特許請求の範mar項記載の差圧力センチに
おいて、II動属紘強磁性体の平板で構成してなる差圧
力センチ。
(6) A differential pressure centimeter according to claim 1, which is constituted by a flat plate of a II dynamic ferromagnetic material.
(7)特許請求の範囲tsj項または第6項記載の差圧
力センサにおいて、振動膜の励振手段は。 静電力、圧電物質もしく拡電磁力を利用してなる圧力セ
ンサ。
(7) In the differential pressure sensor according to claim tsj or claim 6, the vibrating membrane excitation means. A pressure sensor that uses electrostatic force, piezoelectric material, or electromagnetic force.
JP14375481A 1981-09-14 1981-09-14 Pressure sensor Granted JPS5845531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14375481A JPS5845531A (en) 1981-09-14 1981-09-14 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14375481A JPS5845531A (en) 1981-09-14 1981-09-14 Pressure sensor

Publications (2)

Publication Number Publication Date
JPS5845531A true JPS5845531A (en) 1983-03-16
JPS6322530B2 JPS6322530B2 (en) 1988-05-12

Family

ID=15346237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14375481A Granted JPS5845531A (en) 1981-09-14 1981-09-14 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS5845531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410140A (en) * 1987-07-02 1989-01-13 Yokogawa Electric Corp Vibration type strain sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410140A (en) * 1987-07-02 1989-01-13 Yokogawa Electric Corp Vibration type strain sensor
JPH0468575B2 (en) * 1987-07-02 1992-11-02 Yokogawa Electric Corp

Also Published As

Publication number Publication date
JPS6322530B2 (en) 1988-05-12

Similar Documents

Publication Publication Date Title
KR100393183B1 (en) An apparatus for electrostatically driving a microactuator
RU2001116081A (en) Coriolis effect mass flow controller
US20170030870A1 (en) Method and device for multiple-frequency tracking of oscillating systems
Ştefănescu et al. Electrical methods for force measurement–A brief survey
Kumar et al. Resonance based DC current sensor
US2873604A (en) Apparatus for determining vibration characteristics
Sharma et al. Parametric amplification/damping in MEMS gyroscopes
Park et al. Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current
Li et al. A micro-machined differential resonance accelerometer based on silicon on quartz method
CN112325998B (en) Trace substance sensor and method based on internal resonance
Yang et al. A novel bulk micromachined gyroscope based on a rectangular beam-mass structure
US7081745B2 (en) Paramagnetic oxygen sensing apparatus and method
JPS5845531A (en) Pressure sensor
Johnson et al. An acoustically driven Kelvin probe for work‐function measurements in gas ambient
Kutin et al. Characteristics of a dynamic pressure generator based on loudspeakers
RU136189U1 (en) MAGNETIC FIELD SENSOR
Liu et al. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing
CN112697239B (en) Micro substance and driving force synchronous sensor and method based on internal resonance
JPH1194726A (en) Tuning fork-type piezoelectric vibrator
Umapathy et al. Piezoelectric based resonance displacement sensor
US3371536A (en) Sonic displacement transducer
US4669316A (en) Differential-pressure apparatus employing a resonant force sensor
US3354724A (en) Stable reference apparatus
Liang et al. Design and fabrication of quartz micro-electro-mechanical system-based double-ended tuning fork with variable sections
JPH0516522B2 (en)