JPS5845524A - Method and device for time-resolved spectroscopy by single photon counting method - Google Patents

Method and device for time-resolved spectroscopy by single photon counting method

Info

Publication number
JPS5845524A
JPS5845524A JP14392881A JP14392881A JPS5845524A JP S5845524 A JPS5845524 A JP S5845524A JP 14392881 A JP14392881 A JP 14392881A JP 14392881 A JP14392881 A JP 14392881A JP S5845524 A JPS5845524 A JP S5845524A
Authority
JP
Japan
Prior art keywords
time
photomultiplier tube
light
resolved
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14392881A
Other languages
Japanese (ja)
Other versions
JPH0222334B2 (en
Inventor
Shuichi Kinoshita
櫛田孝司
Koji Kushida
太田博信
Hironobu Oota
木下修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP14392881A priority Critical patent/JPS5845524A/en
Publication of JPS5845524A publication Critical patent/JPS5845524A/en
Publication of JPH0222334B2 publication Critical patent/JPH0222334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2889Rapid scan spectrometers; Time resolved spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To improve time resolving power to the order of picoseconds or nanoseconds by forming the image of the secondary light from a sample cell to a slender region in parallel with the long axis direction of the photoelectric cathode surface of a side on type electron multiplier. CONSTITUTION:The secondary photons released from an energized sample are made incident to a side on type photoelectron multiplier 10 through a lens 9 in such a way that the slit image thereof is formed in the optimum position on a photoelectric cathode surface in parallel with the long axis direction thereof. The anodic current pulses obtained from the multiplier 10 start a time difference-to-crest converter 18. On the other hand, the pulse signal of reference light detected with a photoelectric detecting element 14 stops the converter 18, whereby the output corresponding to the time difference between the reference light and the secondary light is obtained. The secondary light is made incident from the sample cell to the multiplier 10 without decrease in the quantity of said light, whereby jitters are decreased considerably and high time resolving power is obtained.

Description

【発明の詳細な説明】 この発明は、時間相関単一光子計数法による時間分解分
光方法および装置に関し、特にピコ秒ないしナノ秒領域
の時間分解能を得るための改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a time-resolved spectroscopy method and apparatus using a time-correlated single photon counting method, and particularly to improvements for obtaining time resolution in the picosecond to nanosecond range.

時間分解分光装置には、位相法、ストリークカメラ法、
光シヤツター法、光ゲート法、および時間相関単一光子
計数法などが通常良く用いらnている。このうち、位相
法は測定時間が短かく精度も高いが、試料セルからの・
二次光の被雑な緩和過程のIII定では時間分解能が足
りずその解析が困難と表る欠点をもっている。またスト
リークカメラ法、光シヤツター法および光ゲート法では
いずれもピコ秒或いはそn以上の時間分解能を有するが
、一般的に感度が低い九め信号対雑音比も悪く、試料の
複雑な発光過程は取り扱い難い。これに対して時間相関
単一光子計数法は感度が極めて高いのが特徴で、時間と
計数値とのグイナイックレンジ屯広・いので、微弱な発
光や多成分の発光過程を持つような系にも適用でき、従
ってその応用は極めて広範囲に有効である。
Time-resolved spectrometers include phase method, streak camera method,
Optical shutter methods, optical gating methods, and time-correlated single photon counting methods are commonly used. Among these methods, the phase method has a short measurement time and high accuracy, but the
The III-determination of the complicated relaxation process of secondary light has the drawback of insufficient time resolution, making it difficult to analyze. In addition, the streak camera method, optical shutter method, and optical gate method all have a time resolution of picoseconds or more, but they generally have low sensitivity and a poor signal-to-noise ratio, making it difficult to understand the complex light emission process of the sample. Difficult to handle. On the other hand, the time-correlated single photon counting method is characterized by extremely high sensitivity, and because it has a wide and wide range between time and count values, it is suitable for systems with weak luminescence or multi-component luminescence processes. Therefore, its application is extremely wide-ranging.

しかしながら今日までに実用化さnた時間相関単一光子
計数法による時間分解分光システムではその時間分解能
がナノ秒ないしサブナノ秒程度にしかならず、そのため
測定対象も限られ友ものにならざるを得表かつ九〇 一般に、時間相関単一光子計数法による時間分解分光装
置は、パルス光源、試料セル、参照信号を得る九めの検
出手段、これら試料セルと検出手段とに光源からの光パ
ルスを分けて与えるスプリッター、試料セルからの二次
光を分光する分光手段、分光さnた二次光管計数するた
めに検出する光電子増倍管、光電子増倍管の出力を波高
弁別する弁別器、弁別器出力と参照信号との時間差を計
測する時間差測定器などを具備してなる。パルス光源は
有限のパルス巾を持ち、また光電子増倍管および電気回
路の応答速度も有限であるため、光源の光パルスで励起
された試料から放出さnる二次光の真の緩和曲線を求め
るためには、測定によって得られた緩和曲線を装置自体
の応答関数でデコンボルーションする必要がある。しか
しながらこの場合、パルス光源の発光時間幅、発光強度
およびパルス形状な−どのゆらぎ、光電子増倍管のジッ
ター、電気回路のジッターおよびドリフトなどの存在に
よっていわゆる装置固有の応答関数の幅と時間蜜動が拡
大すると前記デコンボルーショ゛ンが困崩とな)、時間
分解積置が悪化する。
However, in the time-resolved spectroscopy systems based on the time-correlated single photon counting method that have been put into practical use to date, the time resolution is only on the order of nanoseconds or sub-nanoseconds, and as a result, the measurement targets are limited, making them difficult to measure. 90 In general, a time-resolved spectrometer using the time-correlated single photon counting method consists of a pulsed light source, a sample cell, a ninth detection means for obtaining a reference signal, and a light pulse from the light source that is divided between the sample cell and the detection means. A splitter for dispersing the secondary light from the sample cell, a spectroscopic means for dispersing the secondary light from the sample cell, a photomultiplier tube for detecting the secondary light tubes for counting, a discriminator for discriminating the wave height of the output of the photomultiplier tube, and a discriminator. It is equipped with a time difference measuring device that measures the time difference between the output and the reference signal. Since a pulsed light source has a finite pulse width and the response speed of the photomultiplier tube and electric circuit is also finite, it is difficult to calculate the true relaxation curve of the secondary light emitted from the sample excited by the light pulse of the light source. In order to obtain this, it is necessary to deconvolve the transition curve obtained by measurement with the response function of the device itself. However, in this case, fluctuations in the emission time width, emission intensity, and pulse shape of the pulsed light source, jitter of the photomultiplier tube, jitter and drift of the electric circuit, etc., cause the width and time fluctuation of the so-called device-specific response function. When the deconvolution is enlarged, the deconvolution becomes difficult), and the time-resolved stacking becomes worse.

近年、この種分光システムの光源としてレーザーレステ
ムの適用が進められ、CWモード同期レしず−からの安
定でかつ時間幅の狭い光パルスが容易に得られるように
1k〕、ま良電子回路についても安定しIF、ICデバ
イスが容易に入手できるようになり、従って光電子増倍
管のジッターが分光システムの時間分解精[K対して問
題にすべき最大の要因である。
In recent years, the application of laser stems as light sources for this type of spectroscopic system has progressed, and in order to easily obtain stable and narrow optical pulses from CW mode-locked lasers, 1K] and Mara electronic circuits have been developed. As stable IF and IC devices are now available, photomultiplier tube jitter is the biggest factor in the time-resolved resolution [K] of spectroscopic systems.

一般に光電子増倍管では、電子の走行時間が、光電子お
よび二次電子放出に係わる確立過程に支配されているり
えに、光子の衝突位置および光子のエネルギーに依存し
、このことが光電子増倍管の伝達時間のジッターの原因
と考えもれる◎この丸め従来のシステムにおいて線光電
子増倍管のジッターを小さくするため、例えば光電陰極
と第1ダイノード間Kt電子集束電極を有するヘッドt
)形のものを用いたが、ヘッドすン形光電子増倍管は高
価であるばか〕か大形で扱い難く、またジッターも最少
で250ピコ秒止ま〕でしかがかったO この発明の目的は、安価で小形なサイドオン形光電子増
倍管を用いてジッターをさらに大巾に減らし、以って時
間分解能をピコ秒ないしナノ秒オーダーに改善した単一
光子計数法による時間分解分光方法とその装置を提供す
るととkある。
In general, in photomultiplier tubes, the transit time of electrons is controlled by the established processes involved in photoelectron and secondary electron emission, but also depends on the photon impact position and photon energy; This rounding may be considered to be the cause of jitter in the transmission time of
) type photomultiplier tube was used, but heads type photomultiplier tubes were expensive, large and difficult to handle, and the jitter was minimal and stopped at 250 picoseconds.The purpose of this invention is , a time-resolved spectroscopy method using a single photon counting method that uses an inexpensive and compact side-on photomultiplier to further reduce jitter and thereby improve the time resolution to the picosecond or nanosecond order. There are plans to provide the equipment.

すなわちこの発明の単−光子計数法による時間分解分光
方法においては、光電子計数用の光電子増倍管としてサ
イドすン形光電子増倍管を用い、試料セルからの二次光
を、このナイドオン形光電子増倍管の光電陰極面の長軸
方向に平行な細巾領域に結像させ、さらに社すイドオン
形光電子増倍管の光電陰極と第1ダイノードとの印加電
圧を300v以上の高電圧とするものであシ、またこの
ような分光方法に用いるこの発明の時間分解分光装置で
は、前記サイドオン形光電子増倍管と、該光電子増倍管
の光電陰極面の長軸方向に平行な細巾領域に前記二次光
を結像させるレンズないしミラー等からなる光学系を備
えている。
That is, in the time-resolved spectroscopy method using the single-photon counting method of the present invention, a side-on type photomultiplier tube is used as a photomultiplier tube for photoelectron counting, and the secondary light from the sample cell is converted into a side-on type photomultiplier tube. An image is formed on a narrow region parallel to the long axis direction of the photocathode surface of the multiplier tube, and the voltage applied between the photocathode and the first dynode of the id-on photomultiplier tube is set to a high voltage of 300 V or more. In addition, in the time-resolved spectrometer of the present invention used for such a spectroscopic method, the side-on type photomultiplier tube and a narrow width parallel to the long axis direction of the photocathode surface of the photomultiplier tube are provided. It is equipped with an optical system consisting of a lens or a mirror that images the secondary light onto a region.

この発明によれば、ピコ秒領域まで扱える単−光子計数
法による時間分解分光システムが実現し、従って従来法
では不可能なほどに速い緩和過程の精密な測定ができる
ようになるはか、ラマン散乱と螢光の時間的分離も容易
になり、このため物理および化学面のみならず医学ない
し生物学等の各分野での精密測定に寄与するところが極
めて大きい0 この発明をその一実施例について図面と共に詳述すれば
以下の通9である。
According to this invention, a time-resolved spectroscopy system using single-photon counting method that can handle up to the picosecond region will be realized, and therefore it will be possible to precisely measure the relaxation process that is faster than conventional methods. It also facilitates temporal separation of scattering and fluorescence, which greatly contributes to precision measurements not only in physical and chemical fields but also in various fields such as medicine and biology. The details are as follows.

第1図はこの発明の一実施例に係る時間分解分光装置の
システム構成を示すブロック図で、(1)はパルス光[
、(2)ハビームスプリッター、(3)はレンズ、(4
)はミラー、(5)は試料セル、(6)はレンズ、(7
)はアパーチャー、(8)は分光単色器(モノクロメー
タ)又はフィルターなどの分光手段、(9)はスリット
結像用レンズ、輪はサイドオン形光電子増倍管、CLI
は該光電子増倍管の高圧電源、聾は光電子増倍管−から
の出力である陽極電流パルスの波高を予じめ定められた
設定基準値に対して比較弁別する波高弁別器、(2)は
レンズ、−はフォトダイオード等の光電検出素子、−は
増巾器、輔は前述と同様な波高弁別器、@線遅延回路、
■は時間差波高変換器、(至)は多チヤンネル波高分析
器であシ、ビームスプリッタ−(2)$降のレンズ(3
]から試料セル(5)および分光子& (8)を経て波
高弁別器@までの一連の系で第1チヤンネル系(起動チ
ャンネル)を構成し、レンズ−から光電検出素子−およ
び遅延回路(2)を経て波高弁別器@までの系で第2チ
ヤンネル系(停止チャンネル)を構成し、時間差波高変
換器−および多チヤンネル波高分析器(2)によって信
号処理部を構成しておシ、これら変換器−および分析器
(ロ)には図示しない記録装置ないし表示装置を含むデ
ーター処理装置が接続されるものであるO パルス光源(1)としては好ましくは安定で発光時間幅
の狭い光パルスを発生する光源を用い、さらにできうれ
ば任意の波長を選択できる光源が好ましい。一般的には
この種分光システムには従来より放電ギャップフラツシ
エランプがパルス光源として用いらnてきたが、この発
明では、ノクルス幅が狭くできる仁と、パルス形状が安
定であること、ビームの単色性および方向性に優れるこ
となど、ピコ秒ないしナノ秒領域の特開分解特性に鑑み
て、特にCWモード同期レーザーをパルス光源として用
■ることか望ましく、例えと単一波長パルス光源として
CWモード同期ガスレーザーを、或いは波長可賓パルス
光源としてCWモード同期色素し一ザーを用いるのがよ
い。第2図はパルス光源(1)として用いて好適1kc
wモード同期レーザーシステムの一例を示すブロック図
で、CWモード同期にイオンレーず−からなる単一波長
パルス光源(1a)と、同じレーザー党を利用したCW
%−ド同期色素レーザーからまる可変波長パルス光9I
(1b)とを構成しておシ、必IIK応じていずれかの
光源が選択的に用いらnhようKなっているOCWモー
ド同期かイオンレーザ−パルス光源(1a獄、CWアル
ゴンイすンレーザー(101)の出力ミラー(10!S
)を共振器長が約18Qa*になるように設置して45
ス9〜514.5−波長の全アルゴンレーザーラインの
峰−ド岡期CWレーザービームを得るようにし、この共
振器の中に、水晶発振器することにより、前記CWレー
ザービームを所望周波数のパルス光ビーム(119)と
して出力するようにしてなシ、このパルス光ビームの一
部はビームスプリッタ−(104)およびばラー(11
4)を介して光電検出器(115)に導びかれ、該検出
器(115)の出力電流によってレーザー電源(116
)に帰還をかけてレーザー出力およびパルス幅を安定化
している。前記音響光変調器(102)は、例えば石英
ガラスの六面体の両側面をブリュースター角度にカット
してその一面の金被膜上にL lNbO5結晶を262
μmの厚さで振動子として取付けてなるもので、その温
度によって中心周波数40朧の周囲に約150に&おき
に20程度の共振周波数を選べるようになさnており、
第2図で符号(118)はこの温度制御のための温度調
節器である。
FIG. 1 is a block diagram showing the system configuration of a time-resolved spectrometer according to an embodiment of the present invention, in which (1) shows the pulsed light [
, (2) hub beam splitter, (3) lens, (4
) is a mirror, (5) is a sample cell, (6) is a lens, (7
) is the aperture, (8) is a spectroscopic means such as a monochromator or filter, (9) is a slit imaging lens, and the ring is a side-on photomultiplier tube, CLI
(2) is a high-voltage power source for the photomultiplier tube, and a pulse height discriminator that compares and discriminates the wave height of the anode current pulse output from the photomultiplier tube with a predetermined reference value; (2) is a lens, - is a photoelectric detection element such as a photodiode, - is an amplifier, 輔 is a pulse height discriminator similar to the above, @ line delay circuit,
■ is a time-difference wave height converter, (to) is a multi-channel wave height analyzer, beam splitter (2) and a $300 lens (3).
], through the sample cell (5) and spectrometer & (8) to the pulse height discriminator @ constitutes the first channel system (starting channel), and from the lens to the photoelectric detection element and the delay circuit (2 ) to the pulse height discriminator @ constitutes the second channel system (stop channel), and the time difference pulse height converter and multichannel pulse height analyzer (2) constitute the signal processing section. A data processing device including a recording device or a display device (not shown) is connected to the analyzer and analyzer (b). The pulsed light source (1) preferably generates stable light pulses with a narrow emission time width. It is preferable to use a light source that can select an arbitrary wavelength if possible. Generally, a discharge gap flashier lamp has been used as a pulsed light source in this type of spectroscopic system, but in this invention, the Noculus width can be narrowed, the pulse shape is stable, and the beam can be In view of the unexamined decomposition characteristics in the picosecond to nanosecond region, such as excellent monochromaticity and directionality, it is particularly desirable to use a CW mode-locked laser as a pulsed light source. It is preferable to use a mode-locked gas laser or a CW mode-locked dye laser as a wavelength variable pulsed light source. Figure 2 shows a 1kc cell suitable for use as a pulsed light source (1).
This is a block diagram showing an example of a w-mode-locked laser system, which includes a single-wavelength pulsed light source (1a) consisting of an ion laser for CW mode-locking, and a CW mode-locked laser system using the same laser.
9I variable wavelength pulsed light from %-dosynchronized dye laser
(1b), either of the light sources can be selectively used depending on the requirements, such as an OCW mode-locked or ion laser pulsed light source (1a), a CW argon ion laser ( 101) output mirror (10!S
) so that the resonator length is approximately 18Qa*.
A CW laser beam with a wavelength of 9 to 514.5 from the peak of the entire argon laser line is obtained, and by placing a crystal oscillator in this resonator, the CW laser beam is converted into a pulsed beam of a desired frequency. A part of this pulsed light beam is outputted as a beam (119), and a part of this pulsed light beam is sent to a beam splitter (104) and a baller (119).
4) to a photoelectric detector (115), and the output current of the detector (115) causes the laser power source (116
) to stabilize the laser output and pulse width. The acousto-optic modulator (102) is made by cutting both sides of a hexahedron made of quartz glass at the Brewster angle, and depositing 262 LlNbO5 crystals on one side of the gold coating.
It is installed as a vibrator with a thickness of μm, and depending on its temperature, it is possible to select a resonance frequency of about 150 and every 20 around a center frequency of 40.
In FIG. 2, reference numeral (118) is a temperature regulator for this temperature control.

CWモード同期色素レーザーパルス光源(1b)は、前
記パルス光ビーム(119)をビームスプリッタ−(1
05)およびばラー(106)(107)(108)で
導ひいて前記CWアルゴンイすンレーザー(101)の
共振器と同じ長さの共振器内に形成さnたローダミン6
Gなどの色素ジェット流(110)を同期的に励起し、
被屈折フィルター(112)で波長選択をして例えば5
40〜640 nmの所望波長のパルス光(120)を
得るようにしてなるものである。尚、(116)は出力
ミラー、(109)(111砒出力イラー(113)と
共振器を構成するミラーである。
A CW mode-locked dye laser pulse light source (1b) sends the pulsed light beam (119) to a beam splitter (1
05) and rhodamine 6 formed in a resonator of the same length as the resonator of the CW argon ion laser (101) by guiding with balers (106), (107), and (108).
synchronously exciting a dye jet stream (110) such as G;
For example, 5 wavelengths are selected using a refracted filter (112).
It is designed to obtain pulsed light (120) with a desired wavelength of 40 to 640 nm. Note that (116) is an output mirror, and (109) (111) is a mirror that forms a resonator together with the output mirror (113).

ちなみに前述の例によるCWモード同期かイオンレーザ
−パルス光源(1m)の514.5mm波長の平均出力
は100 mW、パルス幅は約200ピコ秒、ま九CW
モード同期色素レーザーパルス光源(1b)の出力のパ
ルス幅は約10ピコ秒が得ら扛ている。
By the way, according to the above example, the average output of the 514.5 mm wavelength of the CW mode-locked or ion laser pulsed light source (1 m) is 100 mW, the pulse width is about 200 picoseconds, and the average output is 9 CW.
The output pulse width of the mode-locked dye laser pulse light source (1b) is approximately 10 picoseconds.

勿論、光源(υとして前記の例のほかに別のガスレーザ
ー、色素レーザーを用いたり、或いは二倍波、二倍波を
用いることによって励起光の波長を選択するようにして
もよいことは述べるまでもないO 試料セル(5)は、通常のラマン散乱あるいは螢光測定
用のものであnばよいが、特にミクロセルやフローセル
が好んで用いら牡る0分光手段(8)は例えば分光単色
器(モノクロメータ)であり、フィルターで置きかえる
ことも可能である。また光電検出素子−はPINフォト
ダイオードが最適である弘、波高弁別器(2)(ト)、
遅延回路aη、時間差波高変換器(2)および多チャン
ネル波高分析器四などは、通常の放射線検出装置に用い
らnているものから選択することが可能で、IC化も容
易である0このうち波高弁別器としては入力のピーク位
置を検出するタイプのものが特に好ましい。
Of course, it should be noted that in addition to the above example as the light source (υ), another gas laser or dye laser may be used, or the wavelength of the excitation light may be selected by using a double wave or double wave. The O sample cell (5) may be one for ordinary Raman scattering or fluorescence measurement, but the O spectroscopy means (8), which is particularly preferably used in microcells and flow cells, is, for example, a spectroscopic monochromatic cell. It is a monochromator (monochromator), and can be replaced with a filter.Also, a PIN photodiode is optimal for the photoelectric detection element.
The delay circuit aη, the time-difference pulse height converter (2), the multichannel pulse height analyzer (4), etc. can be selected from those used in ordinary radiation detection devices, and can be easily integrated into ICs. As the pulse height discriminator, a type that detects the peak position of the input is particularly preferable.

光電子増倍管Q(lFiナイド寸ン形のものであ〕、ク
ーラー四によって一20℃以下に冷却して用いることが
暗を流ノイズの低減の面から4好ましい。
It is preferable to use the photomultiplier tube Q (of the lFi nide size type) by cooling it to below -20° C. with a cooler 4 from the viewpoint of reducing darkness and noise.

93図はこのサイドオン形光電子増倍管αqとスリット
結像用レンズ(9)との配置の様子を分光手段(8)の
出射スリット(2)との関連で模式的に示している。賃
イドオン形光電子増倍管はへラドオン形のものに比べて
構造が複雑であるため、その光11陰@Hの全面に入射
光をあてるようにすると電子の走行時間が大きくばらつ
くという欠点がある。そして光電陰極面の長軸方向と短
軸方向のそ扛ぞれに関する位置に対する入射光パルスの
ピーク点位置とパルス幅との関係については、相対的な
ピーク点位置は長軸方向に関してはどこでも10ピコ秒
以内で一定となるのに対し短軸方向に関しては太きく変
化り、、tたパルス幅は短軸方向の両端位置を除いて長
短軸いずれの方向のどの位置でも一定であることが確認
さnたOそこで本発明では、分光中段(8)の出射スリ
ット(2)の後にレンズ(9)又は凹面ミラーを置き、
細巾のスリット儂−を光電陰極面のほぼ中央付近の最適
位置に該光電陰1i−の長軸方向に平行に結像させ、こ
れによって試料セルからの二次光をその光量の減少なし
にサイドオン形光電子増倍管(7)に入射せしめ、従来
1ナノ秒#iどもあったジッターを大幅に減少して高い
時間分解能を得るようにしたものであるO またサイドオン形光電子増倍管はヘッドすン形のものに
比べて小形であるので、印加電圧を高圧にするはど電子
の走行時間を短かくでき、入射光パルスの立上9に対す
るタイずングの変動は全印加電圧1000V以上、好ま
しくは1200V以上で約100ピコ秒以下の範囲内に
納まる0%にこの発明では光電aSとl!1ダイノード
との印加電圧を300v以上、好ましくは400v以上
として次段以降に通常用いられる程度の電圧を印加する
ことによシ、光電子増倍管にダメージを与えることなし
に光電陰極面と第1ダイノード間の電子走行時間を短縮
させ、また入射光の波長による電子の走行時間の差を極
めて小さくしたものである。
FIG. 93 schematically shows the arrangement of the side-on photomultiplier tube αq and the slit imaging lens (9) in relation to the exit slit (2) of the spectroscopic means (8). Since the ion type photomultiplier tube has a more complex structure than the ion type photomultiplier tube, it has the disadvantage that the travel time of electrons will vary greatly if the incident light is applied to the entire surface of the ion beam. . Regarding the relationship between the peak point position and pulse width of the incident light pulse with respect to the positions in the long axis direction and the short axis direction of the photocathode surface, the relative peak point position is 10 at any point in the long axis direction. It was confirmed that the pulse width was constant within picoseconds, but it changed sharply in the short axis direction, and that the pulse width was constant at any position on either the long or short axis, except at both end positions in the short axis direction. Therefore, in the present invention, a lens (9) or a concave mirror is placed after the exit slit (2) of the middle spectroscopic stage (8).
A narrow slit 1i is imaged at an optimal position near the center of the photocathode surface in parallel to the long axis direction of the photocathode 1i, thereby preventing the secondary light from the sample cell from decreasing in light intensity. The photomultiplier tube (7) is made to enter the side-on type photomultiplier tube (7), and the jitter, which was conventionally 1 nanosecond, is significantly reduced and high time resolution is obtained. Since it is smaller than the head type, the transit time of the electrons can be shortened by increasing the applied voltage, and the fluctuation in timing with respect to the rise 9 of the incident optical pulse is reduced to a total applied voltage of 1000 V. In this invention, the photoelectric aS and l! By applying a voltage of 300 V or more, preferably 400 V or more, to the first dynode and applying a voltage that is normally used in subsequent stages, it is possible to connect the photocathode surface and the first dynode without damaging the photomultiplier tube. This shortens the electron transit time between dynodes and extremely minimizes the difference in electron transit time depending on the wavelength of incident light.

このような光電子増倍管の各ダイノード関の印加電圧は
、高電圧源(11)によって全印加電圧およびプリーダ
抵抗値を調整することにより所望に設定可能である。
The voltage applied to each dynode of such a photomultiplier tube can be set as desired by adjusting the total applied voltage and leader resistance value using a high voltage source (11).

以上の構成を備えたこの発明に係る時間分解分光装置で
は、まず光源(1)からの光パルスはビームスプリッタ
−(2)で第1チヤンネル系への励起光とWJ2チャン
ネル用の参照光とに分けられ、励起光は試料(5)を照
射励起し、参照光は光電検出素子−で検出されて時間差
測定における時間基準を与える。励起さnた試料(5)
から放出される二次光は分光手段(8)によって分光さ
れ、分光手段(8)の出射スリット(2)から出九二次
光は、そのスリット像が光電陰極面上の最適位置にその
長軸方向に平行に結像するようにレンズ(9)全通して
サイドオン形光電子増倍管叫に入射される。分光手段(
8)の入射側のアパーチャー(7)は、励起光の1パル
スに対して該光電子増倍管で検出される二次光の光子数
が1個以下になるように二次光を弱めるために使用され
る。光電子増倍管叫から得られた陽極電流パルスは、波
高弁別器頭で暗電流パルスを消去して波形整形さn+の
ちに時間差波高変換器−に起動をかけ、一方、前述の光
電検出素子−で検出された参照光パルス信号が波高弁別
器−および遅延回路的を介して該時間差波高変換器に停
止をかけることによシ、参照光と二次光との時間差に対
応した電圧出力が変換ローからとり出される0この電圧
出力はサイドオン形光電子増倍管で検出さnる光子毎に
多チヤンネル波高分析器(2)によって解析さ牡、その
結果、時間差対光子放出頻度を表わす時間分解プロファ
イルが図示しない記鎌装置ないし表示装置に得られるこ
とになる0すなわちこのプロファイルは励起パルス光が
試料に照射された後の時間と、その間に放出され九二次
光の強度との関係を示しており、1114図には、その
−例として、得られた散乱光強度(破線)と螢光強度(
実線)の時間分解プロファイルが示さnているO散乱光
に対する強度の時間分解プロファイルは、試料セル(5
)の位置に試料に代ってすりガラス等の既知散乱体を配
置し、励起光の波長に分光手段(8)の分光波長を一致
せしめて得らtl、たものであり、これは光源パルス光
の時間幅および強度変動、光電子増倍管のジッター等で
決まる装置関数に相当する。螢光強度緩和の真の時間分
解プロファイルは、螢光強度の実測の時間分解プロファ
イルを散乱光強度の時間分解プロファイルすなわち装置
関数でデコンボルーションして求められ、こ1tけ例え
ば分析器(ロ)の出力をマイクロコンピュータでデータ
処理するようにす牡ばよい。
In the time-resolved spectrometer according to the present invention having the above configuration, a light pulse from the light source (1) is first split into excitation light for the first channel system and reference light for the WJ2 channel by the beam splitter (2). The excitation light irradiates and excites the sample (5), and the reference light is detected by a photoelectric detection element to provide a time reference for time difference measurement. Excited sample (5)
The secondary light emitted from the spectrometer (8) is separated by the spectrometer (8), and the secondary light is output from the output slit (2) of the spectrometer (8) until the slit image is located at the optimum position on the photocathode surface. The light is incident on the side-on photomultiplier tube through the entire lens (9) so as to form an image parallel to the axial direction. Spectroscopic means (
The aperture (7) on the incident side of 8) is used to weaken the secondary light so that the number of photons of the secondary light detected by the photomultiplier tube is one or less per one pulse of excitation light. used. The anode current pulse obtained from the photomultiplier tube is waveform-shaped by erasing the dark current pulse at the head of the pulse height discriminator. After that, the time-difference pulse height converter is activated, while the above-mentioned photoelectric detection element is The reference light pulse signal detected by the pulse height discriminator and the delay circuit stops the time difference pulse height converter, thereby converting the voltage output corresponding to the time difference between the reference light and the secondary light. This voltage output taken from low 0 is analyzed by a multi-channel pulse height analyzer (2) for every n photon detected by a side-on photomultiplier, resulting in a time-resolved signal representing the photon emission frequency versus the time difference. A profile is obtained by a recording device or a display device (not shown). This profile indicates the relationship between the time after the excitation pulse light is irradiated onto the sample and the intensity of the 92-order light emitted during that time. Figure 1114 shows, as an example, the obtained scattered light intensity (dashed line) and fluorescent light intensity (
The time-resolved profile of the intensity for the O scattered light shown by the time-resolved profile of the sample cell (solid line)
) was obtained by placing a known scatterer such as ground glass in place of the sample and matching the spectral wavelength of the spectroscopic means (8) with the wavelength of the excitation light. This corresponds to an equipment function determined by the time width and intensity fluctuations of the photomultiplier tube, jitter of the photomultiplier tube, etc. The true time-resolved profile of fluorescence intensity relaxation is obtained by deconvoluting the actually measured time-resolved profile of the fluorescence intensity with the time-resolved profile of the scattered light intensity, that is, the instrument function. It would be better to process the output using a microcomputer.

以上に述べたようにこの発明によnば、従来高価で大形
のため扱いにくかったヘッドオン形光電子増倍管を用い
ていたのに対してこれを安価で小形なサイドオン形光電
子増倍管に置きかえることができるばかりでな〈従来エ
フ高い時間分解能を得ることができ、また時間分解プロ
ファイルが10ピコ秒以内の範囲で再現できるようにな
ると共に、精密なデコンボルーシロyが可能となり、時
間相関単一光子計数法による時間分解分光において一層
精度の高い信頼性のすぐれた時間分解プロファイルを与
えられるようになったためラマン散乱スペクトルや螢光
強度の緩和の測定に広く用いることが可能である。
As described above, according to the present invention, whereas conventional head-on type photomultiplier tubes, which were expensive and difficult to handle due to their large size, were used, this is an inexpensive and small side-on type photomultiplier tube. Not only can it be replaced with a tube, but it can also obtain high temporal resolution, and time-resolved profiles can be reproduced within a range of 10 picoseconds, precise deconvolution is possible, and time correlation Time-resolved spectroscopy using the single-photon counting method can now provide more accurate and reliable time-resolved profiles, making it widely applicable to measurements of Raman scattering spectra and fluorescence intensity relaxation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係るシステム構成を示す
ブロック図、第2図はその光源のシステム構成例を示す
ブロック図、第3図はサイドオン形光電子増倍管とその
入射光のスリット結像手段との様子を模式的に示す斜視
図、1!4図は得られた時間分解プロファイルの一例を
示す線図である。 (1):パルス光源、(2):ビームスプリッター、(
5):試料セル、(7)ニアパーチャー、(8):分光
手段、(9)ニスリット結像用レンズ、(Q:サイドオ
ン形光電子増倍管、α1:高電圧源、μs=波高弁別器
、−二光電検出素子、@:波高弁別器%@:遅延回路、
−:時間差波高変換器、(2):多チャンネル波高分析
器、(2):出射スリット、−二光電陰極、@)ニスリ
ット偉。 代理人 弁理士 佐 藤 正 年 1□1 第2図 0 b デ0 第4図 −4−?Jネルを号−1
FIG. 1 is a block diagram showing a system configuration according to an embodiment of the present invention, FIG. 2 is a block diagram showing an example of the system configuration of the light source, and FIG. 3 is a side-on photomultiplier tube and its incident light. A perspective view schematically showing the situation with the slit imaging means, and Figures 1 to 4 are diagrams showing an example of the obtained time-resolved profile. (1): Pulse light source, (2): Beam splitter, (
5): sample cell, (7) near aperture, (8): spectroscopic means, (9) Nislit imaging lens, (Q: side-on photomultiplier tube, α1: high voltage source, μs = pulse height discriminator , -Two photoelectric detection elements, @: Wave height discriminator % @: Delay circuit,
-: Time difference pulse height converter, (2): Multichannel pulse height analyzer, (2): Exit slit, - Two photocathodes, @) Nisrit Wei. Agent Patent Attorney Tadashi Sato Year 1□1 Figure 2 0 b de 0 Figure 4-4-? J-nel wo-1

Claims (1)

【特許請求の範囲】 (1)  光電子計数用の光電子増倍管としてサイドオ
ン形光電子増倍管を用い、試料セルからの二次光を、前
記サイドすン形光電子増倍管の光電陰極面の長軸方向に
平行な細巾領域に結像させることを特徴とする単一光子
計数法による時間分解分光方法。 (2)光電子計数用の光電子増倍管としてサイドすン形
光電子増倍管を用い、該光電子増倍管の充電陰極と第1
ダイノードとの間の印加電圧t−!l00V以上とし、
試料セルからの二次光を、前記サイドすン形光電子増倍
管の光電陰極面の長軸方向に平行な細巾領域に結像させ
ることを特徴とする単一光子計数法による時間分解分光
方法。 (3)  パルス光源、111チヤンネル系、@2チャ
ンネル系、信号処理部によって構成され、前記第1チヤ
ンネル系には、前記光源からの光パルスに1って励起さ
nる試料セルと、この試料セルから放出さnる二次光を
分光する分光手段と、高圧電源によって付熱され且つ前
記分光された二次光を計数のために検出する光電子増倍
管とを含み、前記wL2チャンネル系には、前記光源か
らの光パルスから参照信号を得る検出手段を含み、前記
光電子増倍管からの光電子信号を波高弁別して前記信号
処理部で参照信号との時間差を測定する単一光子計数法
による時間分解分光装置において、前記光電子増倍管と
してサイドオン形光電子増倍管を備えると共に、該光電
子増倍管の光電陰極面の長軸方向に平行な細巾領域に前
記分光手段からの二次光を結像させる光学系を備えたこ
とを特徴とする時間分解分光装置◎ (4)前記サイドすン形光電子増倍管の充電陰極と@1
ダイノーードとの間の印加電圧を前記高圧電源によJ)
300v以上にしたことを特徴とする特許請求の範8島
3項に記載の時間分解分光装置〇(5)  パルス光源
としてcwそ−ド同期レーザーを用いた特許請求の範囲
第3項に記載の時間分解分光装置。 (6)前記光学系が、前記分光手段の出射スリットと、
該出射スリットの像を前記細巾領域として光電陰極面に
結儂させるレンズを含むことを特徴とする特許請求の範
囲第3項に記載の時間分解分光装置。
[Scope of Claims] (1) A side-on photomultiplier is used as a photomultiplier for photoelectron counting, and secondary light from the sample cell is transferred to the photocathode surface of the side-on photomultiplier. A time-resolved spectroscopy method using a single photon counting method, which is characterized by focusing on a narrow region parallel to the long axis direction. (2) A side-son type photomultiplier tube is used as a photomultiplier tube for photoelectron counting, and the charging cathode of the photomultiplier tube and the first
The applied voltage between the dynode and the dynode t-! 100V or more,
Time-resolved spectroscopy using a single photon counting method, characterized in that secondary light from a sample cell is imaged onto a narrow region parallel to the long axis direction of the photocathode surface of the side-effect photomultiplier tube. Method. (3) Consisting of a pulsed light source, a 111 channel system, a @2 channel system, and a signal processing section, and the first channel system includes a sample cell that is excited by a light pulse from the light source, and a sample cell that is excited by a light pulse from the light source. The wL2 channel system includes a spectroscopy means for dispersing n secondary light emitted from the cell, and a photomultiplier tube that is heated by a high-voltage power source and detects the dissected secondary light for counting. includes a detection means for obtaining a reference signal from a light pulse from the light source, and is based on a single photon counting method that discriminates the pulse height of the photoelectron signal from the photomultiplier tube and measures the time difference with the reference signal in the signal processing section. In the time-resolved spectroscopy device, a side-on type photomultiplier tube is provided as the photomultiplier tube, and secondary light from the spectroscopic means is provided in a narrow region parallel to the long axis direction of the photocathode surface of the photomultiplier tube. A time-resolved spectroscopy device characterized by being equipped with an optical system that forms an image of light (4) The charged cathode of the side-son photomultiplier tube and @1
The applied voltage between the dynode and the high voltage power supply is J)
Time-resolved spectroscopy device according to claim 8, item 3, characterized in that the voltage is 300 V or more.The time-resolved spectrometer according to claim 3, which uses a cw laser synchronized laser as a pulsed light source. Time-resolved spectrometer. (6) The optical system includes an exit slit of the spectroscopic means,
4. The time-resolved spectroscopy apparatus according to claim 3, further comprising a lens that causes an image of the exit slit to be focused on the photocathode surface as the narrow region.
JP14392881A 1981-09-14 1981-09-14 Method and device for time-resolved spectroscopy by single photon counting method Granted JPS5845524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14392881A JPS5845524A (en) 1981-09-14 1981-09-14 Method and device for time-resolved spectroscopy by single photon counting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14392881A JPS5845524A (en) 1981-09-14 1981-09-14 Method and device for time-resolved spectroscopy by single photon counting method

Publications (2)

Publication Number Publication Date
JPS5845524A true JPS5845524A (en) 1983-03-16
JPH0222334B2 JPH0222334B2 (en) 1990-05-18

Family

ID=15350342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14392881A Granted JPS5845524A (en) 1981-09-14 1981-09-14 Method and device for time-resolved spectroscopy by single photon counting method

Country Status (1)

Country Link
JP (1) JPS5845524A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082821A (en) * 1983-10-13 1985-05-11 Horiba Ltd Time-decomposed light-emitting-spectrum measuring method
JPS60209146A (en) * 1984-03-31 1985-10-21 Olympus Optical Co Ltd Fluorescence spectrochemical analysis device
JPS6484123A (en) * 1987-09-27 1989-03-29 Hamamatsu Photonics Kk Photometric device
JPH02234050A (en) * 1989-03-08 1990-09-17 Hamamatsu Photonics Kk Light wave measuring device
EP0828284A2 (en) * 1996-09-06 1998-03-11 Hamamatsu Photonics K.K. Magnetic shielding case for accomodating photomultiplier and light detecting apparatus including the same
EP0828283A2 (en) * 1996-09-06 1998-03-11 Hamamatsu Photonics K.K. Side-on type photomultiplier
EP0828282A2 (en) * 1996-09-06 1998-03-11 Hamamatsu Photonics K.K. Side-on type photomultiplier
WO2003004982A1 (en) * 2001-07-05 2003-01-16 Hamamatsu Photonics K.K. Spectroscopic device
JP2010190652A (en) * 2009-02-17 2010-09-02 Mitsui Eng & Shipbuild Co Ltd Fluorescence detecting method, fluorescence detector and program

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082821A (en) * 1983-10-13 1985-05-11 Horiba Ltd Time-decomposed light-emitting-spectrum measuring method
JPS60209146A (en) * 1984-03-31 1985-10-21 Olympus Optical Co Ltd Fluorescence spectrochemical analysis device
JPS6484123A (en) * 1987-09-27 1989-03-29 Hamamatsu Photonics Kk Photometric device
JPH02234050A (en) * 1989-03-08 1990-09-17 Hamamatsu Photonics Kk Light wave measuring device
EP0828284A2 (en) * 1996-09-06 1998-03-11 Hamamatsu Photonics K.K. Magnetic shielding case for accomodating photomultiplier and light detecting apparatus including the same
EP0828283A2 (en) * 1996-09-06 1998-03-11 Hamamatsu Photonics K.K. Side-on type photomultiplier
EP0828282A2 (en) * 1996-09-06 1998-03-11 Hamamatsu Photonics K.K. Side-on type photomultiplier
EP0828282A3 (en) * 1996-09-06 1999-04-28 Hamamatsu Photonics K.K. Side-on type photomultiplier
EP0828283A3 (en) * 1996-09-06 1999-04-28 Hamamatsu Photonics K.K. Side-on type photomultiplier
EP0828284A3 (en) * 1996-09-06 1999-05-12 Hamamatsu Photonics K.K. Magnetic shielding case for accomodating photomultiplier and light detecting apparatus including the same
US6114621A (en) * 1996-09-06 2000-09-05 Hamamatsu Photonics K.K. Photomultiplier with magnetic shielding case
WO2003004982A1 (en) * 2001-07-05 2003-01-16 Hamamatsu Photonics K.K. Spectroscopic device
US7038775B2 (en) 2001-07-05 2006-05-02 Hamamatsu Photonics K.K. Spectroscopic device
JP2010190652A (en) * 2009-02-17 2010-09-02 Mitsui Eng & Shipbuild Co Ltd Fluorescence detecting method, fluorescence detector and program

Also Published As

Publication number Publication date
JPH0222334B2 (en) 1990-05-18

Similar Documents

Publication Publication Date Title
James et al. Excitation pulse‐shape mimic technique for improving picosecond‐laser‐excited time‐correlated single‐photon counting deconvolutions
Yamazaki et al. Microchannel‐plate photomultiplier applicability to the time‐correlated photon‐counting method
Ware et al. Performance characteristics of a small side‐window photomultiplier in laser single‐photon fluorescence decay measurements
Harris et al. Sub-nanosecond time-resolved rejection of fluorescence from Raman spectra
Tahara et al. Picosecond Raman spectroscopy using a streak camera
Tsuchiya Advances in streak camera instrumentation for the study of biological and physical processes
Kinoshita et al. Subnanosecond fluorescence‐lifetime measuring system using single photon counting method with mode‐locked laser excitation
US4630925A (en) Compact temporal spectral photometer
JPS5845524A (en) Method and device for time-resolved spectroscopy by single photon counting method
Ushida et al. Implementation of an image intensifier coupled with a linear position‐sensitive detector for measurements of absorption and emission spectra from the nanosecond to millisecond time regime
Allemand Spectroscopy of single-spike laser-generated plasmas
Vorobiev et al. A PS-1/S1 picosecond streak camera in experimental physics
Sesi et al. An imaging-based instrument for fundamental plasma studies
Ito et al. Picosecond time‐resolved absorption spectrometer using a streak camera
Kinoshita et al. Picosecond fluorescence spectroscopy by time-correlated single-photon counting
Nordlund Streak cameras for time-domain fluorescence
Bolshov et al. The use of a dye laser for the detection of sub-picogram amounts of lead and iron by atomic fluorescence spectrometry
Bolshov et al. Some characteristics of laser excited atomic fluorescence in a three-level scheme
Omenetto et al. Pulsed source atomic fluorescence spectrometry
Treytl et al. Spatial differentiation of optical emission in Q-switched laser-induced plasmas and effects on spectral line analytical sensitivity
US4682020A (en) Picosecond gated light detector
US4659921A (en) Ultrafast gated light detector
JPS5845522A (en) Method and device for time-resolved spectroscopy by single photon counting method
US4983041A (en) Spectroscopic apparatus for extremely faint light
Becker et al. Flexible instrument for time‐correlated single‐photon counting