JPS5844759B2 - Electrolysis method and device using electrodes with fluid permeation function - Google Patents

Electrolysis method and device using electrodes with fluid permeation function

Info

Publication number
JPS5844759B2
JPS5844759B2 JP2743781A JP2743781A JPS5844759B2 JP S5844759 B2 JPS5844759 B2 JP S5844759B2 JP 2743781 A JP2743781 A JP 2743781A JP 2743781 A JP2743781 A JP 2743781A JP S5844759 B2 JPS5844759 B2 JP S5844759B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic
electrolyte
gas
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2743781A
Other languages
Japanese (ja)
Other versions
JPS57140893A (en
Inventor
久 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATSUKAWA KOGYO KK
Original Assignee
KATSUKAWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATSUKAWA KOGYO KK filed Critical KATSUKAWA KOGYO KK
Priority to JP2743781A priority Critical patent/JPS5844759B2/en
Publication of JPS57140893A publication Critical patent/JPS57140893A/en
Publication of JPS5844759B2 publication Critical patent/JPS5844759B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】 本発明は流体透過機能を兼備した電極による電解方法と
その装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolysis method and apparatus using an electrode having a fluid permeation function.

従来の電解方法による、例えばアルミニウムの陽極酸化
皮膜処理の要点を第1図により説明する。
The main points of, for example, anodic oxidation coating treatment of aluminum by a conventional electrolytic method will be explained with reference to FIG.

1′は電解槽車検、1′−1はオーバーフロ一槽、2′
は電解液、3′は電極■(対極)、4′は電極■(被処
理物アルミニウム)、5′は電解液吸収配管、6′は電
解液環流配管、7′は電解電源配縁、8′は排風ダクト
、P′は電解液吸収環流用ポンプ、B′は電解液用濾過
装置、C′は電解液用熱交換装置、R′は電解用電源装
置、D′は排気吸収用ダクト、MB2は排気清浄装置(
ミストセパレーター)、B′は排気用ブロワ−装置であ
る。
1' is an electrolytic tank vehicle inspection, 1'-1 is an overflow tank, 2'
is the electrolyte, 3' is the electrode (counter electrode), 4' is the electrode (aluminum to be treated), 5' is the electrolyte absorption piping, 6' is the electrolyte circulation piping, 7' is the electrolysis power supply wiring, 8 ' is an exhaust duct, P' is an electrolyte absorption and circulation pump, B' is an electrolyte filtration device, C' is an electrolyte heat exchange device, R' is an electrolytic power supply device, and D' is an exhaust gas absorption duct. , MB2 is an exhaust cleaning device (
mist separator), and B' is an exhaust blower device.

電解用電源装置R′から配線7′で結線された両電極3
′及び4’IIに架電されると、車種1′内において電
解液2′を通じて電解電流が流れ、例えば電源装置R′
→配線7′→剖電極4′■(被処理物)→電解液2′+
(ハ)電極3’I→配線7′→電源装置R′の回路が生
じ、これにより電極4’Iと電解液2′、同電解液2′
と電極3’Iの間で夫々電解作用が行われる。
Both electrodes 3 connected by wiring 7' from electrolytic power supply R'
' and 4'II, an electrolytic current flows through the electrolytic solution 2' in the vehicle model 1', for example, the power supply R'
→ Wiring 7' → Autopsy electrode 4'■ (object to be treated) → Electrolyte 2'+
(c) A circuit of electrode 3'I → wiring 7' → power supply R' is formed, and this causes electrode 4'I, electrolyte 2', and electrolyte 2'
Electrolytic action is performed between the electrode 3'I and the electrode 3'I.

その結果、被処理物(アルミニウム)なる電極4′■は
電解処理され、アルミニウムの表面部に陽極酸化皮膜が
形成され、対極3’Iは電解液2′と共に電路を形成す
るが、その際同電解液2′中から水素ガスを発生させる
As a result, the electrode 4'■, which is the object to be treated (aluminum), is electrolytically treated and an anodic oxide film is formed on the surface of the aluminum, and the counter electrode 3'I forms an electric path together with the electrolyte 2'. Hydrogen gas is generated from the electrolyte 2'.

この電解処理工程で発生するガスの大部分はこの水素ガ
スであり、これが電極3’ Iの周囲液中に多量に混在
する状態は電解電流の通過を阻害する要因ともなり、又
上記混在水素ガス気泡が液中から槽1′の上部へのぼっ
て空中に放散しようとする時、電解液2′のミストを同
伴して空中に持ち出す現象も無視できない。
Most of the gas generated in this electrolytic treatment step is hydrogen gas, and the presence of a large amount of hydrogen gas in the liquid surrounding the electrode 3'I may obstruct the passage of electrolytic current, and the mixed hydrogen gas When the bubbles rise from the liquid to the upper part of the tank 1' and attempt to disperse into the air, the phenomenon that the mist of the electrolytic solution 2' is brought into the air cannot be ignored.

こ\で、槽周辺の空中に飛散するガスやミストを捕集す
るため、通常は槽上側方に排気吸収用ダクトD′を設け
、排気ダクト8′により排気清浄装置MS’を介して排
気mブロワ−装置B′に接続して外気空中に放出してお
り、又一方、電解槽水槽1′内で両電極3’I及び4′
■の周囲を始めとする槽内の電解条件保持のために電解
液の循環処理を行っていた。
In this case, in order to collect gas and mist scattered in the air around the tank, an exhaust absorption duct D' is usually provided on the upper side of the tank, and the exhaust duct 8' exhausts the air through the exhaust purifier MS'. It is connected to a blower device B' and discharged into the outside air, and on the other hand, both electrodes 3'I and 4' are connected in the electrolytic tank water tank 1'.
The electrolyte was circulated to maintain the electrolytic conditions in the tank, including around (2).

即ち、電解槽水槽1′から電解液2′をオーバーフロー
させ、オーバーフロ一槽1′−1に受けとった電解液2
′は電解液吸収配管5′を通じて電解液吸収環流ポンプ
P′に至り、さらに電解液用済過装置S′で液中の混雑
物を除去したのち、電解液用熟交換装置C′で温度制御
して、電解液環流配管6′に流出し、電解槽水槽1′内
に環流せしめる。
That is, the electrolytic solution 2' is overflowed from the electrolytic tank water tank 1', and the electrolytic solution 2' received in the overflow tank 1'-1 is
' reaches the electrolyte absorption reflux pump P' through the electrolyte absorption piping 5', and after removing the congested matter in the electrolyte with the electrolyte purging device S', the temperature is controlled with the electrolyte exchanger C'. Then, the electrolyte flows out into the electrolyte reflux pipe 6' and is circulated into the electrolytic tank water tank 1'.

このような液循環による液管理や電源装置R′からの電
解電流の制御と、排気装置による廃気処理等を併用して
正常な電解処理条件が確保され、安全な運転がなされて
いる。
Normal electrolytic treatment conditions are ensured by the combination of liquid management through liquid circulation, control of the electrolytic current from the power supply R', and exhaust gas treatment by the exhaust device, and safe operation is achieved.

しかし、前述のような通常の液循環を行っても、電極3
’Iの表面に発生するガス気泡は容易には除去されず、
徐々にその気泡が成長しながら電極3’Iの表面に付着
した状態となるか、電極表面から離れてもその周辺で浮
遊状態で混在しているのが実状である。
However, even if the normal liquid circulation as described above is performed, the electrode 3
'The gas bubbles generated on the surface of I are not easily removed,
The reality is that the bubbles gradually grow and become attached to the surface of the electrode 3'I, or even if they are separated from the electrode surface, they are mixed in a floating state around the electrode surface.

このような状態を改善するためには液循環量をほう大に
して電極表面や、その周辺での電解液流速を上げて、ガ
ス気泡を剥離して流し出す方法等が考えられるが、循環
量を増大させることは設備スペースや資金的にも影響が
大きい。
In order to improve this situation, it is possible to increase the flow rate of the electrolyte on the electrode surface and its surroundings by increasing the flow rate of the electrolyte to separate and flush out the gas bubbles. Increasing the number of units will have a large impact on equipment space and funding.

又発生ガスが槽液面から槽上の大気中に出て放散しよう
とするところを排気装置により捕集するのが、現在の排
気方法(第1図により前に説明した方法)であるが、こ
れも捕集率を上けるためには吸収容量を増大させ多量の
周囲空気を同時に吸収する必要があるため、同じく設備
容量、スペース、資金の増大は免れないので、巨大化と
効率的運用には相反する要素が多い。
In addition, the current exhaust method (method explained earlier with reference to Figure 1) is to use an exhaust device to collect the generated gas from the tank liquid level into the atmosphere above the tank, where it is about to be dissipated. In order to increase the collection rate, it is necessary to increase the absorption capacity and absorb a large amount of ambient air at the same time, so it is also inevitable that the equipment capacity, space, and funds will increase, so it will not be possible to increase the size and operate efficiently. has many contradictory elements.

本発明は上記の点に鑑み案出されたもので、1つの電解
槽の中で例えば被処理物を一方の電極とし、同電極と他
方の対極電極に梨型することにより、電解液と被処理物
とその対極電極との相互間で電解作用又は析出作用を行
って被処理物を処理する電解装置において、前記対極電
極として導電性が良好で流体透過性(多孔質)を有する
材料を使用し、該流体透過電極の接液面に発生したガス
気泡を電解液と共に透過させて発生ガスの大部分を電解
槽内で吸収し、同発生カスを分離した電解液を電解槽へ
の環流に利用する電解方法とその装置に係る。
The present invention has been devised in view of the above points, and in one electrolytic cell, for example, the object to be treated is used as one electrode, and the same electrode and the other counter electrode are arranged in a pear shape. In an electrolytic device that processes an object by performing an electrolytic action or a precipitation action between the object to be processed and its counter electrode, a material with good conductivity and fluid permeability (porous) is used as the counter electrode. Then, the gas bubbles generated on the wetted surface of the fluid-permeable electrode are permeated together with the electrolyte, most of the generated gas is absorbed in the electrolytic cell, and the electrolyte from which the generated scum has been separated is returned to the electrolytic cell. This relates to the electrolytic method and equipment used.

本発明を第2図乃至第4図に示された実施例に基いて説
明する。
The present invention will be explained based on the embodiments shown in FIGS. 2 to 4.

第2図、第3図は夫々異った実施例の1部縦断概略断面
図、第4図は第2図実施例に使用される流体透過性電極
(1つの例)の作用説明図である。
2 and 3 are partial longitudinal sectional schematic views of different embodiments, and FIG. 4 is an explanatory diagram of the action of the fluid-permeable electrode (one example) used in the embodiment of FIG. 2. .

第1実施例 第2図は第1図に対応した実施例を示し、1は電解槽水
槽、2は電解液、2−1は透過電解液(電解・液中は発
生ガス気泡も混入している)、3は多孔質材からなる円
筒管形状の流体透過電極(電極I)、4は被処理物(電
極■六5は電解液吸収配管、6は電解液環流配管、7は
電解電源配線、8は排気配管、Tは気液分離装置(気密
タンク)、Pは電解液吸収環流用ポンプ、Sは電解液用
濾過装置、Cは電解液用熟交換装置、Rは電解用電源装
置、Bは排気用ブロワ−装置、MSは排気清浄装置(ミ
ストセパレーター)を示す。
1st Embodiment Figure 2 shows an example corresponding to Figure 1, in which 1 is an electrolytic tank, 2 is an electrolytic solution, and 2-1 is a permeable electrolytic solution (the electrolyte/solution also contains generated gas bubbles). 3 is a cylindrical tube-shaped fluid-permeable electrode made of porous material (electrode I), 4 is the object to be treated (electrode), 6 is an electrolyte absorption pipe, 6 is an electrolyte circulation pipe, 7 is an electrolysis power supply wiring , 8 is an exhaust pipe, T is a gas-liquid separation device (airtight tank), P is a pump for electrolyte absorption and reflux, S is a filtration device for electrolyte, C is a deep exchange device for electrolyte, R is a power supply device for electrolysis, B indicates an exhaust blower device, and MS indicates an exhaust gas cleaning device (mist separator).

上記第2図の電解装置において、第1図に例示されたア
ルミニウムの陽極酸化処理を施すと、電解槽水槽1内に
おいて電源装置Rから配線7で結線された両電極3I及
び4■に梨型され、車検1内の電解液2を通じて電解電
流が流れ、電源装置R→配線7−+電極■の被処理物4
→電解液2→(@電極Iの流体透過電極3→配線7→電
源装置Rの回路が生じ、これにより被処理物4■と電解
液2、電解液2と本発明に使用の流体透過電極3Iの間
で夫々電解作用が行われ、その際上記電極3■の接液面
に水素ガスの気泡が発生生長することは変らないが、該
流体透過電極3■を形、或する材料の有する良好導電性
であって多孔質構造である特性により、周囲の電解液2
を円筒内部に透過し、これが 電解液吸収環流用ポンプ
Pの吸引力によつ゛C配管5に流出することによる連続
的透過作用により前記発生カス気泡の大部分を液2と共
に内部に吸収し、電極周辺のガス気泡を浮遊寸前で捕集
することにより、槽上から大気中に放散するものを激減
するようになっている。
In the electrolyzer shown in FIG. 2 above, when the aluminum is anodized as shown in FIG. Then, an electrolytic current flows through the electrolyte 2 in the vehicle inspection 1, and the power supply R → wiring 7- + the object 4 of the electrode ■
→ Electrolyte 2 → (@Fluid-permeable electrode 3 of electrode I → Wiring 7 → Power supply R circuit is created, and as a result, the object to be treated 4■, electrolyte 2, electrolyte 2 and fluid-permeable electrode used in the present invention An electrolytic action is carried out between the electrodes 3 and 3I, and at this time, hydrogen gas bubbles are still generated and grown on the liquid contact surface of the electrode 3. Due to its characteristics of good conductivity and porous structure, the surrounding electrolyte 2
permeates into the cylinder, and this flows out into the C pipe 5 due to the suction force of the electrolyte absorption and reflux pump P, thereby absorbing most of the generated gas bubbles into the interior along with the liquid 2, By collecting gas bubbles around the electrodes just before they float, the amount of gas that escapes into the atmosphere from the top of the tank is drastically reduced.

ここで、流体透過電極3Iによる透過作用を第4図によ
り説明すると、同電極3■は良好導電性を有し内部が中
空の円筒管形状の多孔質材3Aから成り、電極リード部
3−1から電解用電流(矢印aで示す)を印加して、多
孔質材3Aの外周面で矢印すのごとく電解液2と通電し
電解作用を行なう。
Here, to explain the permeation effect by the fluid permeable electrode 3I with reference to FIG. 4, the electrode 3I is made of a porous material 3A having good conductivity and a hollow cylindrical tube shape, and the electrode lead portion 3-1 An electrolytic current (indicated by the arrow a) is applied from the porous material 3A, and the electrolytic solution 2 is energized in the direction of the arrow on the outer peripheral surface of the porous material 3A to perform an electrolytic action.

他方、同電極3Iを形成する多孔質材3Aの中空下端部
は、図示のごとく透過液排出管32、配管5、気液分離
装置Tを介して排気用ブロワ−装置Bおよび電解液吸収
環流用ポンプPの夫夫吸入口につながっているので、多
孔質材3A内の内圧は負圧となり、同多孔質材3Aの表
面から電解液2を中空部に向けて滲透透過させる。
On the other hand, the hollow lower end of the porous material 3A forming the electrode 3I is connected to an exhaust blower device B and an electrolyte absorption/recirculation device via a permeate discharge pipe 32, piping 5, and a gas-liquid separator T as shown in the figure. Since it is connected to the inlet of the pump P, the internal pressure inside the porous material 3A becomes negative pressure, and the electrolytic solution 2 permeates from the surface of the porous material 3A toward the hollow portion.

従って、多孔質材3Aの表面に発生したガス気泡は前記
透過電解液2−1と共に上記多孔質電極材3Aを透過し
中空部分に吸い込まれて、矢印dのごとく透過電解液(
循環液)2−1と混在したまま移動される。
Therefore, the gas bubbles generated on the surface of the porous material 3A pass through the porous electrode material 3A together with the permeated electrolyte 2-1 and are sucked into the hollow portion, and the permeated electrolyte (
Circulating fluid) is moved while being mixed with 2-1.

気液混合で吸収された透過電解液2−1は電解液吸収配
管5を通って気液分離装置Tに収容される。
The permeated electrolyte 2-1 absorbed by gas-liquid mixing passes through the electrolyte absorption pipe 5 and is accommodated in the gas-liquid separator T.

気液分離装置Tを形成する密閉槽の容量が吸収する透過
電解液2−1の流量に比して充分大きければ、気液混合
の状態は上部に気体(ガス)と、下部に液体(電解液)
とが分離し、上下部から夫夫の流路(排気用ブロワ−装
置B1電解液が成環流用ポンプPへの流路)に吸収され
て次段階に進む。
If the capacity of the sealed tank that forms the gas-liquid separator T is sufficiently large compared to the flow rate of the absorbed permeated electrolyte 2-1, the gas-liquid mixture will have gas in the upper part and liquid (electrolyte) in the lower part. liquid)
are separated, and are absorbed from the upper and lower parts into the flow path (the flow path for the exhaust blower B1 electrolyte to the reflux pump P) to proceed to the next stage.

即ち電解液2は液中にスラッジや挾雑物があれば、環流
用ポンプPによって押し出されて濾過装置Sを通過する
際に除去し、又更に熱交換装置Cにおいて車種1内の電
解液2の温度管理に対し有効な温度に制御調温して環流
配管6を介して水槽1に環流する。
That is, if the electrolytic solution 2 contains sludge or foreign matter, it is removed when it is pushed out by the reflux pump P and passes through the filtration device S, and the electrolytic solution 2 in the vehicle type 1 is further removed in the heat exchange device C. The temperature is controlled to an effective temperature for temperature control, and the water is returned to the water tank 1 via the reflux pipe 6.

排気配管8を介してブロワ−装置Bに吸収されたガスは
、清浄装置MSにより混入ミストや雑物を除去されて大
気中に放出するか、或いはそれを回収利用することが出
来る。
The gas absorbed by the blower device B via the exhaust pipe 8 can be removed from mixed mist and impurities by the cleaning device MS and then released into the atmosphere, or can be recovered and used.

なお、上記実施例において電解槽中から気液混合の状態
で吸収された電解液は、吸収環流用ポンプPの吸入側(
負圧側)に接続配列された気液分離装置Tにおいて混在
ガスを分離し、排気用ブロワ−装置によって抽出される
形式になっているが、この気液分離装置Tを前記吸収環
流用ポンプPの吐出側(加圧側)に接続配置することも
出来る。
In addition, in the above embodiment, the electrolytic solution absorbed in a gas-liquid mixed state from the electrolytic cell is transferred to the suction side (
The mixed gas is separated in a gas-liquid separator T connected to the negative pressure side (negative pressure side) and extracted by an exhaust blower device. It can also be connected and arranged on the discharge side (pressure side).

この場合は混在ガスの分離が加圧気圧の中で進められる
ため、分離速度や分離率の低下が認められるが、分離し
たガスも加圧された状態にあるため排気用ブロワ−装置
の吸収作用を省略してガス抽出が実砲出来る。
In this case, the separation of mixed gases proceeds under pressurized air pressure, so a decrease in separation speed and separation rate is observed, but since the separated gas is also in a pressurized state, the absorption effect of the exhaust blower device is reduced. You can omit the gas extraction and use the actual gun.

第2実施例 この実施例は第3図に示すごとく平板状の流体透過電極
を使用した場合であり、11は電解槽車検、11−1は
透過液受槽、12は電解液、13は流体透過電極■、1
4は被処理物で電極■、15は電解液吸収配管、16は
電解液環流配管、17は電解電源配線、18は排気配管
であり、P、S、C,R,B、MSは夫々第2図と同じ
く液吸収環流用ポンプ、濾過装置、熱交換装置、電源装
置、ブロワ−装置、清浄装置を示す。
Second Embodiment This embodiment uses a flat fluid-permeable electrode as shown in Fig. 3, where 11 is an electrolytic tank vehicle inspection, 11-1 is a permeated liquid receiving tank, 12 is an electrolytic solution, and 13 is a fluid permeable electrode. Electrode ■, 1
Reference numeral 4 indicates the object to be treated, which is an electrode (1), 15 is an electrolyte absorption pipe, 16 is an electrolyte circulation pipe, 17 is an electrolytic power supply wiring, 18 is an exhaust pipe, and P, S, C, R, B, and MS are respective numbers. As in Figure 2, a pump for liquid absorption and circulation, a filtration device, a heat exchange device, a power supply device, a blower device, and a cleaning device are shown.

作用としては第2図の第1実施例装置と略同様であるが
、流体透過電極13Iが平板形状であり、電解液12は
水槽11側から受槽11−1側に透過する形となり、透
過した電解液12−1は受槽11−1内で気液分離し、
上端からはガスが配管18を介して排気ブロワ−装置B
および排気清浄装置MSを通って大気中へ放出するか、
回収する。
The operation is almost the same as the device of the first embodiment shown in FIG. 2, but the fluid permeable electrode 13I has a flat plate shape, and the electrolytic solution 12 is permeated from the water tank 11 side to the receiving tank 11-1 side, and the permeated liquid is The electrolytic solution 12-1 is separated into gas and liquid in the receiving tank 11-1,
Gas flows from the upper end via piping 18 to exhaust blower device B.
and discharge into the atmosphere through the exhaust cleaning device MS, or
to recover.

つまり、この第2実施例の流体透過電極は平板状である
に対し、第1実施例のものは円筒状である点で相違し、
従って電解液及びガス気泡の透過方向が違い、気液分離
の装置が違うだけである。
In other words, the fluid-permeable electrode of the second embodiment is flat, whereas that of the first embodiment is cylindrical.
Therefore, the only difference is the permeation direction of the electrolyte and gas bubbles and the gas-liquid separation device.

云い換えれば、第1実施例における気液分離装置(気密
タンク)Tの部分を水槽1の側面に流体透過電極13I
の平板形状のものを仕切り状に装着して結合させた構造
であって、その部分が透過液受槽11−1となっており
、電解液吸収配管15、排気配管18を介して夫々接続
されている液吸収環流用ポンプP1ブロワー装置Bの作
用によって透過液受槽11−1内が負圧となり、水槽1
1内から電解液12が吸入され、その際流体透過電極1
3Iの車検側表面に発生したガス気泡を一緒に吸収する
In other words, the part of the gas-liquid separator (airtight tank) T in the first embodiment is replaced with the fluid permeable electrode 13I on the side of the water tank 1.
It has a structure in which flat plate-shaped parts are attached and connected in the form of a partition, and that part serves as a permeated liquid receiving tank 11-1, and is connected via an electrolyte absorption pipe 15 and an exhaust pipe 18, respectively. Due to the action of the liquid absorption reflux pump P1 blower device B, the inside of the permeated liquid receiving tank 11-1 becomes negative pressure, and the water tank 1
An electrolytic solution 12 is sucked in from within the fluid-permeable electrode 1 .
It also absorbs gas bubbles generated on the inspection side surface of 3I.

水槽11内では電解液12を介して被処理物なる電極1
411と流体透過電極13Iとの間で電路を形成して夫
々電解作用が行なわれることは当然である。
In the water tank 11, the electrode 1, which is the object to be treated, is passed through the electrolyte 12.
It goes without saying that an electric path is formed between the electrode 411 and the fluid-permeable electrode 13I, and electrolytic action is performed in each case.

さらに図示しないが、他の実施例として流体透過電極を
電解槽本槽内の両極として使用し、電解液そのものを電
気分解するための電解装置として使用することも可能で
ある。
Furthermore, although not shown, as another embodiment, fluid-permeable electrodes can be used as both poles in the main tank of the electrolytic cell, and used as an electrolytic device for electrolyzing the electrolytic solution itself.

なお、上記流体透過電極に使用される材質には、例えば
多孔質な導電性良好なポーラスカーボンとか、焼結金属
又は圧粒金属専が挙げられるが、電極としての作用が(
1)極、−極としての場合、交流電源が印加される場合
とか、又電解液の種類による耐薬品性とかの諸条件によ
って難かしい問題も内在するので、夫々の場合に応じて
適正のものを使用すべきである。
The material used for the above-mentioned fluid permeable electrode includes, for example, porous carbon with good conductivity, sintered metal, or compact metal, but the function as an electrode is (
1) In the case of polarity or negative polarity, there are inherent difficulties depending on various conditions such as when AC power is applied and chemical resistance depending on the type of electrolyte, so choose the appropriate one depending on each case. should be used.

要するに、本発明は1つの電解槽の中で、例えば被処理
物を一方の電極とし、これに対し他方に電解液を介して
対極電極を設置し、前記両極に梨型することにより電解
槽内で電解液と被処理物とその対極電極との相互間で電
解作用又は析出作用を行って被処理物の処理工程を実施
する電解装置において、前記対極電極として導電性が良
好で流体透過性を有する材料を使用し、電解作用又は析
出作用により該流体透過電極の接液面に発生したガス気
泡を電解液とともに前記流体透過電極を通して透過させ
ることにより発生ガスの大部分を電解槽内で吸収して大
気中に放出または回収し、一方前記発生ガスを分離した
電解液は電解槽に環流させるようにしたことを特徴とす
る流体透過機能を兼備した電極による電解方法である。
In short, the present invention provides, for example, in one electrolytic cell, the object to be treated is used as one electrode, and a counter electrode is installed on the other side via an electrolyte, and the two electrodes are formed into a pear shape. In an electrolytic device that performs an electrolytic action or a precipitation action between an electrolytic solution, a workpiece, and its counter electrode to perform a treatment process on the workpiece, the counter electrode has good conductivity and fluid permeability. Most of the generated gas is absorbed in the electrolytic cell by using a material that has a material containing the fluid and allowing gas bubbles generated on the liquid-contacting surface of the fluid-permeable electrode by electrolysis or precipitation to permeate through the fluid-permeable electrode together with the electrolyte. This is an electrolysis method using an electrode having a fluid permeation function, which is characterized in that the generated gas is discharged or recovered into the atmosphere, and the electrolytic solution from which the generated gas is separated is returned to the electrolytic cell.

即ち、本発明方法によるときは(i)、被処理物の対極
電極として導電性が良好で流体透過性を有する材料を使
用し、電解作用時前記流体透過性電極の接液面に発生し
たガス気泡の大部分を電解液と共に吸収するので、極周
辺のガス気泡を浮遊寸前で捕集でき、従って槽上大気中
に放散するガスを激減することが出来る。
That is, when using the method of the present invention, (i) a material with good conductivity and fluid permeability is used as the counter electrode of the object to be treated, and the gas generated on the liquid contact surface of the fluid permeable electrode during electrolysis is Since most of the bubbles are absorbed together with the electrolyte, the gas bubbles around the pole can be collected before they become floating, and the amount of gas dissipated into the atmosphere above the tank can be drastically reduced.

つまり、ガス放散による公害発生を拡散させないうちに
、発生源で未然に吸収することになるので、その効果は
非常に効率的である。
In other words, the effect is very efficient because the pollution caused by gas dissipation is absorbed at the source before it is diffused.

([1)、又電解の種類により電極の種類((+)又は
(→の梨型)に応じて発生するガスの種類も定まるが、
本発明の電解方法を活用すれば非常に純度の高いガスを
吸収補集しうるので、ガスを回収利用したい場合、或い
は処理したい場合には大きなメリットが期待できる。
([1), Also, the type of gas generated depends on the type of electrode ((+) or (→ pear-shaped)) depending on the type of electrolysis.
If the electrolysis method of the present invention is utilized, it is possible to absorb and collect gas with extremely high purity, so great benefits can be expected when it is desired to recover and utilize gas or when it is desired to process gas.

(iii)、上記(1)により電解液中の浮遊ガス気泡
が激減するので、通電条件が改善され電解能力が増加す
る。
(iii) Since the floating gas bubbles in the electrolyte are drastically reduced by the above (1), the energization conditions are improved and the electrolytic capacity is increased.

(■)又、排気装置の容量は少くてすみ、設備の大きさ
やそのスペース等も低減化でき、資金も大巾に減少する
等の秀れた効果を奏する。
(■) Also, the capacity of the exhaust system is small, the size of the equipment and its space can be reduced, and there are excellent effects such as a significant reduction in funds.

又本発明は電解槽の中で、一方の電極である被処理物に
対し、導電性が良好で流体透過性を有する材料を対極と
し、該流体透過電極によって透過された電解液を電解槽
に戻すための吸引ポンプ付き液循環装置と、前記透過電
解液ととも吸収された前記流体透過電極の接液面に発生
したガス気泡を回収するか、或いは大気中に放出するた
めの排気用ブロワ−付きガス取出し装置とを夫々各別に
設けたことを特徴とする流体透過機能を兼備した電極に
よる電解装置である。
Further, in the present invention, in an electrolytic cell, a material having good conductivity and fluid permeability is used as a counter electrode to the object to be treated, which is one electrode, and the electrolytic solution permeated by the fluid permeable electrode is transferred to the electrolytic cell. a liquid circulation device with a suction pump for returning the liquid; and an exhaust blower for recovering gas bubbles generated on the liquid contact surface of the fluid permeable electrode absorbed with the permeating electrolyte or releasing them into the atmosphere. This is an electrolytic device using electrodes having a fluid permeation function, characterized in that a gas extraction device and a gas extraction device are provided separately.

即ち上記本発明装置にあっては1方の電極である被処理
物の対極として使用される流体透過電極の接液面に発生
したガス気泡の大部分を、ガス取出し装置の排気用ブロ
ワ−及び電解液吸収還流用ポンプの作動によって前記対
極の透過電極表面から電解液と共に同電極を透過して電
解槽内で吸収し、同発生ガスを分離した電解液は液循環
装置により電解槽に還流させると共に、一方の分離後の
ガスはガス取出し装置によって大気中に放出するか、又
は回収するかの倒れにも使用可能になっており、前記本
発明方法を確実に実施できるほか下記の作用効果を有す
る。
That is, in the apparatus of the present invention, most of the gas bubbles generated on the liquid contact surface of one electrode, the fluid permeable electrode used as the counter electrode of the object to be treated, are removed by the exhaust blower of the gas extraction device and By operating the electrolyte absorption and reflux pump, the electrolyte passes through the electrode along with the electrolyte from the surface of the counter electrode and is absorbed in the electrolytic cell, and the generated gas is separated and the electrolyte is returned to the electrolytic cell by the liquid circulation device. At the same time, the gas after one of the separations can be released into the atmosphere by a gas extraction device or used for recovery. In addition to being able to reliably carry out the method of the present invention, the following effects can also be achieved. have

従来装置では対極の接液面に発生したガスは周囲液中に
多量に混在して電解電流の通過を阻害し、又液中から空
中に放散するとき、その空気や電解液のミスト等の異物
を同伴するためガスの回収率が悪いし、周囲空気を一緒
に吸収するので、排気用ブロワ−の容量が大きくなる等
により設備容量、スペース、資金の増大を招来するが、
本発明装置によれば、流体透過電極の接液面に発生した
ガス気泡を浮遊寸前で電解液と共に吸収するのでガス捕
集効果を大巾に高めることが出来、従って上記従来装置
による不具合を解消する。
In conventional devices, a large amount of gas generated on the liquid contact surface of the counter electrode mixes in the surrounding liquid and obstructs the passage of electrolytic current, and when it dissipates into the air from the liquid, it causes foreign matter such as air or electrolyte mist. The gas recovery rate is poor because the gas is entrained, and the surrounding air is also absorbed, which increases the capacity of the exhaust blower and increases equipment capacity, space, and funding.
According to the device of the present invention, gas bubbles generated on the wetted surface of the fluid-permeable electrode are absorbed together with the electrolyte before they float, so the gas trapping effect can be greatly enhanced, thus eliminating the problems caused by the conventional device described above. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電解装置の概略1部縦断面図、第2図及
び第3図は夫々本発明方法を実施する電解装置の1部縦
断の概略断面図であり、第4図は第2図の実施例に使用
される流体透過電極の構造作用を説明するための断面図
である。 図において、1,11・・・・・・電解槽水槽、2,1
2・・・・・・電解液、3,13・・・・・・流体透過
電極、4,14・・・・・・被処理物、P・・・・・・
電解液吸収還流用ポンプ、S・・・・・・濾過装置、C
・・・・・・熱交換装置 、吸引ポンプ付き液循環装置
、B・・・・・・排気用ブロワ−1M5・・・・・・清
浄装置で、排気用ブロワ−付きガス取出し装島
FIG. 1 is a schematic longitudinal cross-sectional view of a part of a conventional electrolysis apparatus, FIGS. FIG. 3 is a cross-sectional view for explaining the structure and operation of the fluid-permeable electrode used in the illustrated embodiment. In the figure, 1, 11... Electrolytic tank water tank, 2, 1
2... Electrolyte, 3, 13... Fluid permeable electrode, 4, 14... Object to be treated, P...
Electrolyte absorption and reflux pump, S...filtration device, C
...Heat exchange device, liquid circulation device with suction pump, B...Exhaust blower 1M5...Cleaning device, gas extraction device with exhaust blower

Claims (1)

【特許請求の範囲】 11つの電解槽の中で、例えば被処理物を一方の電極と
し、これに対し他方に電解液を介して対極電極を設置し
、前記両極に架電することにより電解槽内で電解液と被
処理物とその対極電極との相互間で電解作用又は析出作
用を行って被処理物の処理工程を実施する電解装置にお
いて、前記対極電極として導電性が良好で流体透過性を
有する材料を使用し、電解作用又は析出作用により該流
体透過性電極の接液面に発生したガス気泡を電解液とと
もに前記流体透過電極を通して透過させることにより発
生ガスの大部分を電解槽内で吸収して大気中に放出また
は回収し、一方前記発生ガスを分離した電解液は電解槽
に環流させるようにしたことを特徴とする流体透過機能
を兼備した電極による電解方法。 2 電解槽の中で、一方の電極である被処理物に対し、
導電性が良好で流体透過性を有する材料を対極とし、該
流体透過電極によって透過された電解液を電解槽に戻す
ための吸引ポンプ付き液循環装置と、前記透過電解液と
ともに吸収された前記流体透過電極の接液面に発生した
ガス気泡を回収するか、或いは大気中に放出するための
排気用ブロワ−付きガス取出し装置とを夫々各別に設け
たことを特徴とする流体透過機能を兼備した電極による
電解装置。
[Claims] In the 11 electrolytic cells, for example, the object to be treated is used as one electrode, and a counter electrode is installed on the other side via an electrolyte, and an electric current is applied to the two electrodes. In an electrolytic device that performs a treatment process on a workpiece by performing an electrolytic action or a precipitation action between an electrolytic solution, a workpiece, and its counter electrode, the counter electrode has good conductivity and fluid permeability. Most of the generated gas can be absorbed into the electrolytic cell by using a material having a material having 1. An electrolysis method using an electrode having a fluid permeation function, characterized in that the generated gas is absorbed and released into the atmosphere or recovered, while the electrolytic solution from which the generated gas is separated is returned to an electrolytic cell. 2 In the electrolytic cell, for the object to be treated which is one electrode,
A liquid circulation device with a suction pump for returning the electrolyte permeated by the fluid permeable electrode to the electrolytic cell, with a material having good conductivity and fluid permeability as a counter electrode, and the fluid absorbed together with the permeated electrolyte. It also has a fluid permeation function, characterized in that it is equipped with a separate gas extraction device with an exhaust blower to collect gas bubbles generated on the liquid contact surface of the transmission electrode or release them into the atmosphere. Electrolytic device using electrodes.
JP2743781A 1981-02-26 1981-02-26 Electrolysis method and device using electrodes with fluid permeation function Expired JPS5844759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2743781A JPS5844759B2 (en) 1981-02-26 1981-02-26 Electrolysis method and device using electrodes with fluid permeation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2743781A JPS5844759B2 (en) 1981-02-26 1981-02-26 Electrolysis method and device using electrodes with fluid permeation function

Publications (2)

Publication Number Publication Date
JPS57140893A JPS57140893A (en) 1982-08-31
JPS5844759B2 true JPS5844759B2 (en) 1983-10-05

Family

ID=12221081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2743781A Expired JPS5844759B2 (en) 1981-02-26 1981-02-26 Electrolysis method and device using electrodes with fluid permeation function

Country Status (1)

Country Link
JP (1) JPS5844759B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146861A (en) * 1983-02-14 1984-08-22 Canon Inc Liquid jet recording head
JP5897397B2 (en) * 2012-04-26 2016-03-30 株式会社東芝 Electrolytic reduction device
KR101423024B1 (en) * 2014-03-26 2014-07-29 손치호 Anodizing Treatment System of Metal through Automatic Analysis of An Electrolyte

Also Published As

Publication number Publication date
JPS57140893A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
JPH09161833A (en) Water treating device for fuel cell
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
JPWO2010061811A1 (en) Apparatus and method for separating and recovering water-soluble organic solvent having amino group
CN101891331B (en) Integrated treatment device for active carbon adsorption and electrochemical regeneration and use method thereof
JPS6115792A (en) Method and device for disposing waste water
JPS5844759B2 (en) Electrolysis method and device using electrodes with fluid permeation function
JP5844558B2 (en) Recycling method for waste liquid containing tetraalkylammonium hydroxide
JPS61107907A (en) Method and device for treating water and waste liquor
CN106823739A (en) A kind of smoke dusting-sweetening integrated apparatus
CN1844460A (en) Device for electrochemical removal of heat stable salts in desulfurated amine liquid
JP2002228795A (en) Treating method and treating device for radioactive waste water
JPS5842798A (en) Electrode cover in electrolytic treating device
JP2000334465A (en) Device for removing nitrogen and phosphorus in waste water
FI63069C (en) OVER APPARATUS FOR ELECTRICAL EQUIPMENT OPERATING EQUIPMENT WITH FRAME AND LOWERING
JP2005116184A (en) Water treatment device for fuel cell
CN206970371U (en) A kind of casing processes sewage-treatment plant
EP0060091A2 (en) Apparatus and method for electrolytically treating an ion containing liquid such as chromium plating rinse water
SU1668309A1 (en) Ultrafiltration unit for separation of dense stable water-oil emulsions
CN212560510U (en) Automobile parts electricity is thrown and is used waste liquid filtration recovery unit
CN107915285A (en) A kind of high-concentration salt-containing wastewater removal device and method
CN211111571U (en) Printing production wastewater treatment system
JP2691119B2 (en) Pressurized oil-water separator using electrolysis
RU6562U1 (en) WATER TREATMENT PLANT
CN106809982A (en) A kind of constant temperature sewage ozone purification filter
RU2139594C1 (en) Chemical surface cleaning unit for parts, primarily semiconductor plates