JPS5844744B2 - Method for forming a tension-applied top insulating film that does not contain chromium oxide on grain-oriented silicon steel sheets - Google Patents
Method for forming a tension-applied top insulating film that does not contain chromium oxide on grain-oriented silicon steel sheetsInfo
- Publication number
- JPS5844744B2 JPS5844744B2 JP54150688A JP15068879A JPS5844744B2 JP S5844744 B2 JPS5844744 B2 JP S5844744B2 JP 54150688 A JP54150688 A JP 54150688A JP 15068879 A JP15068879 A JP 15068879A JP S5844744 B2 JPS5844744 B2 JP S5844744B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- silicon steel
- tension
- grain
- oriented silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/188—Orthophosphates containing manganese cations containing also magnesium cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/20—Orthophosphates containing aluminium cations
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Soft Magnetic Materials (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Description
【発明の詳細な説明】
本発明は、フォルステライト質被膜を有する方向性珪素
鋼板表面に施される上塗り絶縁被膜の形成方法に関し、
とくに、本発明は、無水クロム酸、重クロム酸塩等の6
価のクロムを含まないコーティング処理液を用いて張力
付加型の絶縁被膜を形成する方法に関する方法。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an insulating top coat applied to the surface of a grain-oriented silicon steel plate having a forsterite coating.
In particular, the present invention provides chromic anhydride, dichromate, etc.
A method for forming a tension-applied insulating film using a coating treatment solution that does not contain valent chromium.
近年、電力需要の増大に伴ない大型の配電用変圧器が市
街地に設置されるようになり、そこから発生する騒音が
公害として問題にされるようになった。In recent years, large distribution transformers have been installed in urban areas as the demand for electricity increases, and the noise generated from them has become a problem as pollution.
変圧器の騒音の主原因は鉄芯材料として使用されている
方向性珪素鋼板の磁歪であることが知られている。It is known that the main cause of noise in transformers is the magnetostriction of the grain-oriented silicon steel plate used as the iron core material.
変圧器の騒音を減らすためには、方向性珪素鋼板の磁歪
を小さくすることが必要であり、この目的のための工業
上有力な手段は低熱膨張性の上塗り絶縁被膜によって鋼
板に張力を与えることである。In order to reduce the noise of transformers, it is necessary to reduce the magnetostriction of grain-oriented silicon steel sheets, and an industrially effective means for this purpose is to apply tension to the steel sheets with a low thermal expansion top insulation coating. It is.
方向性珪素鋼板から変圧器の鉄芯を製造する際には、剪
断、組み立て等の操作によって不可避的に鋼板に圧縮応
力が加わり、磁歪、鉄損を増加させる。When manufacturing the iron core of a transformer from grain-oriented silicon steel sheets, compressive stress is inevitably applied to the steel sheets during operations such as shearing and assembly, which increases magnetostriction and iron loss.
鋼板表面に低熱膨張性の絶縁被膜を施すことによって前
もって鋼板に張力を与えておけば、こうした圧縮応力に
よる磁歪、鉄損の増大を抑えることができる。If tension is applied to the steel plate in advance by applying an insulating film with low thermal expansion to the surface of the steel plate, increases in magnetostriction and iron loss due to such compressive stress can be suppressed.
とくに、近年開発された磁化容易軸が圧延方向に非常に
良く揃った高磁束密度方向性珪素鋼(RG−H,川崎製
鉄に、に、商品名)の場合には張力の効果が大きいこと
が知られている。In particular, in the case of recently developed high magnetic flux density grain-oriented silicon steel (RG-H, manufactured by Kawasaki Steel Corporation, product name) in which the axis of easy magnetization is very well aligned in the rolling direction, the effect of tension is large. Are known.
鋼板に張力を与える上塗りの絶縁被膜を形成する従来の
方法は、たとえば、特開昭53−28043号、あるい
は、米国特許3985583号に開示されているように
コロイド状シリカとリン酸アルミニウム、あるいは、リ
ン酸マグネシウムの第1リン酸塩溶液とに、無水クロム
酸、クロム酸塩、重クロム酸塩のうちから選ばれる1種
、または2種以上を含有するコーティング処理液を塗布
、焼付けて得らむる。Conventional methods for forming a top insulating coating that imparts tension to a steel plate include, for example, using colloidal silica and aluminum phosphate, as disclosed in Japanese Patent Application Laid-Open No. 53-28043, or US Pat. No. 3,985,583; Obtained by applying and baking a coating treatment solution containing one or more selected from chromic anhydride, chromate, and dichromate to a primary phosphate solution of magnesium phosphate. Ru.
これらの方法によって磁歪特性、鉄損を改善する低熱膨
張性の張力付加型の被膜が得られるが、必須成分として
コーティング処理液中に配合されている無水クロム酸、
クロム酸塩、重クロム酸塩は6価クロムを含み、人体に
有害である。By these methods, a tension-applied coating with low thermal expansion that improves magnetostrictive properties and iron loss can be obtained, but chromic anhydride, which is blended in the coating treatment solution as an essential component,
Chromate and dichromate contain hexavalent chromium and are harmful to the human body.
こうした無水クロム酸類を配合する目的は、被膜の耐吸
湿性、密着性、歪取焼鈍時の耐融着性を改善することに
あるが、製造現場での塗布作業、あるいは、コーティン
グ処理液の廃液処理作業において6価クロムによって職
場が汚染され、製造現場の安全衛生が確保できない状態
であった。The purpose of blending such anhydrous chromic acids is to improve the moisture absorption resistance, adhesion, and fusion resistance during strain relief annealing of the coating, but it is necessary to improve the moisture absorption resistance, adhesion, and fusion resistance during stress relief annealing of the coating. The workplace was contaminated with hexavalent chromium during processing operations, making it impossible to ensure safety and health at the manufacturing site.
さらに、こうした方向性珪素鋼板のスリット、剪断等の
鋼板加工時に被膜が剥離して職場がクロムを含んだ飛沫
によって汚染される場合も考えられた。Furthermore, it has been considered that the coating may peel off during processing of the grain-oriented silicon steel sheet, such as slitting or shearing, thereby contaminating the workplace with droplets containing chromium.
無水クロム酸、クロム酸塩、重クロム酸塩(以後、単に
無水クロム酸類と呼ぶ)を配合しないコーティング処理
液を用いて方向性珪素鋼板に上塗りの絶縁被膜を形成す
る方法として、たとえば、米国特許3940291号に
開示されているようにMgO、リン酸に硫酸、あるいは
、硝酸を配合して得られる処理液を塗布、焼付ける方法
が提案されているが、この方法によっては鋼板に張力を
与えることはできない。For example, a U.S. patent describes a method of forming an insulating top coat on a grain-oriented silicon steel sheet using a coating treatment solution that does not contain chromic anhydride, chromate, or dichromate (hereinafter simply referred to as chromic anhydride). As disclosed in No. 3940291, a method has been proposed in which a treatment solution obtained by mixing MgO, phosphoric acid, and sulfuric acid or nitric acid is applied and baked, but depending on this method, tension cannot be applied to the steel plate. I can't.
本発明者は、無水クロム酸類を配合しないコーティング
処理液を用いて方向性珪素鋼板に磁歪特性と鉄損とを改
善する張力付加型の無公害の上塗り絶縁被膜を形成する
方法について鋭意検討を重ねた結果、コロイド状シリカ
を5i02含有量で20重量部に対してリン酸マグネシ
ウム
[Mg (H2P 04 )2として計算〕を7〜60
重量部と、Mg 、At 、 Mn ! Zn のそれ
ぞれの硫酸塩のうちから選ばれる倒れか1種または2種
以上を合計量で8〜40重量部とを含有するコーティン
グ処理液をフォルステライト質被膜を有する方向性珪素
鋼板に塗布した後、300℃以上の温度で焼付けること
によって耐吸湿性、密着性に優れた張力付加型の上塗り
絶縁被膜が形成できることを新規に見い出した。The present inventor has conducted extensive studies on a method of forming a tension-applied, pollution-free top insulating film on grain-oriented silicon steel sheets that improves magnetostrictive properties and iron loss using a coating treatment solution that does not contain chromic anhydride. As a result, 7 to 60 parts of magnesium phosphate [calculated as Mg (H2P 04 ) 2] was added to 20 parts by weight of colloidal silica with 5i02 content.
Parts by weight, Mg, At, Mn! After applying a coating treatment solution containing a total amount of 8 to 40 parts by weight of one or more selected from among the respective sulfates of Zn to a grain-oriented silicon steel sheet having a forsterite coating. It has been newly discovered that a tension-applied top insulating film with excellent moisture absorption resistance and adhesion can be formed by baking at a temperature of 300° C. or higher.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
方向性珪素鋼板の表面被膜は、通常、高温仕上焼鈍中に
形成された結晶質のフォルステライト質被膜とその上に
施されるリン酸塩系の上塗りの絶縁被膜とから成り立っ
ている。The surface coating of a grain-oriented silicon steel sheet usually consists of a crystalline forsterite coating formed during high-temperature finish annealing and a phosphate-based overcoat insulating coating applied thereon.
ここで用いられている方向性珪素鋼板とは2〜4重量修
のSiを含む圧延方向に磁化され易い(tto)(oo
1〕力位から成る二次再結晶組織を有する一力向性珪素
鋼板を指す。The grain-oriented silicon steel sheet used here is a steel sheet that is easily magnetized in the rolling direction (tto) (oo
1] Refers to a unidirectionally oriented silicon steel sheet that has a secondary recrystallized structure consisting of force positions.
表面被膜による張力は、鋼板と被膜の熱膨張係数の差に
よって熱処理の冷却過程に発生する。Tension due to the surface coating is generated during the cooling process of heat treatment due to the difference in thermal expansion coefficient between the steel sheet and the coating.
鋼板に大きな張力を与えるためには、被膜の熱膨張係数
は小さい程好ましい。In order to give a large tension to the steel plate, it is preferable that the coefficient of thermal expansion of the coating is as small as possible.
本発明によれば、被膜を低熱膨張に維持するために非晶
質シリカ微粒子の懸濁液であるコロイド状シリカが必須
成分としてコーテイング液に配合される。According to the present invention, colloidal silica, which is a suspension of amorphous silica fine particles, is added to the coating liquid as an essential component in order to maintain the coating at low thermal expansion.
コロイド状シリカの種類は、本発明のほかの配合成分と
均一で安定な相容性が得られる限り、S i02含有量
、pl(等何等限定される必要はない。The type of colloidal silica is not necessarily limited in terms of Si02 content, pl (etc.), as long as uniform and stable compatibility with the other ingredients of the present invention can be obtained.
たとえば、市販のコロイド状シリカであるスノーテック
ス−0(日産化学工業に、に、商品名、5in2含有量
20wt%、pH3〜4)やスノーテックス−30(日
産化学工業に、に、商品名、S i02含有量30 w
t%、pH9,5〜105)などが使用可能である。For example, commercially available colloidal silica Snowtex-0 (trade name, manufactured by Nissan Chemical Industries, Ltd., 5in2 content 20 wt%, pH 3-4) and Snowtex-30 (trade name, manufactured by Nissan Chemical Industries, Ltd., Si02 content 30w
t%, pH 9.5-105), etc. can be used.
張力付加型の上塗り絶縁被膜を形成する従来の方法は、
コロイド状シリカ、無水クロム酸類のほかにリン酸アル
ミニウム、あるいは、リン酸マグネシウムが必須成分と
して配合される。The conventional method of forming a tensioned top insulating coating is as follows:
In addition to colloidal silica and chromic acid anhydride, aluminum phosphate or magnesium phosphate is blended as an essential ingredient.
これらのノン酸塩を配合する目的は、フォルステライト
質被膜と反応させることによって密着性の良好な被膜を
形成させることにある。The purpose of blending these non-acid salts is to form a film with good adhesion by reacting with the forsterite film.
本発明によればリン酸マグネシウムが必須成分として配
合されるが、リン酸マグネシウムに限定する理由は以下
に示す通りである。According to the present invention, magnesium phosphate is blended as an essential component, but the reason for limiting to magnesium phosphate is as shown below.
Mg、Ca、Sr、Ba、Fe、Zn、f/ の各種
のリン酸塩溶液とコロイド状シリカとからなるコーティ
ング処理液を方向性珪素鋼板に塗布し、得られた各種の
張力付加型の絶縁被膜について磁歪の圧縮応力特性を測
定し、被膜が鋼板に与える張力の大きさを調べた。A coating treatment solution consisting of various phosphate solutions of Mg, Ca, Sr, Ba, Fe, Zn, f/ and colloidal silica is applied to grain-oriented silicon steel sheets, resulting in various tension-added insulations. The magnetostrictive compressive stress characteristics of the coating were measured, and the magnitude of the tension exerted by the coating on the steel plate was investigated.
その結果、コロイド状シリカとリン酸マグネシウムを用
いた場合に、磁歪の圧縮応力特性がもつとも改善され、
ついで、コロイド状シリカとリン酸アルミニウムを用い
た場合であった。As a result, when colloidal silica and magnesium phosphate were used, the compressive stress characteristics of magnetostriction were improved.
Next was the case of using colloidal silica and aluminum phosphate.
さらに、リン酸マグネシウムとリン酸アルミニウムを用
いた場合を詳細に比較・検討した結果、コロイド状シリ
カとリン酸アルミニウムを用いた場合には、塗布・焼付
は後、あるいは、歪取焼鈍後の被膜中に高熱膨張性の結
晶相(たとえば、α−クリストバライト)が析出し、鋼
板に与える張力が小さくなることを見い出した。Furthermore, as a result of a detailed comparison and study of the cases where magnesium phosphate and aluminum phosphate were used, it was found that when colloidal silica and aluminum phosphate were used, coating and baking were performed after the coating was applied, or the coating was applied after strain relief annealing. It has been found that a crystalline phase with high thermal expansion (for example, α-cristobalite) is precipitated in the steel sheet, thereby reducing the tension applied to the steel plate.
コロイド状シリカとリン酸マグネシウムを用いた場合に
は、こうした高熱膨張性の結晶相の析出は認められず、
歪取焼鈍を施しても鋼板に与える張力に劣化は認められ
なかった。When colloidal silica and magnesium phosphate were used, precipitation of such a high thermal expansion crystalline phase was not observed.
No deterioration in the tension applied to the steel plate was observed even after strain relief annealing.
リン酸マグネシウムとリン酸アルミニウムを用いた場合
の歪取焼鈍に伴なうこうした被膜の結晶化挙動の違いは
、第3成分として無水クロム酸、あるいは、本発明にお
いて使用される水溶性の金属硅酸塩を配合した場合にお
いても同様であった。The difference in the crystallization behavior of the film during strain relief annealing when magnesium phosphate and aluminum phosphate are used is due to the presence of chromic anhydride as the third component or the water-soluble metal silica used in the present invention. The same result was obtained when an acid salt was added.
以上の結果は、コロイド状シリカとリン酸塩とから張力
付加型の上塗り絶縁被膜を形成する場合には各種のリン
酸塩のうちでリン酸マグネシウムがもつとも優れている
ことを意味している。The above results indicate that magnesium phosphate is superior among various phosphates when forming a tension-applied top insulating film from colloidal silica and phosphate.
このことが本発明において各種のリン酸塩のうちでリン
酸マグネシウムに限定する理由である。This is the reason why the present invention is limited to magnesium phosphate among various phosphates.
さらに、本発明においてコロイド状シリカSiO2含有
量20重量部に対してリン酸マグネシウムの配合量を7
〜60重量部(Mg (H2PO2)2 として計算〕
の範囲内に限定する理由は、7重量部よりも少ないとフ
ォルステライト質被膜との反応が不十分で密着性の劣っ
た被膜しか形成されず、また、60重量部よりも多いと
白っぽく、不均質な被膜しか形成されないのでリン酸マ
グネシウムの配合量を7〜60重量部の範囲内に限定す
る必要がある。Furthermore, in the present invention, the amount of magnesium phosphate blended is 7 parts by weight based on the colloidal silica SiO2 content of 20 parts by weight.
~60 parts by weight (calculated as Mg (H2PO2)2)
The reason for limiting the range is that if it is less than 7 parts by weight, the reaction with the forsterite film will be insufficient and a film with poor adhesion will be formed. Since only a homogeneous film is formed, it is necessary to limit the amount of magnesium phosphate blended within the range of 7 to 60 parts by weight.
本発明に適用されるリン酸マグネシウムはMg (H2
PO4)2 M成の第11Jン酸塩溶液が好適であり、
Mg (H2PO4)232〜35 w t %含有の
リン酸マグネシウム溶液(s、g、1.32〜1.35
)が市販されている。Magnesium phosphate applied to the present invention is Mg (H2
A solution of 11 J phosphate having a composition of PO4)2 M is preferred;
Magnesium phosphate solution containing 232-35 wt% Mg (H2PO4) (s, g, 1.32-1.35
) are commercially available.
コロイド状シリカとリン酸マグネシウムのみを用いても
鋼板に大きな張力を付与できる上塗りの絶縁被膜を形成
できるが、被膜の耐吸湿性が劣っていて全く実用に耐え
ない。Although colloidal silica and magnesium phosphate alone can be used to form an insulating top coat that can impart large tension to a steel plate, the coating has poor moisture absorption resistance and is completely impractical.
すなわち、該被膜を有する珪素鋼板を室温に放置するだ
けで空気中の水蒸気によって被膜表面に吸湿模様が現わ
れ、さらに吸湿が進行すると、被膜が流れたようになり
、錆を発生させて商品価値を著しく減らすことになる。In other words, simply by leaving a silicon steel plate with this coating at room temperature, water vapor in the air will cause a moisture absorption pattern to appear on the coating surface, and as moisture absorption progresses further, the coating will appear to run, causing rust and reducing its commercial value. will be significantly reduced.
本発明においては、こうした被膜の耐吸湿性を改善する
ためにコロイド状シリカ、リン酸マグネシウムに加えて
Mg、 Ap、Mn、Zn のそれぞれの硫酸塩のうち
から選ばれる何れか1種または2種以上が必須成分とし
て配合される。In the present invention, in order to improve the moisture absorption resistance of such a coating, in addition to colloidal silica and magnesium phosphate, one or two selected from sulfates of Mg, Ap, Mn, and Zn are added. The above ingredients are included as essential ingredients.
Mg 、 AI 。Mn HZnの硫酸塩に限定する理
由は、これらの硫酸塩以外に耐吸湿性の向上に効果が認
められ、かつ、良好な被膜特性が得られるものがなかっ
たからである。Mg, AI. The reason for limiting the use to Mn HZn sulfates is that there is nothing other than these sulfates that has been found to be effective in improving moisture absorption resistance and provide good film properties.
たとえば、これらの金属について硫酸塩以外にも硝酸塩
を配合しても被膜の耐吸湿性は改善されるが、白っぽい
均一性の劣った被膜しか得られない。For example, if nitrates are added to these metals in addition to sulfates, the moisture absorption resistance of the coating will be improved, but only a whitish coating with poor uniformity will be obtained.
第1図は、SiO□として2owt%を含有するコロイ
ド状シリカ100重量部に対して
Mg (H4F 04 )2として35wt%を含有す
る第■リン酸マグネシウム溶液(s、g、1.35)を
70重量部を配合した処理液に硫酸マンガン(Mn S
04・4H20)を0〜50重量部の範囲内で配合し
、水を加えて比重を1.16に調整したコーティング処
理液をフォルステライト質被膜を有する方向性珪素鋼板
上に片面2ミクロンの厚さの被膜が形成されるように塗
布し、800℃1分間窒素雰囲気中で焼付けて得られた
被膜の耐水性と硫酸マンガンの配合量との関係を示す図
である。Figure 1 shows a solution of magnesium phosphate (s, g, 1.35) containing 35 wt% as Mg(H4F 04)2 for 100 parts by weight of colloidal silica containing 2 wt% as SiO□. Manganese sulfate (MnS) was added to the treatment solution containing 70 parts by weight.
04.4H20) in a range of 0 to 50 parts by weight, water was added to adjust the specific gravity to 1.16, and a coating treatment solution was applied onto a grain-oriented silicon steel plate having a forsterite coating with a thickness of 2 microns on one side. FIG. 2 is a diagram showing the relationship between the water resistance of a film obtained by applying the film to form a thin film and baking it in a nitrogen atmosphere at 800° C. for 1 minute and the amount of manganese sulfate.
本発明における被膜の耐水性試験は次のように行なわれ
た。The water resistance test of the film in the present invention was conducted as follows.
前述の被膜を有する珪素鋼板を50X50mm試1験片
3枚に剪断し、その3枚の試験片を100℃蒸留水中に
25分間浸漬煮沸することによって被膜表面からPを溶
出させ、そのPの溶出量を定量分析して被膜の耐水性を
定量的に比較した。The silicon steel plate having the above-mentioned coating was sheared into three 50 x 50 mm test pieces, and the three test pieces were immersed and boiled in distilled water at 100°C for 25 minutes to elute P from the coating surface. The amount was quantitatively analyzed to quantitatively compare the water resistance of the coatings.
第1図から明らかなように硫酸マンガンの配合による被
膜の耐水性の改善は顕著であり、コロイド状シリカ5I
02含有量20重量部に対して硫酸マンガンを8重量部
以上配合することによってPの溶出量は100μ、97
150−程度に低下する。As is clear from Figure 1, the water resistance of the film was significantly improved by adding manganese sulfate, and colloidal silica 5I
By adding 8 parts by weight or more of manganese sulfate to 20 parts by weight of 02 content, the elution amount of P is 100μ, 97
It decreases to about 150-.
この程度の耐水性を有する被膜であれば、その耐吸湿性
は露点50℃の雰囲気中にioo時間以上曝らしても吸
湿・発錆しない程度に改善され、実用上問題のない耐吸
湿性を有する被膜となる。If a film has this level of water resistance, its moisture absorption resistance will be improved to the extent that it will not absorb moisture or rust even if exposed to an atmosphere with a dew point of 50°C for more than 100 hours, and will have moisture absorption resistance that does not cause any practical problems. It becomes a coating with
第1図は、硫酸マンガン(MnSO4・4F■2o)に
ついて示した例であるが、M n S O,i・4H2
0以外の耐吸湿性を改善させる硫酸塩としては、たとえ
ば、Mg5O,・7H20,A12(SO4)316〜
18H20、MnSO4’H20,ZnSO4”7H2
0などを挙げることができる。Figure 1 shows an example of manganese sulfate (MnSO4・4F■2o), but M n SO,i・4H2
Examples of sulfates that improve moisture absorption resistance other than 0 include Mg5O, 7H20, A12(SO4)316~
18H20, MnSO4'H20, ZnSO4''7H2
Examples include 0.
これらの硫酸塩を単独に用いても、あるいは、2種以上
を配合しても優れた耐吸湿性の被膜が得られる。Even if these sulfates are used alone or in combination of two or more, a film with excellent moisture absorption resistance can be obtained.
単独、あるいは、2種以上の硫酸塩を配合する場合の好
適配合量の下限値は、第1図に示したのと同様な被膜の
耐水性試1験を行なってコロイド状シリカS i02含
有量20重量部に対して8重量部と決定された。The lower limit of the preferred amount of sulfate used alone or when two or more types of sulfates are combined is determined by conducting a water resistance test of a film similar to that shown in Figure 1, and determining the colloidal silica Si02 content. It was determined to be 8 parts by weight compared to 20 parts by weight.
また、好適配合量の−L限値は被膜外観、占積率を劣化
させない範囲内に限定することによって決定した。In addition, the -L limit value of the preferred blending amount was determined by limiting it within a range that does not deteriorate the coating appearance and space factor.
すなわち、コロイド状シリカ5iO7含有量20重量部
に対して40重量部を越えると得られる被膜の均一性は
悪く、表面がザラついた状態となり、占積率が低下した
。That is, when the colloidal silica 5iO7 content exceeds 40 parts by weight with respect to 20 parts by weight, the uniformity of the resulting film becomes poor, the surface becomes rough, and the space factor decreases.
以上の理由により、本発明においては、Mg、Al、M
n、Zn の硫酸塩のうちから選ばれる倒れか1種また
は2種以上の配合量は8〜40重量部の範囲内に限定さ
れる。For the above reasons, in the present invention, Mg, Al, M
The amount of one or more selected from among the sulfates of Zn and Zn is limited to 8 to 40 parts by weight.
本発明においては、これらの硫酸塩に加えてそのほかの
水溶性塩類、たとえば、硝酸塩、塩化物、酢酸塩等を被
膜特性を劣化させない範囲内であれば、少量添加しても
差し支えない。In the present invention, in addition to these sulfates, other water-soluble salts such as nitrates, chlorides, acetates, etc. may be added in small amounts as long as they do not deteriorate the coating properties.
また、歪取焼鈍時の層間の被膜の耐融着性を改善するた
めにS io 2 ? A1203等の高融点の酸化物
微粉末、たとえば、特開昭52−25296号に開示さ
れているような気化した塩化物を高温加水分解すること
によって得られるAe ros i l −200、A
l um iniumOxide G (いずれも日本
アエロジルに、に、商品名)などの酸化物微粉末を少量
配合することも本発明の適用範囲内である。In addition, in order to improve the adhesion resistance of the interlayer coating during strain relief annealing, Sio2? High melting point oxide fine powder such as A1203, for example, Aeros i l-200, A obtained by high temperature hydrolysis of vaporized chloride as disclosed in JP-A No. 52-25296.
It is also within the scope of the present invention to blend a small amount of oxide fine powder such as Luminium Oxide G (both trade names of Nippon Aerosil).
第2図は、6価クロムを含む無水クロム酸類を使用せず
に上塗りの絶縁被膜を形成する従来の方法である米国特
許3940291号に開示されている方法によって得ら
れるリン酸被膜および本発明によって得られる被膜を有
する方向性珪素鋼板の磁歪の圧縮応力特性を示す。Figure 2 shows a phosphoric acid coating obtained by the conventional method of forming an overcoat insulating coating without using chromic anhydride containing hexavalent chromium, disclosed in U.S. Pat. The magnetostrictive compressive stress characteristics of the grain-oriented silicon steel sheet with the resulting coating are shown.
曲線aはコーティングを塗布する前のフォルステライト
質被膜のみを有する珪素鋼板の磁歪の圧縮応力特性を示
す。Curve a shows the magnetostrictive compressive stress characteristics of a silicon steel sheet having only a forsterite film before the coating is applied.
曲線b 、 b’は、それぞれ、米国特許394029
1号に開示されているMg0−IJン酸系のコーティン
グ処理液の塗布・焼付は後の被膜を有する珪素鋼板と、
それを800℃3時間窒素雰囲気中で歪取焼鈍を施した
後について測定した磁歪の圧縮応力特性を示す。Curves b and b' are shown in U.S. Patent No. 394,029, respectively.
The application and baking of the Mg0-IJ acid-based coating treatment solution disclosed in No. 1 is applied to a silicon steel plate having a subsequent coating,
The magnetostrictive compressive stress characteristics measured after strain relief annealing was performed in a nitrogen atmosphere at 800° C. for 3 hours are shown.
曲線Cは、本発明による510220wt%水分散液の
コロイド状シリカ100重量部に対してMg (H2P
O4)235 wt%の第1リン酸マグネシウム溶液を
60重量部、硫酸マグネシウム(MgS04・7H20
)を15重量部、硫酸亜鉛(ZnSO4・7H20)を
5重量部の割合で配合したコーティング処理液を塗布し
、800℃1分間窒素雰囲気中で焼付けて得られた片面
2ミクロンの膜厚の被膜を有する珪素鋼板の磁歪の圧縮
応力特性で、曲線Cは同じく、歪取焼鈍後の磁歪の圧縮
応力特性を示す。Curve C shows the concentration of Mg (H2P
O4) 235 wt% magnesium monophosphate solution was added to 60 parts by weight, magnesium sulfate (MgS04.7H20
) and 5 parts by weight of zinc sulfate (ZnSO4.7H20) were applied and baked at 800°C for 1 minute in a nitrogen atmosphere, resulting in a coating with a thickness of 2 microns on one side. Curve C also shows the magnetostrictive compressive stress characteristics after strain relief annealing.
第2図から明らかなように本発明によって得られる被膜
は、無水クロム酸類を用いないものとしては、従来方法
に比べて格段に優れた磁歪の圧縮応力特性となっている
。As is clear from FIG. 2, the film obtained by the present invention, which does not use chromic acid anhydride, has magnetostrictive compressive stress properties that are significantly superior to those obtained by the conventional method.
これは本発明の被膜が鋼板に強い張力を付与しているた
めである。This is because the coating of the present invention imparts strong tension to the steel plate.
変圧器の鉄芯を組み立てる時には鋼板に圧縮応力が不可
避的に加わり、磁歪を増加させて変圧器の騒音の原因と
なる。When assembling the iron core of a transformer, compressive stress is inevitably applied to the steel plates, increasing magnetostriction and causing noise in the transformer.
本発明によって形成される張力付加型の被膜を有する方
向性珪素鋼板を変圧器の鉄芯材料として使用すれば、変
圧器騒音の低減が可能である。If a grain-oriented silicon steel sheet having a tension-applied coating formed according to the present invention is used as a core material of a transformer, it is possible to reduce transformer noise.
さらに、同時に本発明は、有害な6価クロムを含むコー
ティング処理液を用いないので、上塗り被膜の無公害化
とともに製造現場の労働安全衛生の確保が達成できる。Furthermore, since the present invention does not use a coating treatment solution containing harmful hexavalent chromium, it is possible to make the top coat non-polluting and ensure occupational safety and health at the manufacturing site.
以上に述べた本発明の方法によって6価クロムを含む無
水クロム酸、クロム酸塩、重クロム酸塩を使用せずに耐
吸湿性、磁歪特性の優れた無公害の張力付加型の上塗り
絶縁被膜が得られる。By the method of the present invention described above, a pollution-free tension-added top insulating coating with excellent moisture absorption resistance and magnetostriction properties can be obtained without using chromic anhydride, chromate, or dichromate containing hexavalent chromium. is obtained.
本発明の被膜は、耐吸湿性、磁歪特性以外にも美麗な外
観、良好な密着性、高い層間抵抗と占積率等優れた特徴
を有している。In addition to moisture absorption resistance and magnetostrictive properties, the coating of the present invention has excellent features such as a beautiful appearance, good adhesion, high interlayer resistance and space factor.
本発明において使用するコーティング処理液は、その比
重を1.05〜1.30に調整した後、鋼板に塗布し、
塗布量は被膜の焼付は後の厚さが片面1〜3ミクロンに
なるように鋼板に塗布するのが好適である。The coating treatment liquid used in the present invention is applied to a steel plate after adjusting its specific gravity to 1.05 to 1.30,
It is preferable to apply the coating amount to the steel plate so that the coating thickness after baking is 1 to 3 microns on one side.
本発明によれば、コーティング処理液を塗布した鋼板を
300℃以上の温度で焼付けて上塗りの被膜を形成する
。According to the present invention, a steel plate coated with a coating treatment liquid is baked at a temperature of 300° C. or higher to form a topcoat film.
焼付は温度が300℃よりも低いと本発明の被膜が形成
されないので焼付は温度を300℃以上に限定する必要
がある。Since the film of the present invention will not be formed if the baking temperature is lower than 300°C, it is necessary to limit the baking temperature to 300°C or higher.
次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.
実施例
3%Siを含有する方向性珪素鋼板(厚み0.30Tt
771)の表面に最終焼鈍によってフォルステライト質
被膜を形成させた後、MgOの未反応分離剤を水洗除去
したコイルの相隣接する位置から60×280關試験片
を剪断して平坦化のために歪取焼鈍を施して7種類のコ
ーティング用素材を準備した。Example 3 Grain-oriented silicon steel plate containing 3% Si (thickness 0.30Tt
After forming a forsterite film on the surface of 771) by final annealing, unreacted separation agent of MgO was removed by water washing, and a 60 x 280 size test piece was sheared from the adjacent position of the coil for flattening. Seven types of coating materials were prepared by applying strain relief annealing.
これらの珪素鋼板の表面に第1表に示す組成のコーティ
ング処理液を溝付きゴムロールにより塗布し、SOO℃
1分間窒素雰囲気中で焼付けた。A coating treatment solution having the composition shown in Table 1 was applied to the surface of these silicon steel plates using a grooved rubber roll, and then heated to SOO℃.
Baked for 1 minute in a nitrogen atmosphere.
焼付けた後の被膜の厚みは片面2ミクロンであった。The thickness of the film after baking was 2 microns on one side.
第2表にこれらの被膜付き珪素鋼板の特性調査結果を示
す。Table 2 shows the results of investigating the characteristics of these coated silicon steel sheets.
第2表の調査結果から明らかなように本発明の方法によ
って得られる実施例1〜4の被膜の磁歪の圧縮応力特性
は非常に良好で、圧縮応力の増大に伴なう磁歪の劣化は
わずかであり、被膜が鋼板に大きな張力を与えているこ
とがわかる。As is clear from the investigation results in Table 2, the compressive stress characteristics of magnetostriction of the coatings of Examples 1 to 4 obtained by the method of the present invention are very good, and the deterioration of magnetostriction due to increase in compressive stress is slight. It can be seen that the coating gives a large tension to the steel plate.
さらに、実施例1〜4の被膜の耐吸湿性はいずれも良好
で、露点50℃の雰囲気に100時間以上以上上ても吸
湿・発錆せず、被膜表面からのPの溶出量分析値も低位
で、有害な6価クロムを含む無水クロム酸、クロム酸塩
、重クロム酸塩を使用せずに耐吸湿性に優れた被膜が形
成できることがわかる。Furthermore, the moisture absorption resistance of the coatings of Examples 1 to 4 was good, and they did not absorb moisture or develop rust even after being exposed to an atmosphere with a dew point of 50°C for more than 100 hours, and the analysis value of the amount of P eluted from the coating surface was also good. It can be seen that a film with excellent moisture absorption resistance can be formed without using chromic anhydride, chromate, or dichromate containing low and harmful hexavalent chromium.
それに対してコロイド状シリカとリン酸マグネシウムの
みからなる比較例1,2の被膜の耐吸湿性は良くない。On the other hand, the moisture absorption resistance of the coatings of Comparative Examples 1 and 2 consisting only of colloidal silica and magnesium phosphate is not good.
また、比較例3に示したように6価クロムを含まないコ
ーティング処理液から上塗り被膜を形成する従来の方法
では、磁歪の圧縮応力特性を改善する効果の少ない被膜
しか得られない。Further, as shown in Comparative Example 3, the conventional method of forming an overcoat film from a coating treatment solution that does not contain hexavalent chromium results in only a film that is less effective in improving magnetostrictive compressive stress characteristics.
第1図は硫酸マンガンの配合量と被膜表面からのPの溶
出量との関係を示す図、第2図は米国特許394029
1号および本発明によって得られた被膜の磁歪の圧縮応
力特性を示す線図である。Figure 1 is a diagram showing the relationship between the amount of manganese sulfate blended and the amount of P eluted from the coating surface, and Figure 2 is a graph of U.S. Patent No. 394029.
FIG. 1 is a diagram showing the compressive stress characteristics of magnetostriction of coatings obtained by No. 1 and the present invention.
Claims (1)
リン酸マグネシウム(Mg (H2PO2)2 として
計算〕を7〜60重量部と、Mg 、 A7 、 Mn
、 Znのそれぞれの硫酸塩のうちから選ばれる何れ
か1種または2種以上を合計量で8〜40重量部とを含
有するコーティング処理液をフォルステライト質被膜を
有する方向性珪素鋼板に塗布した後、300℃以上の温
度で焼付けることを特徴とする方向性珪素鋼板にクロム
酸化物を含まない張力付加型の上塗り絶縁被膜を形成す
る方法。1 colloidal silica SiO2 content of 20 parts by weight,
7 to 60 parts by weight of magnesium phosphate (calculated as Mg (H2PO2)2), Mg, A7, Mn
A coating treatment solution containing a total of 8 to 40 parts by weight of one or more selected from the respective sulfates of Zn was applied to a grain-oriented silicon steel sheet having a forsterite coating. A method for forming a tension-applied overcoat insulating film that does not contain chromium oxide on a grain-oriented silicon steel sheet, which is then baked at a temperature of 300° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54150688A JPS5844744B2 (en) | 1979-11-22 | 1979-11-22 | Method for forming a tension-applied top insulating film that does not contain chromium oxide on grain-oriented silicon steel sheets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54150688A JPS5844744B2 (en) | 1979-11-22 | 1979-11-22 | Method for forming a tension-applied top insulating film that does not contain chromium oxide on grain-oriented silicon steel sheets |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5675579A JPS5675579A (en) | 1981-06-22 |
JPS5844744B2 true JPS5844744B2 (en) | 1983-10-05 |
Family
ID=15502277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54150688A Expired JPS5844744B2 (en) | 1979-11-22 | 1979-11-22 | Method for forming a tension-applied top insulating film that does not contain chromium oxide on grain-oriented silicon steel sheets |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5844744B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217758A (en) * | 2006-02-17 | 2007-08-30 | Nippon Steel Corp | Grain oriented magnetic steel sheet and insulating film treatment method therefor |
WO2009025389A1 (en) | 2007-08-23 | 2009-02-26 | Jfe Steel Corporation | Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film |
WO2009028726A1 (en) | 2007-08-30 | 2009-03-05 | Jfe Steel Corporation | Solution for treatment of insulating coating film for oriented electromagnetic steel sheet, and method for production of oriented electromagnetic steel sheet having insulating coating film thereon |
WO2012017695A1 (en) | 2010-08-06 | 2012-02-09 | Jfeスチール株式会社 | Grain-oriented magnetic steel sheet |
US8771795B2 (en) | 2007-08-09 | 2014-07-08 | Jfe Steel Corporation | Treatment solution for insulation coating for grain-oriented electrical steel sheets and method for producing grain-oriented electrical steel sheet having insulation coating |
US9011585B2 (en) | 2007-08-09 | 2015-04-21 | Jfe Steel Corporation | Treatment solution for insulation coating for grain-oriented electrical steel sheets |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60142584A (en) * | 1983-12-28 | 1985-07-27 | 川崎製鉄株式会社 | Printed board and method of producing same |
JP2002057019A (en) * | 2000-05-30 | 2002-02-22 | Nippon Steel Corp | Unidirectionally grain-oriented magnetic steel sheet for low-noise transformer |
TWI270578B (en) * | 2004-11-10 | 2007-01-11 | Jfe Steel Corp | Grain oriented electromagnetic steel plate and method for producing the same |
JP4878788B2 (en) * | 2005-07-14 | 2012-02-15 | 新日本製鐵株式会社 | Insulating coating agent for electrical steel sheet containing no chromium |
JP4983334B2 (en) * | 2007-03-28 | 2012-07-25 | Jfeスチール株式会社 | Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
EP2773781B1 (en) * | 2011-11-04 | 2015-07-01 | Tata Steel UK Ltd | Coated grain oriented steel |
RU2556184C1 (en) * | 2014-04-22 | 2015-07-10 | Общество с ограниченной ответственностью "Научно-технический центр "Компас" (ООО "НТЦ "Компас") | Composite for insulating coating |
RU2656433C2 (en) * | 2014-04-24 | 2018-06-05 | ДжФЕ СТИЛ КОРПОРЕЙШН | Processing solution for the chrome-free insulating coating for textured electrotechnical sheet steel and textured electrotechnical sheet steel, which is covered using the chrome-free insulating coating |
JP6299938B1 (en) | 2016-09-13 | 2018-03-28 | Jfeスチール株式会社 | Directional electrical steel sheet with chromium-free insulating tension coating and method for producing the same |
CN115916425A (en) | 2020-06-30 | 2023-04-04 | 杰富意钢铁株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
JP7392849B2 (en) | 2021-01-28 | 2023-12-06 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheets and rolling equipment for producing electrical steel sheets |
KR20240011759A (en) | 2021-06-30 | 2024-01-26 | 제이에프이 스틸 가부시키가이샤 | Manufacturing method of grain-oriented electrical steel sheet and rolling equipment for manufacturing grain-oriented electrical steel sheet |
EP4353850A1 (en) | 2021-06-30 | 2024-04-17 | JFE Steel Corporation | Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing oriented electromagnetic steel sheet |
-
1979
- 1979-11-22 JP JP54150688A patent/JPS5844744B2/en not_active Expired
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217758A (en) * | 2006-02-17 | 2007-08-30 | Nippon Steel Corp | Grain oriented magnetic steel sheet and insulating film treatment method therefor |
US8771795B2 (en) | 2007-08-09 | 2014-07-08 | Jfe Steel Corporation | Treatment solution for insulation coating for grain-oriented electrical steel sheets and method for producing grain-oriented electrical steel sheet having insulation coating |
US9011585B2 (en) | 2007-08-09 | 2015-04-21 | Jfe Steel Corporation | Treatment solution for insulation coating for grain-oriented electrical steel sheets |
WO2009025389A1 (en) | 2007-08-23 | 2009-02-26 | Jfe Steel Corporation | Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film |
US8535455B2 (en) | 2007-08-23 | 2013-09-17 | Jfe Steel Corporation | Treatment solution for insulation coating for grain oriented electrical steel sheet and method for producing grain oriented electrical steel sheet having insulation coating |
WO2009028726A1 (en) | 2007-08-30 | 2009-03-05 | Jfe Steel Corporation | Solution for treatment of insulating coating film for oriented electromagnetic steel sheet, and method for production of oriented electromagnetic steel sheet having insulating coating film thereon |
US8409370B2 (en) | 2007-08-30 | 2013-04-02 | Jfe Steel Corporation | Treatment solution for insulation coating for grain oriented electrical steel sheet and method for producing grain oriented electrical steel sheet having insulation coating |
WO2012017695A1 (en) | 2010-08-06 | 2012-02-09 | Jfeスチール株式会社 | Grain-oriented magnetic steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPS5675579A (en) | 1981-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5844744B2 (en) | Method for forming a tension-applied top insulating film that does not contain chromium oxide on grain-oriented silicon steel sheets | |
JP5181571B2 (en) | Chromium-free insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film | |
JP5194641B2 (en) | Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film | |
JP5900705B2 (en) | Treatment liquid for chromium-free tension coating, method for forming chromium-free tension coating, and method for producing grain-oriented electrical steel sheet with chromium-free tension coating | |
KR101867257B1 (en) | Treatment solution for chromium-free insulating coating for grain-oriented electrical steel sheet and grain-oriented electrical steel sheet coated with chromium-free insulating coating | |
WO2017038911A1 (en) | Insulative coating processing liquid and method for manufacturing metal having insulative coating | |
WO2007007417A1 (en) | Grain-oriented electromagnetic steel sheet having chromium-free insulation coating and insulation coating agent therefor | |
US3996073A (en) | Insulative coating for electrical steels | |
JP6682888B2 (en) | Insulating coating agent for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for treating grain-oriented electrical steel sheet | |
JPS6253589B2 (en) | ||
JP6558325B2 (en) | Treatment liquid for forming chromium-free tension coating, grain-oriented electrical steel sheet with chromium-free tension film, method for producing grain-oriented electrical steel sheet with chromium-free tension film, and core for transformer | |
JP2022519691A (en) | Aqueous composition for coating grain-oriented electrical steel | |
US3649372A (en) | Reagent for forming an insulating coating on the surface of electrical steel sheets | |
JP5098466B2 (en) | Treatment liquid for chromeless tension coating, method of forming chromeless tension coating, and grain-oriented electrical steel sheet with chromeless tension coating | |
JP4983334B2 (en) | Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
CA1230542A (en) | Insulative coating composition for electrical steels | |
KR20130010224A (en) | Coating solution for forming an insulation film on grain-oriented electrical steel sheet, method for manufacturing said coating solution, and method for forming an insulation film on grain-oriented electrical steel sheet by using the same | |
JP5633401B2 (en) | Treatment liquid for chromeless tension coating and method for forming chromeless tension coating | |
JP4321181B2 (en) | Method for forming an overcoat insulating film containing no chromium | |
JP2005240157A (en) | Grain-oriented electromagnetic steel sheet with phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium, and method for forming phosphate-based insulating layer having superior hygroscopicity resistance without containing chromium | |
JP3276567B2 (en) | Insulating coating agent having excellent coating characteristics and method for producing grain-oriented electrical steel sheet using the same | |
JPH08333640A (en) | Grain oriented silicon steel sheet extremely excellent in heat resistance and adhesion and formation of insulating film on it | |
JP7222450B1 (en) | Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating | |
JP7311075B1 (en) | Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating | |
WO2023139847A1 (en) | Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film |