JPS5844270A - Ignition timing control method of multi-cylinder internal-combustion engine - Google Patents

Ignition timing control method of multi-cylinder internal-combustion engine

Info

Publication number
JPS5844270A
JPS5844270A JP56142004A JP14200481A JPS5844270A JP S5844270 A JPS5844270 A JP S5844270A JP 56142004 A JP56142004 A JP 56142004A JP 14200481 A JP14200481 A JP 14200481A JP S5844270 A JPS5844270 A JP S5844270A
Authority
JP
Japan
Prior art keywords
ignition timing
ignition
engine
combination
timings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56142004A
Other languages
Japanese (ja)
Other versions
JPS6331667B2 (en
Inventor
Yasuhito Takasu
高須 康仁
Shingo Inoue
井上 真悟
Toshiharu Iwata
岩田 俊晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP56142004A priority Critical patent/JPS5844270A/en
Priority to DE8282304034T priority patent/DE3268810D1/en
Priority to US06/403,816 priority patent/US4432322A/en
Priority to EP82304034A priority patent/EP0072162B2/en
Priority to US06/459,497 priority patent/US4480615A/en
Publication of JPS5844270A publication Critical patent/JPS5844270A/en
Publication of JPS6331667B2 publication Critical patent/JPS6331667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To constantly provide maximum output power efficiency by changing combination of ignition timings such that every cylinder is ignited at an optimum timing so as to offer the maximum engine r.p.m and coverge the ignition timing. CONSTITUTION:Cylinders no.1 and 2, for example, have contour lines (r1) through (r3) of engine speeds which are drawn with respect to the center of respective optimum ignition timings theta1opt and theta2opt. The find the ignition timing at which the engine's output power efficiency may be maximum, the engine is controlled by three ignition timings coded by N1, N2 and N3 to derive the relation that may increase the engine speed, and a code N4 (R1) is then found. Based on the increment DELTAtheta of the ignition timing, the codes R3 and R4 are found and the cylinders are operated at codes R1, R3 and R4 to find the relation that may increase the engine speed. By repeating said processes, the maximum engine efficiency points theta1opt and theta2opt at a point A may be obtained. The engine may be therefore operated at the maximum output efficiency without any influence of difference in performance of engine, aged deterioration of any other adverse factors.

Description

【発明の詳細な説明】 本発明は内#8−関において燃料消費率を向上させるべ
く気筒毎に点火時期の最適制御を行う方法に発揮しかり
燃料消費率を最小とする平均的な値をエンジン回転数と
吸気圧力(又は吸気流量)で定める。そして礪関が多気
−の1のでは、その平均的な共通の点火時期を各*!I
IK採用するのが普通である。しかしながら、製造時の
パラツキ、経  “時変化等によって最大出力番与える
点火時期は気筒毎に変化し前記した平均的な点火時期が
その気筒にとうて最適とti限らず出力撫失を招く原因
となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applied to a method of optimally controlling ignition timing for each cylinder in order to improve the fuel consumption rate in the engine. Determined by rotation speed and intake pressure (or intake flow rate). And in 1 of Taki-, the average common ignition timing is each *! I
It is common to use IK. However, the ignition timing that gives the maximum output varies from cylinder to cylinder due to variations in manufacturing, changes over time, etc., and the average ignition timing described above may not necessarily be optimal for that cylinder, but may cause a loss in output. Become.

本発明はかかる従来技術の欠点Kl!み、各気胸Kjl
lj04火時期を与えることによって當に出力効率の最
大を確保すると共に、ヒの最適な運転状態となる点火時
期へO収車を円滑に行なう仁とを目的とする。
The present invention addresses the drawbacks of the prior art. Mi, each pneumothorax Kjl
The purpose is to ensure the maximum output efficiency by providing the lj04 ignition timing, and to smoothly move the vehicle to the ignition timing that provides the optimum operating condition.

以下図面によって説明すれtfJI1図は点火時期とニ
ンジン回転数(F〜り)との一般的な関係を示すもので
、ニンジン回転数を最大wmaxiする最適点火時期#
 optを一つもつ。そして、この最適点火時期#op
tは気筒間で変動があるのが普通である。従って、簡単
のため最少の多気11−関である2気m*関について考
えれば、第2図の如く、夫々の気筒11!! $2の点
火時期を変化させ九場合に、エンジン回転数紘破線の如
く等高線状r1・r sur s−の如く変化する。そ
れ故、エンがンの回転数の山のを形成する夫々の気筒の
点火時期の組合せ#10pt、 1m0ptがあり、逆
に貰えばこの最適点火時期の組合せで各9IC筒を駆動
すれば最大の回転数(ト〜り)が得られるのである。
The tfJI1 diagram below shows the general relationship between the ignition timing and the carrot rotation speed (F~ri), and shows the optimal ignition timing # to maximize the carrot rotation speed.
Has one opt. And this optimal ignition timing #op
Normally, t varies between cylinders. Therefore, for the sake of simplicity, if we consider the minimum number of 11-units, 2-units, as shown in FIG. 2, each cylinder 11! ! When the ignition timing is changed by $2, the engine rotational speed changes as shown by the contour line r1·r sur s- as shown by the broken line. Therefore, there are combinations of ignition timings #10pt and 1m0pt for each cylinder that form the mountain of engine rotational speed, and conversely, if you drive each 9 IC cylinders with this combination of optimal ignition timings, you will get the maximum The number of revolutions (torque) can be obtained.

本発明で紘以下述べる手法によつてエンジン鍛大回転数
を提供する各気筒の点火時期の組合せを検索するもので
ある。まず、この手法の原理を説明すれば、第2!i1
において、−1気筒の点火時期を#重Kま九#2気筒の
点火時期を#諺とし、この点火時期の組合せ(点L)で
所定期間(例えば20回転)運転してエンジンの回転数
としてu′1が得られ九とする。(崗、ζこで#s、#
gとは後の説明の便宜上、吸入空気量(又紘吸気圧力)
及びエンジンのlJ1転数によりて所まる基本進M#s
に対する輛正量と考えられたい。即ち、第2図における
原点は点火時期違角ていえばOで紘なくθ烏であシ、こ
れに#1又は#雪を加えたものが実際ハ たけ僅かに増し、一方II&2気筒の点火時期−倉はす
る。I!に別の点S(例えば!#20気筒の点火時θ で運転し得られる回転数をlieとする。りまシ2気崎
の揚台の点火時期の總合せを表とすれば次の表1ように
なる。
In the present invention, a combination of ignition timings for each cylinder that provides a high engine speed is searched for by the method described below. First, let's explain the principle of this method.Second! i1
In this case, let the ignition timing of the -1 cylinder be the ignition timing of the 9th cylinder, and the ignition timing of the 2nd cylinder be the ignition timing of the engine. u′1 is obtained and is set as 9. (Gang, ζ here #s, #
For convenience of explanation later, g is the amount of intake air (or intake pressure).
and the basic progression M#s determined by the lJ1 rotation number of the engine
It can be thought of as a positive quantity for That is, the origin in Fig. 2 is the ignition timing difference, which is 0 and not θ, and adding #1 or #snow to this actually increases the ignition timing slightly, while the ignition timing of II & 2 cylinders - Kura does. I! Let lie be the rotational speed obtained by operating at another point S (for example, θ at the time of ignition of the #20 cylinder.If the combination of the ignition timings of the lifts of Rimasaki 2 Kisaki is shown in the table below, It becomes like 1.

表   1 次に仁の3つ(即ち気筒数に1を加えたもの)の初期点
火時期の組合せKおける各気筒の平均値Xを求めると共
に、回転数が最少となる点火時期の組合せ(第2図の例
では回転数81となるL)を捜す。そして、この平均値
1と最少回転数N1における点火時期の組合せLとを結
ぶ直線上において、1に関しLと反対側(換言・すれば
回転数の増大する方向に新丸な点R1を設定する。そし
て、この点R1の点火時期の組合せ(#1+Δσ・−1
+Δ#)を計算し、この組合せで運転を゛行いそのとき
の回転数N4を最少回転数N1と入れ換え、Ns・Na
及びN4の3つの回転数を比較し最少回転数(図でUN
 * )となる点Sを求めると共に、3つの点^時期の
組会せの平均値1′を求め、この平均値c′と最少回転
数となる点Sとを結んだ直線において最少回転数となる
点火時期の組合せSo反対側(即ち回転数の増大する方
向)に新たな点R諺を設定する・ 以下これを繰返してゆけd 、IjsmR*−*Ra−
*R4−eRl −Rs −mRv mRsの様に点火
時期の組合せを回転数の増大方向に向は次々と修正して
ゆく仁とで回転数の山のを極めることができる。
Table 1 Next, find the average value In the example shown in the figure, L) with a rotational speed of 81 is searched. Then, on the straight line connecting this average value 1 and the ignition timing combination L at the minimum rotational speed N1, a new round point R1 is set on the opposite side of L with respect to 1 (in other words, in the direction in which the rotational speed increases). Then, the combination of ignition timing at this point R1 (#1+Δσ・−1
+Δ#), operate with this combination, replace the rotation speed N4 at that time with the minimum rotation speed N1, and calculate Ns・Na
Compare the three rotational speeds of N4 and N4 and compare the minimum rotational speed (UN
*) At the same time, find the average value 1' of the combination of three points ^ period, and find the minimum rotation speed on the straight line connecting this average value c' and the point S, which is the minimum rotation speed. Set a new point R on the opposite side of the ignition timing combination So (i.e. in the direction in which the rotational speed increases). From now on, repeat this d, IjsmR*-*Ra-
*R4-eRl -Rs -mRv By modifying the ignition timing combination one after another in the direction of increasing the rotational speed like mRs, you can reach the peak of the rotational speed.

!s3図には基本の3点H,S、LlfCJ11シ新た
な点火時期の組合せ*neW(即ちR)の求め方が図示
される。この場合平均値はぺ−)〃表示でとなる。tた
、回転数が最小となる点火時期の組合せ軸in (即ち
L)と置きかえるべき新友な点を−newとすれば、 enew=#−a(#win−J)−−−−−−0−−
(2)a:定数 となる。
! The diagram s3 shows how to obtain a new ignition timing combination *neW (ie, R) using the basic three points H, S, and LlfCJ11. In this case, the average value will be expressed as P). In addition, if the new point that should be replaced with the ignition timing combination axis in (i.e. L) that minimizes the rotation speed is -new, then ennew=#-a (#win-J)------ 0--
(2) a: Becomes a constant.

また、最適点火時期の探索過程において、最も回転数が
低かった点火時期の組合せの値と演算式−2)によって
求められ先駈しい点火時期041合せとを入れ替えて得
られた気筒数に1を加えた数の点火時期組合せの中で、
新たに入れ替えられた新しい点火時期の組合せにおける
回転数が最も小さくなる場合には、演算式〇を変化させ
、再度、入れ替えられる前、の点火時期の組合せを求め
ないようにし、振動を収束させて、最適点火時期に制御
する。この演算式変化により、最適点火時期周辺での点
火時期の無意味な変動(112図のR1・、R1層のよ
うに2種類の点火時期の組合せが所定期間を周期として
振動する)を押えることができ、最適点火時期によ〕接
近させる仁とができる。
In addition, in the process of searching for the optimal ignition timing, add 1 to the number of cylinders obtained by replacing the value of the combination of ignition timings with the lowest rotational speed and the 041 combination of ignition timings, which is an advance ignition timing obtained by calculation formula-2). Among the added number of ignition timing combinations,
If the rotation speed is the lowest in the newly replaced combination of ignition timings, change the calculation formula 〇 so that the combination of ignition timings before the replacement is not found again, and the vibrations are converged. , to control the optimum ignition timing. By changing this calculation formula, it is possible to suppress meaningless fluctuations in the ignition timing around the optimum ignition timing (a combination of two types of ignition timing oscillates over a predetermined period, as in the R1 layer in Figure 112). It is possible to bring the ignition timing closer to the optimal ignition timing.

尚、以上は説明の便宜上2気筒に′)%Aて説明したが
、これ以上の気筒数のエンジンであっても同様のamに
よって回転数を最大とするよう各気筒の点火時期の修正
制御を行うことができる。
For convenience of explanation, the explanation has been given using 2 cylinders as %A, but even in engines with more cylinders than this, the ignition timing of each cylinder can be corrected and controlled to maximize the rotation speed using the same am. It can be carried out.

次に1本発明の原理を突現する装置にりいて説明すれば
第4図において、10紘内燃−関の本体で、この場合は
#142.#3.$4の4個の気筒を有している。@気
マニホ〜ド12から各気筒への吸入空気が導入され、ス
ロ―トμ弁14はこの吸入空気の流量コントローμを行
う、エア7o−メータ16がスwe)μR14の上流に
設けられて吸入空気量の計測を行う。崗、エア70−メ
ータ16によって吸入!!気流量の測定を行う代IJK
II&気管内の圧力を計測してもよい、18は回転数量
ンサであシ、エンジンO11転数に応じたflftfI
i生する0回転数センナとしてはエンジンの成るクラン
ク角毎のバμス信号を発生する周知のクランク角センサ
を使用することができる。
Next, I will explain the principle of the present invention by referring to a device that embodies the principle of the present invention. In FIG. #3. It has 4 cylinders of $4. Intake air is introduced into each cylinder from the air manifold 12, and the throat μ valve 14 controls the flow rate of this intake air. Measure the amount of intake air. Inhalation by air 70-meter 16! ! IJK for measuring air flow rate
II & pressure in the trachea may be measured, 18 is a rotation speed sensor, flftfI according to the engine O11 rotation speed.
A well-known crank angle sensor that generates a bus signal for each crank angle of the engine can be used as the 0 rotation speed sensor.

20は点火装置であり、イグナイタと、デイストリビー
ータと、イグニ!V虐ンコイμとを構成要素とするもの
であル、線22を介して各*11の点火栓電極に接続し
ている。
20 is the ignition device, which includes an igniter, a distributor, and an igniter! It is connected to each *11 spark plug electrode via a line 22.

点火網御悶賂26は点火装[20の作動信号を構成する
ものであり、後jiの方法を実行すべくプログツムされ
九コンピーータとしての機能を持りて−る。@入空気會
セン!16及び回転皺七ンサ18は夫々線30及、び3
,2を介して制御回路26に接続している。制御回路2
6は吸入、・空気量及び回転数の組合せで定まる点火時
期の演算を行い、この演算結果に応じた点火時期信号を
線34を介して点火装置に出力する。
The ignition net control signal 26 constitutes an activation signal for the ignition device 20, and is programmed to carry out the method described below and has the function of a computer. @Air intake meeting center! 16 and the rotary wrinkle sensor 18 are connected to the wires 30 and 3, respectively.
, 2 to the control circuit 26. Control circuit 2
6 calculates the ignition timing determined by the combination of intake air amount and rotational speed, and outputs an ignition timing signal according to the calculation result to the ignition device via the line 34.

第5図線点火鋼御回路26のテロツクダイヤグラムを示
すものであって、入力ポート42は吸入空気量センサ、
16及び回転数セン+18からの信号を受けとる。A/
Dコンバータ40は吸入空気量センサ16(又は吸気圧
力センナ)からのアナログ信号をデジタU@号に賛換す
る。出力ポート46は点火装W120への信号ゲートの
役割を行う。
Figure 5 shows a tick diagram of the ignition steel control circuit 26, in which the input port 42 is connected to an intake air amount sensor,
16 and rotation speed sensor +18. A/
The D converter 40 converts the analog signal from the intake air amount sensor 16 (or intake pressure sensor) into a digital signal U@. Output port 46 serves as a signal gate to ignition device W120.

入力ポート42及び出力ポート46は、コンビ暴−タの
構成要素である0PU4B、ROM50゜RAM52に
パス54を介して接続し、クロ!り発生11115&か
らのりatり信号Ki4期して信号のやシと9を行う。
The input port 42 and the output port 46 are connected via a path 54 to the 0PU4B and ROM 50° RAM 52, which are the constituent elements of the combination bomber. From the occurrence of the signal 11115&, the signal Ki4 is generated and the signal line 9 is performed.

制御回路26は、前述し九本発明原理による各気筒の最
適点火時期を慢るぺ〈プログツムされているが、この概
略の作動を第6図により2気筒の場合で説明すれば、最
初の計算ステップS1で杜点火時期紘(イ)・(ロ)の
如く夫々# js# lK段設定れる。この状銀で運転
することによ〕1の如くエンジン回転数は変化し、噂の
如く点火パμスが出る。
The control circuit 26 is programmed to control the optimum ignition timing for each cylinder based on the principles of the present invention as described above. In step S1, the ignition timings are set by #js#lK stages, as in (a) and (b), respectively. By driving in this condition, the engine speed changes as shown in [1], and the ignition pass occurs as rumored.

この第1ステ―プ8sO311近くの所定点火パルス聞
cro〜Cfen4でクロツクパルスを−O如く取〉込
みその個数を計数し、これをj11ステ1プ81でのエ
ンジン回転数―黛とする。第2E目のステップ8mで韓
1114x気筒状−1+Δ−1第2気11紘−1紘その
重まとし、同様に所定点火回数運転し、Ofo 〜0f
enl @ 0り1口!クパJIS/、X歌としての回
転数Meを測定する。゛同様賂3のステ918sでの回
転数limを測定する。このように測定され先回転数の
平絢をと)最小回転機O反対側に新点火時期#1″、0
■′を@SS図計計算ようてとシ、同様に所定点火運転
し回転数N4をクロシクバ〃ス数々して計測する。以下
これを繰返すのである。
At the predetermined ignition pulse intervals cro to Cfen4 near this first step 8sO311, clock pulses are taken like -0 and the number is counted, and this is taken as the engine rotational speed at step 81 of j11. At Step 8m of the 2nd E, set Han 1114x cylinder shape -1 + Δ-1 2nd air 11 Hiro -1 Hiro, and similarly operate the predetermined number of ignitions, Ofo ~ 0f
enl @ 0ri 1 bite! Measure the rotational speed Me as Kupa JIS/, X song. Similarly, measure the rotation speed lim at step 918s of gear 3. The new ignition timing #1'', 0 on the opposite side of the minimum rotating machine O is measured in this way.
■' with @SS diagram calculation method, perform the prescribed ignition operation in the same way, and measure the rotational speed N4 by making many cross cycles. This will be repeated below.

以上本発明における点火時期制御を実行する丸めのプロ
グツムの大まかなとζろを説明したので第7図のフロー
チャートにようて詳細に説明する。
Having described the general outline and outline of the rounding program for executing ignition timing control in the present invention, it will be described in detail with reference to the flowchart of FIG.

まず、内燃411Mが起動すると、プログラムはステッ
プ100よシこの点火時期演算の割込み処理ルーチンを
寮費する6次いでステップlotでは吸入空気量セン9
16(又は吸気圧センサ)、回転数十ンサ18で検出し
た吸入空気量(又は吸気圧)と回転数よ)基本点火時期
0.0算出を行う。具体的には、メモリには吸入空気量
と回転数との組合せに対する基本点火時期マツピングが
してあり。
First, when the internal combustion engine 411M is started, the program goes through step 100 and executes the interrupt processing routine for calculating the ignition timing.
16 (or intake pressure sensor) and the intake air amount (or intake pressure) detected by the rotation speed sensor 18 and the rotation speed), the basic ignition timing is calculated to be 0.0. Specifically, the memory has basic ignition timing mapping for combinations of intake air amount and rotational speed.

突測される吸入空気量と回転数とよシ基零点火時期の演
算が行われるのである。ステップ102では回転数およ
び吸気負圧の変化状態からエンジンが定常か否かの判定
を行う、エンジンが定常でないときはNOK分岐しステ
シブ103に行く。
The intake air amount and engine speed are calculated based on the estimated intake air amount and rotational speed. In step 102, it is determined whether or not the engine is steady based on the changing state of the rotational speed and intake negative pressure.If the engine is not steady, the NOK branch is taken and the process goes to steady 103.

103ではステップカウンタを1;0、点火回数カウン
タをQf=9.クリックパルスカウンタをzl p に
Q、後述する7ツグをにE丁=0と夫夫クリヤする1次
にステシブ104ではスタート点火時期を夫々$1.2
・ 3.−−−M書目の気t14に対して、 にセットする。ここに# 1 * # 虐・・・−・θ
1はJg2図につき説明したように点火時期の修正量で
吸入空気量(又は吸気圧)と回転数とに応じて記憶され
ておシ、これにステップ101で計算される基本点火時
期を加えたものが点火時期と計算されるものである。1
05でメインμmチンに復帰する。
At 103, the step counter is set to 1;0, and the ignition number counter is set to Qf=9. The click pulse counter is set to zl p to Q, and the 7 toggles described later are cleared to E = 0. In the primary progressive 104, the start ignition timing is set to $1.2 each.
・3. ---Set for t14 of the Mth book. Here # 1 * # Torture...--θ
1 is the amount of correction of the ignition timing, which is stored according to the intake air amount (or intake pressure) and rotational speed, as explained with reference to the figure Jg2, and the basic ignition timing calculated in step 101 is added to this. This is what is calculated as the ignition timing. 1
At 05, it returns to the main μm function.

ステシブ102で定常と判定されればYESに分岐し上
記の如く設定された点火時期■1.■諺。
If the steady state is determined by the static 102, the branch goes to YES and the ignition timing set as described above is performed.■1. ■Proverb.

・・・■ヨの組合せで運転が行われ、132図の最初の
点しく即ち第6図でいえば第1ステツプaS)での回転
数測定が行われる。先ず、ステシブ106で社気筒斂毎
にクリアーされるカウンタJの値ヲ点火1回毎に1つ加
算し、ステップ107でJC)値が気筒数−に達したか
否かを判別する。Jの値がMKt!していればステップ
108で、r=lにクリアし、jl!していなければス
テップ109に移行する。このステップ109では気絢
毎に点火時期■。
The operation is carried out using the combination of . First, in step 106, the value of counter J, which is cleared for each cylinder, is incremented by one for each ignition, and in step 107, it is determined whether or not the value (JC) has reached the number of cylinders. The value of J is MKt! If so, in step 108, clear r=l and jl! If not, the process moves to step 109. In this step 109, the ignition timing ■ is determined for each light.

を基本進角0.と点火時期の修正量θ1とを加算するこ
とによシ求める。ステシブ110で扛点火回数カウンタ
Ofが点火1回毎に1つ加算さ、れ、ることをボす。1
.11のステー1では点火回・数Ofが第6図(ホ)の
0fendであるか否かの判定をする。
The basic advance angle is 0. and the ignition timing correction amount θ1. In the steady 110, the number of ignitions counter Of is incremented by one for each ignition. 1
.. In stay 1 of No. 11, it is determined whether or not the ignition times/number Of is 0fend in FIG. 6 (E).

最初は当然tj OK分岐し、117で点火回数(3f
が第6図−のCtOよシ大きいか否かの判定をする。
At first, it naturally branches to tj OK, and at 117 the number of ignitions (3f
It is determined whether CtO is larger than CtO in FIG.

NOであれば、回転数の測定期間に入うていないことを
示すので、119でメインμmチンに復帰する。117
で、・点火回数Ofがクロツクパlvスの計測を始める
べき点火回数0fOK達していると認識すれ#fYES
に分−し、118においてクロックパルスのカウント開
始をし先後、メインμmチンKll!)で復帰する。ス
テップ1.11で点火回数Ofが0fend ic達し
たと判定したら112で、このときのクロツクパルスの
力、ラン)負npをメモリに格納する。このカウント値
はステップSlでのエンジン回転数N1を表わすのであ
る。
If NO, this indicates that the rotational speed measurement period has not yet entered, and the process returns to the main μm control at step 119. 117
Then, it is recognized that the number of ignitions Of has reached the number of ignitions 0fOK at which clock pulse lv measurement should start #fYES
The clock pulse count is started at 118, and then the main μm clock Kll! ) to return. If it is determined in step 1.11 that the number of ignitions Of has reached 0 fend ic, then in step 112, the power of the clock pulse at this time (run) negative np is stored in the memory. This count value represents the engine rotational speed N1 at step Sl.

そして113で1点火1Mll1kカウンタを0f=0
%クロ!クバμスカクンタをnp=OKクリヤし、ステ
ップカウンタを1つ加算し次の点火時期設定を行い、1
12図の点Hでの運転を行い第6図でいえば第システッ
プS1に入る。
And at 113, 1 ignition 1Mll1k counter is 0f=0
%Black! Clear the Kuba μ Ska Kunta np = OK, add 1 to the step counter and set the next ignition timing, 1
The operation is carried out at point H in FIG. 12, and the step S1 in FIG. 6 is entered.

先ず114では1≦細か否かの判定が行われる。First, in step 114, it is determined whether 1≦fine.

このとき1=1であるから丁BSK分岐し、115にお
いて各気筒の点火時期修正量は。
At this time, since 1=1, the BSK branches, and at step 115, the ignition timing correction amount for each cylinder is calculated as follows.

と設定される。(第2.6図では第2ステツプにおいて
、#1気筒の点火時期をΔ01累=八〇だけ動かし、#
2気筒絋そのiま即ちΔeu=oで説明しているが、Δ
#t1はOでなくても良い。)ステップ116でメイン
μmチンに復帰する。再びlOOのステップから割込み
に入ると、第1ステツプと同様106.107.109
,110,111.117゜118−11.9の手順て
ζ0112ステtデS麿におけるエンジアン回転数Nm
がクロシクバμス数として測定され、結果は112のス
テップでメモリ中に格納される。その後、113のステ
ップで、点火回数カウンタOf、クロtクパルスヵウン
タnpのクリヤ、及びステラ1カウンタ1のlり加算が
行われJg3ステtプに入゛る。
is set. (In Fig. 2.6, in the second step, the ignition timing of #1 cylinder is moved by Δ01 cumulative = 80,
2 cylinders are explained in terms of i, that is, Δeu=o, but Δ
#t1 does not have to be O. ) Step 116 returns to the main μm process. When the interrupt is entered again from the lOO step, 106.107.109 is returned as in the first step.
, 110, 111.117゜118-11.9 procedure is
is measured as the number of cross-buses, and the result is stored in memory in steps 112. Thereafter, in step 113, the ignition number counter Of and clock pulse counter np are cleared, and the stellar 1 counter 1 is incremented by 1, and the program enters step Jg3.

まず114では2−* #の場合本依然YESとして判
定され1.115で点火時期修正量をと設定する。その
後116でメインμmチンに復帰後、100で再びこの
グログラ五に割込み、前と同$106以降の処暑を行い
、この第3ステツプSsにおけるエンジン回転数Nmの
計測をクロツクパルスのカウント値npの藩で行b%1
12でメモリに格納する。
First, in 114, in the case of 2-*#, it is determined as YES, and the ignition timing correction amount is set in 1.115. After that, after returning to the main micrometer at 116, interrupting this groggle 5 again at 100, performing the heat treatment after 106 as before, and measuring the engine rotation speed Nm at this third step Ss at the clock pulse count value np. line b%1
12, it is stored in memory.

次に114C1ステツプで1≦Mの判定が行われる。2
気筒の場合にはここで始めてNOK分岐し、120でこ
れまでの回転数測定ステg1において回転数を最少とす
るステップ1= minの検索を行う。(尚これ以上の
気筒数の場合は、**数に1を加え九点火時期のセット
が行われるまで115のステップに分紋する。
Next, in step 114C1, it is determined whether 1≦M. 2
In the case of a cylinder, the NOK branch is taken at this point, and in step 120, a search is performed for step 1=min, which minimizes the rotation speed in the previous rotation speed measurement step g1. (If the number of cylinders is more than this, add 1 to the ** number and divide into 115 steps until nine ignition timings are set.

次にステップ121で新丸な点火時期の組合せがセット
されているか否かをフッグKg丁の状態によ)判定し、
セットされておれば(KEY:l)。
Next, in step 121, it is determined whether a new ignition timing combination has been set (based on the state of the hook),
If set (KEY: l).

次の122のステップで、新九に入れ替えられた点火時
期0組合せにおける運転(新ステップ)が120で求め
先回転数を最小とするステップ1=winに相当するか
否かを判−し、YESであれd123のステップで前記
演算式(2)の定数tlta・よfiaa−△alc減
じる。また−KBY÷0であるか、あるいは新ステーf
がi = winでなければステt7”124でa=a
eとして変更し攻い、このステップ!23の*titt
を加えることによシ、最適点火時期付近での点火時期O
S動的なくシ返しがなくなり、最適点火時期に精度よく
収束させることができる。
In the next step 122, it is determined whether the operation (new step) with the ignition timing 0 combination replaced with the new nine corresponds to step 1 = win, which minimizes the desired rotation speed in 120, and YES. In any case, in the step d123, the constant tlta·yfiaa−Δalc of the arithmetic expression (2) is subtracted. Also, -KBY÷0 or new stage f
If i = win, then a = a in step t7''124
Change and attack as e, this step! 23 *titt
By adding , the ignition timing O near the optimum ignition timing
There is no S dynamic, no backlash, and it is possible to accurately converge on the optimal ignition timing.

この各回の点火時期の組合せ内容、及び新しい点火時期
の組合せの移シ変わシを表2に示す。
Table 2 shows the contents of each ignition timing combination and the transition of new ignition timing combinations.

表  2 注l)はそれぞれの組合せの中で最も回転数が低いもの aが一定不変の場合だと組合せ412以後は、算出され
る新しい点火時期の組合せはRz・とRuの繰9返しと
なる・本方式によれば、A14のときに、R慮lを新九
に求め、以後Rtt、Rtsとの点のよシ近傍を探索で
龜る。
Table 2 (Note 1) shows that if the one with the lowest rotation speed among each combination, a, remains constant, from combination 412 onwards, the calculated new ignition timing combination will be 9 repetitions of Rz and Ru. - According to this method, at the time of A14, R x l is obtained from the new nine, and thereafter, the vicinity of the points Rtt and Rts is searched.

次11C125Oステ!プで平均点火時期−の算出を第
一1)式、 によりて行う、この式はペクトμ表示であるから、@1
:1. t<)、 (5)の各式における気崎式分毎に
計算する。そして126のステップではこの平均点火時
期を基に第2式 %式%) によって回転数を増大させる新規な点火時期# ne’
iiの算出を行う、この式もペクトμ表示であるから、
第#(至)* (4)s ’5)式の各成分毎に新点火
時期の計算を行う6次にステップ!27ではこの新点火
時期θnewを最少回転数(1121!10例ではNs
)を構成する点火時期の組合せ(即ち第6)式における
#1゜0麿、・・・、、・#、)と置き換える。そして
、128のステップで成分毎に点火時期修正量〇七!ト
を行い01.0廖* ++H1θ1を得、ステップ12
9で7’)グKEYをIK−kv)して、130てメイ
ン4/−チンに戻る。
Next 11C125O station! Calculate the average ignition timing using the first equation 1). Since this equation is expressed in pect μ, @1
:1. t<), calculated for each Kizaki formula in each equation (5). Then, in step 126, a new ignition timing #ne' is determined based on this average ignition timing to increase the rotation speed using the second formula (%).
Since this formula for calculating ii is also in pect μ representation,
No. # (To) * (4)s '6th step to calculate new ignition timing for each component of formula 5)! 27, this new ignition timing θnew is set to the minimum rotation speed (1121!Ns in the 10th example)
) in the combination of ignition timings (i.e., equation 6) where Then, in 128 steps, the amount of ignition timing correction for each component is 07! and obtain 01.0 Liao* ++H1θ1, step 12
At 9, press the 7') key to IK-kv) and return to the main 4/-chin at 130.

かように新点火時期の組合姓が設定されると、次の割込
みにてJl!6図の1g4ステツプが第7図の106.
107,109.J l G、111.117.118
1+りμmチンによ、シ寮費され1回転数N40計胸が
行われる。それから120Fl至129のルーチンに入
hM2図O8r H・R*の3点における平均点・火時
期−の計算、回転数増大方向の一点Rmの決定、そのR
mのAでの点火時期の各気筒成分の計算が行われ、点火
時期修正量が割り出され、以後同様な魁jjが繰返され
、回転iの山が鈑められる。
Once the union name for the new ignition timing is set in this way, the Jl! 1g4 step in Figure 6 is 106. in Figure 7.
107,109. JlG, 111.117.118
For 1+μm, one revolution is performed at N40 times. Then, enter the routine from 120Fl to 129, calculate the average point and fire timing at three points of H and R*, determine one point Rm in the direction of increase in rotation speed, and calculate the R
Calculation of each cylinder component of the ignition timing at A of m is performed, the ignition timing correction amount is determined, and the same process is repeated thereafter to remove the peak of rotation i.

以上述べえように本発明によれば点火時期の各911、
筒毎の組合せを複数設定し、仁の組合せからエンジン回
転数が増、加方崗と−るように所定の演算を行うて点火
時期の組合せ911正を行い、各運転状龜KTh%/%
てエンジン回転数を最大とする気筒毎の点火時期の組合
せを傳てか〕、また修正されえIIT友な点火時期の組
合せにおける運転状騙が最適の運転状−から最も離れ丸
場合に紘この新たな点火時期の組合せを求める演算式を
変廻しているので、エンジン−差、経時変化岬に影響さ
れることなく出力効率が最大となる点火時期で運転を行
なうことができ、ま九この点火時期への収束を円滑に行
なうことができる。
As described above, according to the present invention, each of the ignition timings 911,
Set multiple combinations for each cylinder, perform predetermined calculations so that the engine speed increases from the best combination, and make the ignition timing combination 911 positive, and set each operating condition KTh%/%.
The combination of ignition timings for each cylinder that maximizes the engine speed can be determined], and the combination of ignition timings that can be corrected can also be modified. Since the calculation formula for finding a new ignition timing combination has been changed, it is possible to operate at the ignition timing that maximizes the output efficiency without being affected by engine differences or changes over time. It is possible to smoothly converge on the timing.

【図面の簡単な説明】[Brief explanation of drawings]

jB1図社点火時期とエンジン回転数との関係を示す特
性図、 第2図は2気筒の場合における点火時期組合せに対する
エンジン回転数変化を示す等高線図、第38!ilは気
筒数Klを加え九点火時期組合せからエンジン回転数を
増加させる新点火時期の決定方法を示す図。 第4図は本発明に係る内燃−関の構成図、第5図は第4
図中の制御回路の構成図、第6図は本発明にシける演、
算gI&理の概念を示す線図、 第7図は本発明における点火時期演算のフローチャート
である。 10−・エンリン本体、16−・・吸入空気量センサ1
8−・・エンジン回転数センサ、 20−・・点火装置
。 26−fi制御回路。 代署人声瑠士 間部 隆 竿 2 閏 か 3M 第 4■゛1 第6図 51     ’S!     −−
jB1 Zusha Characteristic diagram showing the relationship between ignition timing and engine speed, Figure 2 is a contour diagram showing changes in engine speed with respect to ignition timing combinations in the case of two cylinders, and Figure 38! il is a diagram showing a method of determining a new ignition timing in which the engine speed is increased from nine ignition timing combinations by adding the number of cylinders Kl. FIG. 4 is a block diagram of the internal combustion engine according to the present invention, and FIG.
The configuration diagram of the control circuit in the figure, FIG.
FIG. 7 is a diagram showing the concept of calculation gI & logic, and is a flowchart of ignition timing calculation in the present invention. 10-・Enrin main body, 16-・Intake air amount sensor 1
8--Engine speed sensor, 20--Ignition device. 26-fi control circuit. Substitute voice Rushi Manabe Takashi 2 Leap 3M No. 4■゛1 Fig. 6 51 'S! ---

Claims (1)

【特許請求の範囲】[Claims] 目標点火時期の近傍で111I毎に所定の値を持つ九点
火時期の組合せを複数選択し、この選択した点火時期、
の番組合せにて次々に所定期間運転を行い、これらの、
各運転中にニンジン回転数−の運転状轢信号を検出し、
上記各点火時期の組合せにおける検出信号を比幀するこ
とkよl最適の運転状態から最も離れ九運転状線となる
前記点火時期の組合せを求め、この点火時期の組合せを
前記点火時期の各組合せから所定の演算式によル求めた
新たな点火時期の組合せに変更して、最適の運転状態が
得られる方向に前記点火時期□′め組合せを修正する点
火時期制御方法であって、前記新たな点火時期の組合せ
における運転状態が前□記各点火時期の組合せにおける
運転状態のうち最適の運転状態から最も離れた運転状線
となる場1.前記新良な点火時期の組合せを求める演算
式を変更することを特徴とする多気筒内燃機関の点火時
期制御方法。
Select a plurality of combinations of nine ignition timings having a predetermined value for each 111I in the vicinity of the target ignition timing, and select the selected ignition timing,
These,
During each drive, the driving condition signal of carrot rotation speed - is detected,
By comparing the detection signals for each of the above combinations of ignition timings, find the combination of ignition timings that is farthest from the optimum operating state and form the 9th driving line, and combine this combination of ignition timings with each combination of ignition timings. An ignition timing control method in which the ignition timing combination is changed to a new ignition timing combination calculated by a predetermined calculation formula from 1. If the operating state for the ignition timing combination is the operating state line that is farthest from the optimal operating state among the operating states for each ignition timing combination described above.1. An ignition timing control method for a multi-cylinder internal combustion engine, characterized in that the arithmetic expression for determining the new and good ignition timing combination is changed.
JP56142004A 1981-08-01 1981-09-09 Ignition timing control method of multi-cylinder internal-combustion engine Granted JPS5844270A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56142004A JPS5844270A (en) 1981-09-09 1981-09-09 Ignition timing control method of multi-cylinder internal-combustion engine
DE8282304034T DE3268810D1 (en) 1981-08-01 1982-07-30 Method and system for controlling ignition timing in a multicylinder internal combustion engine
US06/403,816 US4432322A (en) 1981-08-01 1982-07-30 Method and system for controlling ignition timing in a multicylinder internal combustion engine
EP82304034A EP0072162B2 (en) 1981-08-01 1982-07-30 Method and system for controlling ignition timing in a multicylinder internal combustion engine
US06/459,497 US4480615A (en) 1981-08-01 1983-01-20 Method and apparatus for controlling ignition timing in a multicylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142004A JPS5844270A (en) 1981-09-09 1981-09-09 Ignition timing control method of multi-cylinder internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5844270A true JPS5844270A (en) 1983-03-15
JPS6331667B2 JPS6331667B2 (en) 1988-06-24

Family

ID=15305139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142004A Granted JPS5844270A (en) 1981-08-01 1981-09-09 Ignition timing control method of multi-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5844270A (en)

Also Published As

Publication number Publication date
JPS6331667B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
US6688286B2 (en) Knock control apparatus for engine
JPS6081450A (en) Operation amount controller of internal combustion engine
JPS639093B2 (en)
US6155105A (en) Method for detecting RPM especially for detecting combustion misfires
JP5197528B2 (en) Engine load detection device and engine load detection method
JPS61193011A (en) Detecting method for reference position of crank angle right after start of internal combustion engine
JPS61275585A (en) Ignition timing control device of internal combustion engine
JPS5844270A (en) Ignition timing control method of multi-cylinder internal-combustion engine
JPS58176468A (en) Ignition timing controlling method for multi-cylinder internal-combustion engine
JP2000205025A (en) Control apparatus for engine
JP2004293468A (en) Torque fluctuation correction control device of internal combustion engine
US4452205A (en) Method and apparatus for controlling ignition timing in an internal combustion engine
JPS5932671A (en) Ignition timing control device for internal-combustion engine
JP5035267B2 (en) Crank angle detector
JPS60190866A (en) Apparatus for detecting abnormality of rotary speed
JPH11247707A (en) Crank angle detecting device of internal combustion engine
US4453521A (en) Method and apparatus for controlling ignition timing in a multicylinder internal combustion engine
JPS5937271A (en) Control of ignition timing for internal-combustion engine
JPH0230961A (en) Device for controlling engine
JPS6168533A (en) Detection of max. combustion pressure generation timing for internal combustion engine
JPS6331668B2 (en)
JPS63314371A (en) Ignition timing controller for internal combustion engine
JPS6331666B2 (en)
JPH0320596B2 (en)
JPS6342113B2 (en)