JPS5843897B2 - Method for measuring resistance of P-type silicon epitaxial layer - Google Patents

Method for measuring resistance of P-type silicon epitaxial layer

Info

Publication number
JPS5843897B2
JPS5843897B2 JP8528679A JP8528679A JPS5843897B2 JP S5843897 B2 JPS5843897 B2 JP S5843897B2 JP 8528679 A JP8528679 A JP 8528679A JP 8528679 A JP8528679 A JP 8528679A JP S5843897 B2 JPS5843897 B2 JP S5843897B2
Authority
JP
Japan
Prior art keywords
epitaxial layer
type silicon
silicon epitaxial
resistance
measuring resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8528679A
Other languages
Japanese (ja)
Other versions
JPS5610919A (en
Inventor
秀明 高橋
格 山仲
進 直本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP8528679A priority Critical patent/JPS5843897B2/en
Publication of JPS5610919A publication Critical patent/JPS5610919A/en
Publication of JPS5843897B2 publication Critical patent/JPS5843897B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 本発明は四探針法によりエピタキシャル層のシート抵抗
を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the sheet resistance of an epitaxial layer using a four-probe method.

四探針法は1表面が平らでかつ大きな試料、たとえば半
導体基板上に形成されたエピタキシャル層等のシート抵
抗または比抵抗の測定に広く用いられている方法であっ
て、測定すべき試料表面に一直線をなす4点をとり、探
針を立てて両端の2点に電流を流し、内側の2点間にか
かる電圧を測定することにより正確な測定値を得る方法
である。
The four-point probe method is a method widely used to measure the sheet resistance or specific resistance of a large sample with a flat surface, such as an epitaxial layer formed on a semiconductor substrate. This method obtains accurate measurements by taking four points in a straight line, setting up a probe, passing current through two points at both ends, and measuring the voltage applied between the two inner points.

ところがこの四探針法を用いてシリコンエピタキシャル
層のシート抵抗を測定すると、理由は定かでないがn型
に比べてことにp型高比抵抗のものが測定結果に再現性
が乏しく、ばらつきが大きいという問題があり、多数回
の測定値の平均をとらなければならないという不都合が
あった。
However, when the sheet resistance of a silicon epitaxial layer is measured using this four-probe method, for reasons that are not clear, the measurement results are poor in reproducibility and have large variations, especially for p-type materials with high resistivity compared to n-type materials. There is a problem in that it is necessary to take the average of a large number of measured values.

たとえば、第1図は、n型シリコン基板上に。For example, FIG. 1 shows an example on an n-type silicon substrate.

比抵抗30Ω温厚さ40μmのp型シリコンエピタキシ
ャル層を形成し、4探針法を用い試料に流す電流の方向
を順逆に反転させ、これを1回とし。
A p-type silicon epitaxial layer with a specific resistance of 30Ω and a thickness of 40 μm was formed, and the direction of the current flowing through the sample was reversed using the four-probe method, and this was done once.

都合20回にわたる測定を行った結果であるが。This is the result of a total of 20 measurements.

ばらつきは非常に大きいことがわかる。It can be seen that the variation is very large.

このばらつきは、同じ高比抵抗のエピタキシャル層でも
This variation occurs even in epitaxial layers with the same high resistivity.

n型のものに対しては、全くみられない。It is not observed at all for n-type.

本発明は、p型高比抵抗エピタキシャル層の4探針法に
よる比抵抗測定にのみみられる上記の問題点に鑑みてな
されたもので、あらかじめ測定しようとする試料表面に
対し、弗酸によるエツチング処理等の表面処理を施した
のち測定を行うことにより、ばらつきなく精度の良い測
定値を得ることを見い出し、これに基いてなされたもの
である。
The present invention has been made in view of the above-mentioned problems that occur only when measuring the resistivity of a p-type high resistivity epitaxial layer using the four-probe method. This was based on the discovery that by performing measurements after performing surface treatment, it is possible to obtain accurate measured values without variation.

次に本発明実施例の高比抵抗p型シリコンエピタキシャ
ル層のシート抵抗測定方法について説明する。
Next, a method for measuring the sheet resistance of a high resistivity p-type silicon epitaxial layer according to an embodiment of the present invention will be described.

n型シリコン基板表面に、比抵抗30Ωの厚さ40μm
のp型シリコンエピタキシャル層の形成された試料を準
備し、これを46.5条の弗酸と水をに10の割合で混
合してなるエツチング液に1分40秒浸漬したのち水洗
乾燥処理を行った。
A 40μm thick layer with a specific resistance of 30Ω is placed on the surface of an n-type silicon substrate.
A sample with a p-type silicon epitaxial layer formed thereon was prepared, and it was immersed in an etching solution made by mixing 46.5 parts of hydrofluoric acid and 10 parts of water for 1 minute and 40 seconds, and then washed with water and dried. went.

その後、4探針法を用いて多数回にわたり。シート抵抗
を測定した。
After that, multiple times using the 4-probe method. Sheet resistance was measured.

その結果を第2図に示す。この図から明らかなように、
測定値のばらつきは非常に小さくなった。
The results are shown in FIG. As is clear from this figure,
The dispersion of measured values has become very small.

この理由は詳らかではないが、ことに高比抵抗p型エピ
タキシャル層の場合においてのみ、大きかったシート抵
抗測定値のばらつきが、測定の前に弗酸処理を施すこと
により、非常に小さくなった。
Although the reason for this is not clear, especially in the case of a high resistivity p-type epitaxial layer, the large dispersion of measured sheet resistance values became extremely small by performing hydrofluoric acid treatment before measurement.

これは弗酸処理により表面酸化膜が除去されたためとは
考えにくい。
It is unlikely that this is because the surface oxide film was removed by the hydrofluoric acid treatment.

エピタキシャル成長を水累算囲気中で行い、かつリアク
タからとり出した直後、すなわち1表面に酸化膜が形成
されない状態で測定することによってもこのばらつきは
消滅しないことから、とくに表面の酸化膜の影響ではな
いように思われる。
This variation does not disappear even if epitaxial growth is performed in a water accumulation atmosphere and measurements are taken immediately after removal from the reactor, that is, when no oxide film is formed on one surface. It seems not.

しかしながら、この表面処理により表面状態に何らかの
変化が生じ、四探針法に適したものとなっていると考え
られる。
However, it is thought that this surface treatment causes some change in the surface condition, making it suitable for the four-probe method.

さらに、弗酸と水の混合比を1:1〜100゜処理時間
を3秒〜15分で、いろいろな組合せを選び実験を行っ
た。
Furthermore, experiments were conducted by selecting various combinations of hydrofluoric acid and water at a mixing ratio of 1:1 to 100° and a treatment time of 3 seconds to 15 minutes.

この実験結果によれば、弗酸:水の混合比が1:1〜I
:Ioo、処理時間が30秒〜10分の範囲において顕
著な効果がみられた。
According to this experimental result, the mixing ratio of hydrofluoric acid:water is 1:1 to I
:Ioo, remarkable effects were observed when the treatment time was in the range of 30 seconds to 10 minutes.

弗酸:水−1=1以上の濃い溶液を用いると1表面がス
テイニングされることがあり、又100以下に希釈した
場合エツチング液の組成がばらつき、溶液濃度の再現性
に乏しく実用的には問題があった。
If a concentrated solution of hydrofluoric acid: water - 1 = 1 or more is used, one surface may be stained, and if it is diluted to less than 100, the composition of the etching solution will vary and the reproducibility of the solution concentration will be poor, making it impractical. There was a problem.

また0時間については、30秒以下では測定値のばらつ
きは解消されないばかりでなく、かえって、測定値のば
らつきを大きくする結果となることもある。
Further, regarding time 0, if the time is 30 seconds or less, the variation in measured values is not only not eliminated, but may even increase the variation in measured values.

これは、エツチング処理が不充分であることの他に、エ
ツチングの「むら」なども関係していると考えられる。
This is thought to be related not only to insufficient etching treatment but also to "unevenness" in etching.

一方、10分以上行ってもさらに顕著な効果は認められ
ず1時間のロスが太きい。
On the other hand, even if the treatment is carried out for more than 10 minutes, no more significant effect is observed and one hour is lost.

上述した範囲内に、エツチング時間および溶液濃度を選
んだ場合、その範囲内では、その効果に著しい差異は認
められず、いずれも、処理前のばらつきが10%以上で
あったものが、処理後には1.5%以内となっている。
When the etching time and solution concentration are selected within the above range, there is no significant difference in the effectiveness within that range, and in both cases, the variation before treatment was 10% or more, but after treatment is within 1.5%.

以上説明してきたように、測定値にばらつきが大きく多
数回の測定によらなければ、信頼性を得ることができな
かったとくに100以上の高抵抗p型エピタキシャル層
の測定値が1本発明の方法によれば測定値のばらつきが
小さくなり+、−1回程度の測定値の平均を求めれば元
号であり、抵抗測定の為の作業能率を非常に大きく高め
ることができるものである。
As explained above, the measured values have large variations and reliability cannot be obtained unless measurements are performed many times.In particular, the method of the present invention has a high resistance p-type epitaxial layer of 100 or more. According to this method, the dispersion of measured values is reduced, and if the average of the measured values of + and -1 times is calculated, it is possible to obtain the era name, and the work efficiency for resistance measurement can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法によって測定したp型窩抵抗エビクキシ
ャル層のシート抵抗を示す図、第2図は本発明実施例の
方法を用いて測□したp型高抵抗エピタキシャル層のシ
ート抵抗を示す図である。
FIG. 1 is a diagram showing the sheet resistance of a p-type epitaxial layer with high resistance measured using the conventional method, and FIG. 2 is a diagram showing the sheet resistance of a p-type high-resistance epitaxial layer measured using the method of the embodiment of the present invention. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 四探針法を用いて、p型のシリコンエピタキシャル
層のシート抵抗又は比抵抗を測定するにあたり、あらか
じめ前記シリコンエピタキシャル層に対し弗酸による表
面処理を施したのちに測定を行うことを特徴とするp型
シリコンエピタキシャル層の抵抗測定方法。
1. When measuring the sheet resistance or specific resistance of a p-type silicon epitaxial layer using the four-probe method, the silicon epitaxial layer is first subjected to surface treatment with hydrofluoric acid, and then the measurement is performed. A method for measuring the resistance of a p-type silicon epitaxial layer.
JP8528679A 1979-07-05 1979-07-05 Method for measuring resistance of P-type silicon epitaxial layer Expired JPS5843897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8528679A JPS5843897B2 (en) 1979-07-05 1979-07-05 Method for measuring resistance of P-type silicon epitaxial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8528679A JPS5843897B2 (en) 1979-07-05 1979-07-05 Method for measuring resistance of P-type silicon epitaxial layer

Publications (2)

Publication Number Publication Date
JPS5610919A JPS5610919A (en) 1981-02-03
JPS5843897B2 true JPS5843897B2 (en) 1983-09-29

Family

ID=13854320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8528679A Expired JPS5843897B2 (en) 1979-07-05 1979-07-05 Method for measuring resistance of P-type silicon epitaxial layer

Country Status (1)

Country Link
JP (1) JPS5843897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953263B2 (en) * 1993-07-16 1999-09-27 信越半導体株式会社 Method for measuring resistivity of n-type silicon epitaxial layer

Also Published As

Publication number Publication date
JPS5610919A (en) 1981-02-03

Similar Documents

Publication Publication Date Title
Buehler et al. Bridge and van der Pauw sheet resistors for characterizing the line width of conducting layers
Buehler et al. An experimental study of various cross sheet resistor test structures
Deal The oxidation of silicon in dry oxygen, wet oxygen, and steam
US3335340A (en) Combined transistor and testing structures and fabrication thereof
DE2204153C3 (en) Temperature sensor for very low temperatures
Mackintosh The diffusion of phosphorus in silicon
DE2742902A1 (en) ABSOLUTE HUMIDITY SENSORS AND PROCESS FOR THEIR PRODUCTION
JPS5843897B2 (en) Method for measuring resistance of P-type silicon epitaxial layer
Iles et al. Diffusant impurity-concentration profiles in thin layers on silicon
Hooper et al. The electrical properties of zinc diffused indium phosphide
Jaeger et al. Transition resistances of ohmic contacts to p-type CdTe and their time-dependent variation
JPS60253279A (en) Measuring instrument for strain in semiconductor
Lood Electrical Properties of Cr‐SiO Cermet Films
Miller The etch rate of gadolinium gallium garnet in concentrated phosphoric acid of varying composition
Tyagi Electrical properties of metal-GaAs Schottky barriers
Buck et al. Experiments on the photomagnetoelectric effect in germanium
Busch et al. Lorenz number and thermal conductivity of liquid Hg In
JPH0510830B2 (en)
Anderson et al. Semi–conducting properties of stannous sulphide. Part II.—Thermoelectric effect
JPS58100472A (en) Temperature sensor and manufacture thereof
Ptak et al. 1/f noise versus magnetic field in RuO/sub 2/based thick film resistors
Basu et al. Measurement of shallow dopant impurity profile in silicon using anodic sectioning and Lange method of Hall measurement
Carver et al. Well‐Defined Contacts Produce Accurate Spreading Resistance Measurements
JPS54103371A (en) Measuring method of thicknesses of semiconductor epitaxial layers
JPH0340959B2 (en)