JPS5843597B2 - Wesco pump control mechanism - Google Patents

Wesco pump control mechanism

Info

Publication number
JPS5843597B2
JPS5843597B2 JP11052676A JP11052676A JPS5843597B2 JP S5843597 B2 JPS5843597 B2 JP S5843597B2 JP 11052676 A JP11052676 A JP 11052676A JP 11052676 A JP11052676 A JP 11052676A JP S5843597 B2 JPS5843597 B2 JP S5843597B2
Authority
JP
Japan
Prior art keywords
valve
water
pressure
waterway
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11052676A
Other languages
Japanese (ja)
Other versions
JPS5336011A (en
Inventor
正 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Engineering Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Engineering Works Co Ltd filed Critical Shibaura Engineering Works Co Ltd
Priority to JP11052676A priority Critical patent/JPS5843597B2/en
Publication of JPS5336011A publication Critical patent/JPS5336011A/en
Publication of JPS5843597B2 publication Critical patent/JPS5843597B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明はウェスコポンプの制御機構に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control mechanism for a Wesco pump.

従来より、井戸等に使用されるウェスコポンプは一般に
圧力タンクを備えており、この圧力タンク内の圧縮空気
圧を利用して圧力スイッチを動作させ、ポンプの駆動を
自動化していたが、圧力タンク内の空気が少なくなると
圧力スイッチの開閉が頻繁となり、スイッチを早期に焼
損したりポンプおよびタンク部分に悪影響を与える等の
欠点があり、この欠点を補なうために複雑な構成の空気
補給装置が必要である上、圧力タンクの容量が大きいの
で非常に嵩高く、運搬等の取扱いが不便であるとともに
据え付は面積が大きくなるものであった。
Conventionally, Wesco pumps used in wells, etc. have generally been equipped with a pressure tank, and the compressed air pressure inside this pressure tank has been used to operate a pressure switch and automate the pump drive. If the air in the tank becomes low, the pressure switch will have to open and close frequently, which may cause early burnout of the switch or adversely affect the pump and tank. In addition to being necessary, the pressure tank has a large capacity, making it very bulky, making it inconvenient to transport and handle, and requiring a large area to install.

そこで近年、圧力タンクおよび空気補給装置を省略して
しかも圧力タンク付の場合と同様にポンプを運転できる
ようにしたいわゆるタンクレスポンプの開発が進められ
ている。
Therefore, in recent years, so-called tankless pumps have been developed that omit the pressure tank and air supply device and can operate the pump in the same way as a pump with a pressure tank.

ウェスコポンプは圧力タンクを省略すると、圧力上昇が
早く、かなり多くの流量を使用する場合でも圧力が圧力
スイッチのOFF点に達して圧力スイッチが開閉を繰返
すもので、例えば第4図において流量がQ2以下になれ
ば圧力がOFF点に達することになる。
If the pressure tank is omitted in the Wesco pump, the pressure rises quickly, and even when using a considerably large flow rate, the pressure reaches the OFF point of the pressure switch and the pressure switch repeats opening and closing. For example, in Figure 4, when the flow rate is Q2 When the pressure becomes below, the pressure reaches the OFF point.

なお、OFF点を高くとって流量が少ないところで圧力
スイッチが動作するようにすれば、圧力スイッチを閉じ
たままでの使用流量の範囲を広くとることができるが、
モーターはポンプの吐出圧力が高くなる程過負荷になり
焼損の虞れがある。
Note that if the OFF point is set high so that the pressure switch operates when the flow rate is low, the range of flow rate that can be used with the pressure switch closed can be widened.
As the discharge pressure of the pump increases, the motor becomes overloaded and there is a risk of burnout.

これらの問題点を解決しなければタンクレスポンプとし
ては不完全である。
Unless these problems are resolved, the tankless pump will be incomplete.

本発明は上記諸点に鑑みて種々研究を重ねた結果、使用
水量に応じてポンプ能力を変化させることにより、圧力
上昇を防ぎ、ポンプの過負荷を防止し、しかも少水量使
用時にはポンプ能力をおとして圧力スイッチのOFFF
F下の圧力でポンプを連続運転でき、漏水程度の極少の
一定水量以下になったときにはじめて圧力スイッチが開
路OFFするよう発明したものであり、特に前記極少の
一定水量以下となったときにはポンプ能力を元に戻して
圧力を急上昇させて圧力スイッチを確実に開路できるよ
うにしたものである。
As a result of various studies in view of the above points, the present invention prevents pressure rise and prevents pump overload by changing the pump capacity according to the amount of water used, and also reduces the pump capacity when using a small amount of water. as pressure switch OFF
It was invented so that the pump can be operated continuously at a pressure below F, and the pressure switch opens and turns OFF only when the amount of water drops below a certain amount, which is equivalent to a leak.In particular, when the amount of water falls below the amount of water that is as small as a leak, the pump shuts off. This restores the capacity to its original level and rapidly increases the pressure, making it possible to reliably open the pressure switch.

即ち本発明はウェスコポンプの吸込口から吐出口に到る
昇圧水路の途中に副吸込口を形成し、吸込口と吸水管と
を吸水主通路を介して、また副吸込口と吸水管とを吸水
補助通路を介してそれぞれ接続し、吸水補助通路と逆止
弁を装設し、また吸水主通路の途中を一旦二つの水路に
分岐して再び合する駅路となし、一方の水路には吐出水
路の流量の多少によって開閉動作する弁機構を備え、他
方の水路には吐出側の圧力変化に伴って開閉動作する弁
機構を備え、吐出側の圧力が低圧のとき後者の弁機構を
開いて吸水主通路を開通させ、圧力が高くなるに伴なっ
て吸水主通路を閉じて吸水補助通路を開きポンプ能力を
低下させ、さらに吐出水路の流量が極少の一定水量以下
のとき、上記前者の弁機構を開いて吸水主通路を開通さ
せ、吐出圧力を急上昇させるように構成したものである
That is, the present invention forms a sub-suction port in the middle of the pressurizing waterway from the suction port to the discharge port of the Wesco pump, and connects the suction port and the water suction pipe via the main water suction passage, and also connects the sub-suction port and the water suction pipe. They are connected to each other via an auxiliary water intake passage, and equipped with an auxiliary water intake passage and a check valve.The main water intake passage is once branched into two waterways and then rejoined as a station road. The discharge channel is equipped with a valve mechanism that opens and closes depending on the flow rate, and the other channel is equipped with a valve mechanism that opens and closes depending on the pressure change on the discharge side, and the latter valve mechanism is opened when the pressure on the discharge side is low. The water suction main passage is opened, and as the pressure increases, the water suction main passage is closed and the water suction auxiliary passage is opened to reduce the pump capacity.Furthermore, when the flow rate of the discharge passage is below a certain minimum water volume, the former The valve mechanism is opened to open the water suction main passage and to rapidly increase the discharge pressure.

その実施例を図により以下に説明する。An example thereof will be explained below using figures.

Pはウェスコポンプ、1はポンプPのケーシング、2は
羽根車、3は井戸等からの吸水管、4は吐出水路である
P is a Wesco pump, 1 is a casing of pump P, 2 is an impeller, 3 is a water suction pipe from a well etc., and 4 is a discharge waterway.

5は吐出水路4の適所に装設した抵抗弁で、その上流側
と下流側とでは流量が極少の一定水量以上のとき差圧が
あり、前記一定水量以下になると差圧がなくなるように
しである。
Reference numeral 5 denotes a resistance valve installed at an appropriate location in the discharge waterway 4, so that there is a pressure difference between the upstream and downstream sides of the valve when the flow rate exceeds a certain extremely small amount of water, and there is no pressure difference when the flow rate falls below the above-mentioned certain amount of water. be.

6は吸込ロアから吐出口8に到る昇圧水路であり、この
昇圧水路6の中はどに副吸込口を形成している。
Reference numeral 6 denotes a pressure increasing waterway extending from the suction lower to the discharge port 8, and a sub-suction port is formed in the inside of this pressure increasing waterway 6.

吸込ロアと吸水管3とは吸水主通路10を介して、また
副吸込口9と吸水管3とは吸水補助通路11を介してそ
れぞれ接続している。
The suction lower and the water suction pipe 3 are connected through a main water suction passage 10, and the sub suction port 9 and the water suction pipe 3 are connected through a water suction auxiliary passage 11, respectively.

12は吸水主通路10と吸水管3との接続部分に設けた
逆止弁、13は吸水補助通路11の昇圧水路6の近くに
装設した逆止弁である。
Reference numeral 12 designates a check valve provided at the connection portion between the water suction main passage 10 and the water suction pipe 3, and 13 designates a check valve installed near the pressure increasing waterway 6 of the water suction auxiliary passage 11.

吸水主通路10はその途中を一旦二つの水路10a 、
10bに分岐して再び合する駅路として形成している。
The water absorption main passage 10 once passes through two water channels 10a,
It is formed as a station road that branches into 10b and joins again.

駅路の一力の水路10aには吐出水路4の流量の多少に
よって開閉動作する弁機構Aを備えている。
The main channel 10a of the station road is equipped with a valve mechanism A that opens and closes depending on the flow rate of the discharge channel 4.

この弁機構Aは、水路10a中の弁体20aの上方外部
にダイヤフラム21aにて仕切った上下二室22a。
This valve mechanism A has two upper and lower chambers 22a separated by a diaphragm 21a above and outside a valve body 20a in a waterway 10a.

23aを設け、弁体20aの上部に連設した弁棒24a
をそのダイヤフラム21aに連結して支持し、下室23
aにはダイヤフラム21aを弁体20aの開弁方向に押
圧するスプリング25aを備え、上室22aを吐出水路
4の抵抗弁5の上流側に、下室23aを下流側にそれぞ
れ連通管26a 、 27aを介して水が流入し得るよ
う連絡し、上下二室22a 、23aの差圧の有無によ
って吐出水路4の流量を検知し、差圧があるとき即ち吐
出水路4の流量が極少の一定水量以下以上のときスプリ
ング25aに抗して閉弁し、差圧がないとき即ち吐出水
路4の流量が極少の一定水量以下以下となったときスプ
リング25aにより開弁するよう設定しである。
23a, and a valve rod 24a connected to the upper part of the valve body 20a.
is connected to and supported by the diaphragm 21a, and the lower chamber 23
a is equipped with a spring 25a that presses the diaphragm 21a in the valve opening direction of the valve body 20a, and the upper chamber 22a is connected to the upstream side of the resistance valve 5 of the discharge waterway 4, and the lower chamber 23a is connected to the downstream side of the communication pipes 26a and 27a, respectively. The flow rate of the discharge channel 4 is detected by the presence or absence of a differential pressure between the upper and lower two chambers 22a and 23a, and when there is a differential pressure, that is, the flow rate of the discharge channel 4 is below a very small constant water flow. In this case, the valve is closed against the force of the spring 25a, and the valve is set to be opened by the spring 25a when there is no differential pressure, that is, when the flow rate of the discharge channel 4 is below a certain minimum amount of water.

Bは駅路の他方の水路10bに設けた弁機構で、吐出側
の圧力変化に伴なって開閉動作する。
B is a valve mechanism provided in the other waterway 10b of the station road, which opens and closes in response to pressure changes on the discharge side.

即ち、この弁機構Bは、水路10b中の弁体20bの上
方外部にダイヤフラム21bにて仕切った上下二室22
b 、23bを設け、弁体20bの上部に連設した弁棒
24bをそのダイヤフラム21bに連結して支持し、下
室23bには夕撃ヤフラム21bを弁体20bの開弁方
向に押圧するスプリング25bを備え、上室22bを吐
出水路4の抵抗弁5の上流側に連通管2.6bを介して
水が流入し得るよう連絡し、下室23bを大気に通じさ
せ、上室22bの圧力が一定圧力P1以下のときスプリ
ング25bの押圧力により開弁状態にあり、前記一定圧
力21以上になるとスプリング25bに抗して閉弁する
ようにしである。
That is, this valve mechanism B has two upper and lower chambers 22 which are partitioned by a diaphragm 21b on the outside above a valve body 20b in a waterway 10b.
b, 23b are provided, and a valve rod 24b connected to the upper part of the valve body 20b is connected to and supported by the diaphragm 21b, and a spring is provided in the lower chamber 23b to press the evening diaphragm 21b in the valve opening direction of the valve body 20b. 25b, the upper chamber 22b is connected to the upstream side of the resistance valve 5 of the discharge waterway 4 through a communication pipe 2.6b so that water can flow in, the lower chamber 23b is communicated with the atmosphere, and the pressure in the upper chamber 22b is When the pressure is below the constant pressure P1, the valve is opened by the pressing force of the spring 25b, and when the pressure exceeds the constant pressure 21, the valve is closed against the force of the spring 25b.

なお、吐出水路4の流量の多少によって開閉動作する弁
機構Aおよび吐出側の圧力変化に伴なって開閉動作する
弁機構Bは、上記した実施例のものに限らず、吐出水路
4の流量を検知しであるいは圧力を検知して同様の開閉
動作を行なえるものであれ?f!実施できるもので、例
えば電気的連絡手段を用いることも可能である。
Note that the valve mechanism A that opens and closes depending on the flow rate of the discharge channel 4 and the valve mechanism B that opens and closes depending on the pressure change on the discharge side are not limited to those of the above-described embodiments. Is there something that can perform similar opening/closing operations by sensing or by sensing pressure? f! For example, it is possible to use electrical communication means.

図の30は圧力スイッチ、40は従来の圧カタ1 ンクに比し■〜R5程度のアキュームレータ、50は蛇
口である。
In the figure, numeral 30 is a pressure switch, 40 is an accumulator of approximately 1 to R5 compared to a conventional pressure tank, and 50 is a faucet.

次に本発明の動作を実施例につき説明する。Next, the operation of the present invention will be explained using examples.

ポンプPを設備した際の起動時においては、圧力スイッ
チ30が閉状態であるので、電源を入れさえすればポン
プPを運転できることになる。
At the time of startup when the pump P is installed, the pressure switch 30 is in a closed state, so the pump P can be operated just by turning on the power.

吐出水路4内に水が流れ出すと、弁機構Aの上下二基2
2a 、23aおよび弁機構Bの上室22bにも水が流
入することになる。
When water flows into the discharge channel 4, the upper and lower valve mechanisms 2 of the valve mechanism A
2a, 23a and the upper chamber 22b of the valve mechanism B will also have water flowing into them.

そして蛇口50を全開にしであると、吐出水路4の流量
が多くなるので、抵抗弁5の上流側と下流側即ち弁機構
Aにおりる上室22aと下室23aとでは当然圧力に差
があり、この差圧によってダイヤフラム21aがスプリ
ング25aに抗して弁体20aの閉弁方向に押圧され、
弁機構Aが閉塞することになるが、流量が01以上の場
合、ポンプ吐出側即ち弁機構Bの上室22bの圧力がP
1以下の低圧となるため、この圧力に抗するスプリング
25bの押圧力によりダイヤフラム21bが弁体20b
の開弁方向に押圧変位せしめられ、弁機構Bが開くもの
で、水は吸水主通路10の途中に設けた駅路のうちこの
弁機構Bを備えた水路10bから吸引されることに\な
る。
When the faucet 50 is fully opened, the flow rate of the discharge waterway 4 increases, so naturally there is a difference in pressure between the upstream and downstream sides of the resistance valve 5, that is, the upper chamber 22a and the lower chamber 23a that enter the valve mechanism A. This differential pressure pushes the diaphragm 21a in the direction of closing the valve body 20a against the spring 25a.
Valve mechanism A will be closed, but if the flow rate is 01 or more, the pressure on the pump discharge side, that is, the upper chamber 22b of valve mechanism B will be P
Since the pressure is as low as 1 or less, the diaphragm 21b is pushed against the valve body 20b by the pressing force of the spring 25b that resists this pressure.
is pressed and displaced in the valve opening direction to open the valve mechanism B, and water is sucked from the waterway 10b provided with the valve mechanism B in the station road provided in the middle of the main water suction passage 10. .

このとき昇圧水路6の副吸込口9に接続した一吸水補助
通路11においては逆止弁13の昇圧水路6側が高圧に
、吸水管3側が低圧となるため、逆止弁13は閉止した
ままであり、水は吸込ロアに接続した吸水主通路10か
らのみ吸引され、ポンプP内の昇圧水路6の全長を使用
して吐出される。
At this time, in the water suction auxiliary passage 11 connected to the auxiliary suction port 9 of the pressure boosting waterway 6, the pressure rising water channel 6 side of the check valve 13 becomes high pressure and the water suction pipe 3 side becomes low pressure, so the check valve 13 remains closed. Water is sucked only from the water suction main passage 10 connected to the suction lower, and is discharged using the entire length of the pressurizing water channel 6 inside the pump P.

そのときの圧力−流量特性は第4図に示すように吸水主
通路10のみを開いた場合の圧力−流量特性と同一であ
る。
The pressure-flow characteristics at this time are the same as those when only the main water suction passage 10 is opened, as shown in FIG.

また圧力が圧力スイッチ30のOFFFF下を維持して
いる。
Further, the pressure is maintained at the OFF level of the pressure switch 30.

ついで蛇口50を閉めて使用水量をQ1以下にすると吐
出圧力がP1以上となり、弁機構Bにおりる上室22b
内の圧力も高くなり、この圧力上昇に伴なってダイヤフ
ラム21bがスプリング25bの押圧力に抗して弁体2
0bの閉弁方向に押圧され、弁機構Bが閉塞状態に近ず
く。
Then, when the faucet 50 is closed and the amount of water used is reduced to below Q1, the discharge pressure becomes above P1, and the upper chamber 22b flows into the valve mechanism B.
The internal pressure also increases, and as the pressure increases, the diaphragm 21b resists the pressing force of the spring 25b and pushes the valve body 2.
Pressed in the valve closing direction of 0b, the valve mechanism B approaches the closed state.

このとき吐出水路4の流量が少量であっても抵抗弁5の
上流側の圧力に差があり、弁機構Aは未だ閉塞状態を維
持することになる。
At this time, even if the flow rate of the discharge waterway 4 is small, there is a difference in pressure on the upstream side of the resistance valve 5, and the valve mechanism A will still maintain a closed state.

吸水主通路10から吸水されなくなると、成木補助通路
11における逆止弁13の昇圧水路6側が低圧に、吸水
管3側が高圧となって逆止弁13が開き、水は副吸込口
9から吸引されることになり、その分昇圧水路6が短わ
くなってポンプPの能力が低下し、圧カー流特性は第4
図のように吸水主通路10のみを開いた場合の圧力−流
量特性から吸水補助通路11のみを開いた場合の圧力−
流量特性に近ずく。
When water is no longer absorbed from the main water suction passage 10, the pressure on the pressure boosting waterway 6 side of the check valve 13 in the auxiliary tree passage 11 becomes low, and the pressure on the water suction pipe 3 side becomes high, the check valve 13 opens, and water flows from the sub suction port 9. As a result, the pressure boosting waterway 6 becomes shorter and the capacity of the pump P decreases, and the pressure car flow characteristics become 4th.
As shown in the figure, the pressure when only the water suction main passage 10 is opened - From the flow rate characteristics, the pressure when only the water suction auxiliary passage 11 is opened -
Closer to flow characteristics.

特に蛇口50を殆んど閉めて流量が極少の一定水量Q3
に近くなると、弁機構Bが完全に閉塞され、水は副吸込
口9に接続した吸水補助通路11からのみ吸引され、昇
圧水路6は実質的に全長の釣上程度を使用するだけで、
ポンプ能力が蛇口全開持も約半分となり、圧力−流量特
性が吸水補助通路11のみを開いた場合の圧力−流量特
性と一致し、吐出圧力が圧力スイッチ30のOFFFF
下に維持され、ポンプPが連続運転される。
Especially when the faucet 50 is mostly closed and the flow rate is extremely low, the constant amount of water Q3
When it approaches , the valve mechanism B is completely closed, water is sucked only from the water suction auxiliary passage 11 connected to the sub-suction port 9, and the pressure boosting waterway 6 is only used for fishing substantially the entire length.
The pump capacity is reduced to about half when the faucet is fully opened, the pressure-flow characteristics match those when only the water suction auxiliary passage 11 is opened, and the discharge pressure is reduced to OFF when the pressure switch 30 is turned OFF.
and the pump P is continuously operated.

さらに蛇口50を閉めて吐出水路4の流量をゼロもしく
は漏水程度の極少の一定水量δ2じ下にすると、低抗弁
5の上流側と下流側との差圧がなくなり、弁機構Aにお
ける上室22aと下室23aの差圧もなくなって、ダイ
ヤフラム21aがスプリング25aにて弁体20aの開
弁方向に押圧されて弁機構Aが開き、この弁機構Aを備
えた水路10aが開通状態となって、再び吸水主通路1
0から吸水され、吸水補助通路11が閉止される。
Furthermore, when the faucet 50 is closed and the flow rate of the discharge channel 4 is reduced to zero or a constant water amount δ2 that is as small as water leakage, the differential pressure between the upstream side and the downstream side of the low resistance valve 5 disappears, and the upper chamber 22a in the valve mechanism A The differential pressure in the lower chamber 23a disappears, the diaphragm 21a is pressed by the spring 25a in the direction of opening the valve body 20a, the valve mechanism A opens, and the water channel 10a equipped with the valve mechanism A becomes open. , water absorption main passage 1 again
Water is absorbed from zero, and the water absorption auxiliary passage 11 is closed.

従って圧力−流量特性が吸水主通路10のみを開いた場
合のモカー流量特性に戻ろうとして、吐出モカが急激に
上昇し、堕力スイッチ30のOFFFF上となって圧力
スイッチ30が直ちにOFFし、ポンプPが停止する。
Therefore, in an attempt to return the pressure-flow rate characteristic to the Moka flow rate characteristic when only the water suction main passage 10 is opened, the discharge Mocha rises rapidly, and the pressure switch 30 immediately turns OFF, causing the pressure switch 30 to turn OFF. Pump P stops.

この間漏水程度の出水はアキュームレーター40にて行
ない、アキュームレーター40の有効水量が流れ出てし
まうと、吐出水路4の正方が低下し、圧力スイッチ30
のON点以下になって、ポンプPがアキュームレーター
40を満水状態にするまで運転されるもので、断続運転
を繰返すことになる。
During this period, the water leaking level is carried out by the accumulator 40, and when the effective amount of water in the accumulator 40 flows out, the square of the discharge channel 4 decreases, and the pressure switch 30
The pump P is operated until the accumulator 40 is filled with water, and the intermittent operation is repeated.

勿論、蛇口が完全に閉められ漏水もなければ、ポンプP
は停止状態を続ける。
Of course, if the faucet is completely closed and there is no leakage, the pump P
remains stopped.

以上のように本発明は、ウェスコポンプの吸込口から吐
出口に到る昇モ水路の途中に副吸込口を形成し、吸込口
に接続した吸水主通路と副吸込口に接続した吸水補助通
路とを使用水量に応じて開閉し、蛇口を全開にした場合
には吸水主通路を開し いて充分な水勢の定格水量の吐出を行ないまた使用水量
が少ないときには吸水補助通路を開いて昇上水路を短か
くすることにより、ポンプ能力を下げて筆力上昇即ちポ
ンプの過負荷を防止でき、安定よく連続運転を行なえ、
消費電力も少ない。
As described above, the present invention forms a sub-suction port in the middle of the ascending waterway from the suction port to the discharge port of the Wesco pump, and has a water suction main passage connected to the suction port and a water suction auxiliary passage connected to the sub-suction port. When the faucet is fully opened, the water intake main passage is opened to discharge the rated water with sufficient force, and when the water usage is low, the water intake auxiliary passage is opened and the rising water passage is opened. By shortening the length, it is possible to reduce the pump capacity and prevent an increase in writing force, that is, overload of the pump, allowing stable continuous operation.
Power consumption is also low.

特に本発明は上記吸水主通路の途中を駅路となし、駅路
の一方には吐出水路の流量の多少によって開閉動作する
弁機構Aを備え、他方には吐出側の筆力変化に伴なって
開閉動作する弁機構Bを備えたものであるから、流量が
極少の一定水量以上のときには、弁機構Aを閉じたまま
弁機構Bの筆力変化に応じた開閉により、吸水主通路と
吸水補助通路を開閉させてポンプ能力を確実に変化させ
ることができ、しかも吸水補助通路から吸水する場合の
重力−流量特性を圧力スイッチのOFFFF下に設定し
ておくことにより、吐出筆力を確実に圧力スイッチのO
FFFF下に維持でき、筆力が脈動することがあっても
圧力スイッチが早<OFFする虞れを解消できる。
In particular, the present invention has a station path in the middle of the main water absorption passage, one side of the station path is equipped with a valve mechanism A that opens and closes depending on the flow rate of the discharge waterway, and the other side is equipped with a valve mechanism A that opens and closes depending on the flow rate of the discharge channel. Since it is equipped with a valve mechanism B that opens and closes, when the flow rate exceeds a very small constant amount of water, the water absorption main passage and the water absorption auxiliary passage are opened and closed according to changes in the writing force of the valve mechanism B while the valve mechanism A is closed. The pump capacity can be changed reliably by opening and closing, and by setting the gravity-flow rate characteristic when sucking water from the water suction auxiliary passage to the OFF/OFF position of the pressure switch, the discharge writing force can be reliably adjusted to the pressure switch. O
It can be maintained at FFFF, and even if the writing force pulsates, the risk of the pressure switch turning OFF prematurely can be eliminated.

そして流量が極少の一定水量以下のときには弁機構Aを
開いて吸水主通路から吸水を行なえるから、ポンプの吐
出筆力を急上昇させることができ、ポンプの抵抗損失等
により筆力がOFFFF上にならず圧力スイッチが働か
ない、というようなこともなく、圧力スイッチを確実に
余裕をもってOFFさせることができ、安定性のよい開
閉動作を行なえる。
When the flow rate is below a certain minimum amount, the valve mechanism A is opened and water can be sucked from the main suction passage, so the pump's discharge force can be increased rapidly, and the writing force will not exceed OFF due to resistance loss of the pump. There is no possibility that the pressure switch will not work, the pressure switch can be turned off reliably with a margin, and opening/closing operations can be performed with good stability.

従って本発明は使用水量が少量になるのに伴なってポン
プの能力を下げるようにして過負荷を防止し得るもので
あるから、ポンプの吸込側と吐出側とを水帰還用のバイ
パス木綿こて連絡する必要がないは勿論、流量が極少の
一定水量以上のときはポンプが連続運転し、極少の一定
水量以下のときは断続運転するようポンプを自動制御で
きるので、タンクレスのウェスコポンプの制御機構とし
てスイッチの開閉頻度を著しく減少できる極めて好適な
ものであり、構造が簡単で小型化でき、運搬等の取扱い
が容易であるとともに、ポンプの据え付は面積を小さく
するのに役立ち、コスト低下に貢献できる等、優れた効
果を奏する発明である。
Therefore, the present invention prevents overload by reducing the capacity of the pump as the amount of water used decreases. Of course, there is no need to contact the tankless Wesco pump because the pump can be automatically controlled so that it operates continuously when the flow rate exceeds a certain extremely small amount of water, and operates intermittently when the amount of water falls below a certain extremely small amount. It is extremely suitable for use as a control mechanism as it can significantly reduce the frequency of opening and closing of switches.It has a simple structure, can be made compact, and is easy to transport and handle.It also helps to reduce the installation area of the pump, reducing costs. This invention has excellent effects, such as contributing to the reduction of

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示すものであり、第1図は暗示正
面図、第2図は吐出水路の流量の多少によって開閉動作
する弁機構の拡大断面図、第3図は吐出側の筆力変化に
伴なって開閉動作する弁機構の拡大断面図、第4図は匡
カー流量特性線図である。 P・・・・・・ポンプ、3・・・・・・吸水管、4・・
・・・・吐出水路、5・・・・・・抵抗弁、6・・・・
・・昇匡水路、7・・・・・・吸込口、8・・・・・・
吐出口、9・・・・・・副吸込口、10・・・・・・吸
水主通路、11・・・・・・吸水補助通路、13・・・
・・・逆止弁、10a 、10b・・・・・・駅路とな
る水路、A・・・・・・吐出水路の流量の多少によって
開閉動作する弁機構、B・・・・・・吐出側の筆力変化
に伴って開閉動作する弁機構。
The figures show an embodiment of the present invention, in which Fig. 1 is an implicit front view, Fig. 2 is an enlarged sectional view of a valve mechanism that opens and closes depending on the flow rate of the discharge waterway, and Fig. 3 shows the writing force on the discharge side. FIG. 4 is an enlarged cross-sectional view of the valve mechanism that opens and closes as the flow rate changes, and is a diagram of the flow rate characteristic diagram of the container. P... Pump, 3... Water suction pipe, 4...
...Discharge waterway, 5...Resistance valve, 6...
・・Shogan Canal, 7・・Suction port, 8・・・・
Discharge port, 9... Sub-suction port, 10... Water absorption main passage, 11... Water absorption auxiliary passage, 13...
... Check valve, 10a, 10b ... Waterway serving as a station road, A ... Valve mechanism that opens and closes depending on the flow rate of the discharge waterway, B ... Discharge A valve mechanism that opens and closes as the writing force changes.

Claims (1)

【特許請求の範囲】 1ウェスコポンプPの吸込ロアから吐出口8に到る昇圧
水路6の途中に副吸込口9を形成し、吸込ロアど吸水管
3とを吸水主通路10を介して、また副吸込口9と吸水
管3とを吸水補助通路11を介してそれぞれ接続し、吸
水補助通路11に逆止弁13を装設し、また吸水主通路
10の途中を一旦二つの水路10a 、10bに分岐し
て再び合する双路となし、一方の水路10aには吐出水
路4の流量の多少によって開閉動作する弁機構Aを備え
、他方の水路10bには吐出側の圧力変化に伴って開閉
動作する弁機構Bを備えたことを特徴とするウェスコポ
ンプの制御機構。 2 弁機構Aとして、水路10a中に設けた弁体20a
の上方外部にダイヤフラム21aにて仕切った上下二室
22a、23aを設け、弁体20a上部の弁棒24aを
そのダイヤフラム21aに連結して支持し、下室23a
にはダイヤフラム21aを弁体20aの開弁方向に押圧
するスプリング25aを備え、上室22aを吐出水路4
に装設した抵抗弁5の上流側に、下室23aを下流側に
それぞれ水が流入し得るよう連絡し、上下二室22a
、23aの差圧によりスプリング25aに抗して開弁す
るようなした特許請求の範囲第1項記載のウェスコポン
プの制御機構。 3 弁機構Bとして、水路10b中に設けた弁体20b
の上方外部にダイヤフラム21bにて仕切った上下二室
22b 、 23bを設け、弁体20bの上部に連設し
た弁棒24bをそのダイヤフラム21bに連結して支持
し、下室23bにはダイヤフラム21bを弁体20bの
開弁方向に押圧するスプリング25bを備え、上室22
bを吐出水路4に装設した抵抗弁5の上流側に水が流入
し得るよう連絡し、上室22bの圧力が一定圧力以上に
なるとスプリング25bに抗して開弁するようなした特
許請求の範囲第1項または第2項記載のウェスコポンプ
の制御機構。
[Claims] 1. A sub-suction port 9 is formed in the middle of the pressurizing waterway 6 from the suction lower to the discharge port 8 of the Wesco pump P, and the suction lower and water suction pipe 3 are connected through the water suction main passage 10. In addition, the auxiliary suction port 9 and the water suction pipe 3 are connected through an auxiliary water suction passage 11, and a check valve 13 is installed in the auxiliary water suction passage 11, and the main water suction passage 10 is temporarily connected to two water channels 10a, One waterway 10a is equipped with a valve mechanism A that opens and closes depending on the flow rate of the discharge waterway 4, and the other waterway 10b is equipped with a valve mechanism A that opens and closes depending on the flow rate of the discharge waterway 4. A control mechanism for a Wesco pump, characterized by comprising a valve mechanism B that opens and closes. 2 Valve body 20a provided in waterway 10a as valve mechanism A
Two upper and lower chambers 22a and 23a partitioned by a diaphragm 21a are provided on the upper exterior, and a valve stem 24a at the upper part of the valve body 20a is connected to and supported by the diaphragm 21a.
is equipped with a spring 25a that presses the diaphragm 21a in the valve opening direction of the valve body 20a, and connects the upper chamber 22a to the discharge waterway 4.
The lower chamber 23a is connected to the upstream side of the resistance valve 5 installed in the upper and lower chambers 22a so that water can flow to the downstream side, respectively.
, 23a, the valve is opened against a spring 25a, according to claim 1. 3 Valve body 20b provided in water channel 10b as valve mechanism B
Two upper and lower chambers 22b and 23b partitioned by a diaphragm 21b are provided on the upper exterior, a valve stem 24b connected to the upper part of the valve body 20b is connected to and supported by the diaphragm 21b, and a diaphragm 21b is provided in the lower chamber 23b. The upper chamber 22 is provided with a spring 25b that presses the valve body 20b in the valve opening direction.
b is connected to the upstream side of a resistance valve 5 installed in the discharge waterway 4 so that water can flow in, and when the pressure in the upper chamber 22b exceeds a certain pressure, the valve opens against a spring 25b. A control mechanism for a Wesco pump according to scope 1 or 2.
JP11052676A 1976-09-13 1976-09-13 Wesco pump control mechanism Expired JPS5843597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052676A JPS5843597B2 (en) 1976-09-13 1976-09-13 Wesco pump control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052676A JPS5843597B2 (en) 1976-09-13 1976-09-13 Wesco pump control mechanism

Publications (2)

Publication Number Publication Date
JPS5336011A JPS5336011A (en) 1978-04-04
JPS5843597B2 true JPS5843597B2 (en) 1983-09-28

Family

ID=14538030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052676A Expired JPS5843597B2 (en) 1976-09-13 1976-09-13 Wesco pump control mechanism

Country Status (1)

Country Link
JP (1) JPS5843597B2 (en)

Also Published As

Publication number Publication date
JPS5336011A (en) 1978-04-04

Similar Documents

Publication Publication Date Title
JPS5814899B2 (en) automatic water supply device
US3973877A (en) Automatic pumping device
US3870436A (en) Air release valve for self-priming pumps
US2347472A (en) dorward
US4255079A (en) Self-priming system for pumps
NO994581D0 (en) Dosing pump for dosed liquid delivery
JPS5843597B2 (en) Wesco pump control mechanism
US2409561A (en) Automatic control valve for jet pumps
US3805820A (en) Air control for a hydropneumatic system
JPS6141998Y2 (en)
KR900009127Y1 (en) Pressure tank for pump
KR900009126Y1 (en) Pressure tank for pump
KR820002435Y1 (en) Pump device for electric well pump
JPS5947153B2 (en) Pump automatic operation device
JPS6119838B2 (en)
JPS5856398Y2 (en) Cascade pump control device
GB1305205A (en)
JPS6226628Y2 (en)
JPS5836874Y2 (en) Denkiido Pump Souch
SU1408114A1 (en) Pump unit
JPS5836873Y2 (en) Denkiido Pump Souch
JPH03553Y2 (en)
JPH0729272Y2 (en) Priming device
JPS59103996A (en) Fluid control device
US384648A (en) John stevens