JPS5843358A - Heat collecting plate of solar heat collector - Google Patents

Heat collecting plate of solar heat collector

Info

Publication number
JPS5843358A
JPS5843358A JP56141509A JP14150981A JPS5843358A JP S5843358 A JPS5843358 A JP S5843358A JP 56141509 A JP56141509 A JP 56141509A JP 14150981 A JP14150981 A JP 14150981A JP S5843358 A JPS5843358 A JP S5843358A
Authority
JP
Japan
Prior art keywords
passage
heat collecting
influx
branch
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56141509A
Other languages
Japanese (ja)
Other versions
JPS6355615B2 (en
Inventor
Giichi Koshiba
小柴 義一
Katsuhiko Horioka
堀岡 勝彦
Osamu Ando
修 安藤
Takeshi Ashida
健 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP56141509A priority Critical patent/JPS5843358A/en
Publication of JPS5843358A publication Critical patent/JPS5843358A/en
Publication of JPS6355615B2 publication Critical patent/JPS6355615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

PURPOSE:To make all of the flow rates in heat collecting tubes nearly constant by a structure wherein the efflux passage side cross-sectional area of an influx branch passage is made smaller than the influx passage side cross-sectional area of the influx branch passage at the heat collecting plate, in which an influx passage and an efflux passage are respectively communicated to the influx branch passage and an efflux branch passage and said both branch passages are communicated to each other by means of a plurality of the heat collecting tubes. CONSTITUTION:The heat collecting plate 1 consists in the manner that in communicating the influx passage 6 and the efflux passage 9, both of which communicate to a hot water storage tank respectively, to the influx branch passage 3 and to the efflux branch passage 2 respectively and in communicating both the branch passages 3 and 2 to each other by means of a plurality of the heat collecting tubes. In this case, the cross-sectional area S1 of the influx branch passage 3 in the portion ranging 1/10-1/2 of its total length L of the passage 3 starting from the efflux passage 8 side is made 1/4-4/5 times smaller than the cross-sectional area S of the influx branch passage 3 at the influx passage 6 side in order to form a throttling part 10. Owing to the structure as described above, because the flow speed is suppressed at the throttling part 10 in the circulation of working fluid in the plate 1, the flow speed of the fluid passing through the influx passage 6 side heat collecting tubes 4 can be nearly equalized with that of the fluid passing through the efflux passage 8 side heat collecting tubes 4.

Description

【発明の詳細な説明】 この発明は、太陽熱集熱器の集熱板に関し、特に、流入
分岐通路または集熱管のうちの少なくと一部の断面積を
小さくして“寒熱 回路全停の流量を略一定にすることにより、集熱効率を
大幅に向上させるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat collecting plate for a solar heat collector, and in particular, the cross-sectional area of at least a part of an inflow branch passage or a heat collecting pipe is reduced to reduce the flow rate when the cooling circuit is completely shut down. By keeping the value approximately constant, the heat collection efficiency is greatly improved.

従来の、太陽熱集熱器の集熱板としては、例えば第1図
、および第2図に示すように構成されたものがある。こ
の集熱板1は、自然循環型の太陽熱寒熱器に使用、され
るものであシ、左右に縦に配した流出通路8と流入通路
6とを、これらの上下端部に、かいて、各々、流出分岐
通路2、流入1分岐通路3にて埠通し、さらに、これら
分岐通路2,3を、誼分岐通路2.3より小さな断面積
を持った多数の集熱管4で連通することによシ、集熱回
路5を構成しである。
2. Description of the Related Art Conventional heat collecting plates for solar heat collectors include those constructed as shown in FIGS. 1 and 2, for example. This heat collecting plate 1 is used for a natural circulation type solar cooler, and has an outflow passage 8 and an inflow passage 6 arranged vertically on the left and right at the upper and lower ends thereof. Each of them is connected by an outflow branch passage 2, an inflow branch passage 3, and these branch passages 2 and 3 are connected by a large number of heat collecting pipes 4 having a smaller cross-sectional area than the branch passage 2.3. This is how the heat collecting circuit 5 is constructed.

図において、7は、流入通路6の上端を図示しない貯湯
槽に連絡する接続管であり、また、9は、流出通路8の
上端で同じく貯湯槽に連絡する接続管である。
In the figure, 7 is a connecting pipe that connects the upper end of the inflow passage 6 to a hot water storage tank (not shown), and 9 is a connecting pipe that also connects the upper end of the outflow passage 8 to the hot water storage tank.

かくして、貯湯槽に収容されている低温の液体が、接続
管7を経て集熱板1の流入通路6に流入し、さらに、流
入通路6から流入分岐通路6に流入した液体が、集熱管
4に分流され、ここで、太陽熱によって加熱され、その
比重差に基づく自然対流によって集熱管4を上昇する。
In this way, the low-temperature liquid stored in the hot water storage tank flows into the inflow passage 6 of the heat collection plate 1 through the connection pipe 7, and furthermore, the liquid that flows from the inflow passage 6 into the inflow branch passage 6 flows into the heat collection pipe 4. Here, it is heated by solar heat and rises through the heat collecting tube 4 by natural convection based on the difference in specific gravity.

そして、集熱管4上部の流出分岐通路2に集められ、接
続管9を経て貯湯槽に戻されると″!l13J!用を繰
シ返し、貯湯槽の液体温度を徐々に上昇させるようにな
っている。
When the hot water is collected in the outflow branch passage 2 at the top of the heat collecting pipe 4 and returned to the hot water storage tank via the connecting pipe 9, the liquid temperature in the hot water storage tank is gradually increased. There is.

しかしながら、このようイ集熱回路5を有する集熱板1
では、液体温度の上昇には一定の限度が6°″c**m
”ii=″″i<・2門り、 aYfuo#Itや集熱
板10表面に付着させる黒色塗料や選択吸収材等の皮膜
の材料を適宜改良することによって、集熱効率を高くす
るようにしているが、仁のような手段でも集熱効率の大
幅な向上は得られなかつた。
However, the heat collecting plate 1 having the heat collecting circuit 5 as shown in FIG.
So, there is a certain limit to the increase in liquid temperature of 6°"c**m.
"ii=""i<・2、By appropriately improving the material of the film such as black paint or selective absorbing material attached to aYfuo#It or the surface of the heat collecting plate 10, the heat collecting efficiency can be increased. However, even with methods like Jin, a significant improvement in heat collection efficiency could not be achieved.

一方、発明者らは、集熱回路5に液体を循環させて集熱
効率を調査する実験を行、なったが、そのとき、流入分
岐通路6から集熱管4に液体が分流するときの各分岐部
分での流速は均一とはならず、しかも、分岐する回数が
増え流出通路8に近づくに伴ない、その流速が次第に増
加することを発見した。そこで、前記流速の相違が集熱
効率の良否に与える影響を検討したところ、流速の速い
流出通路8を通過する液体の温度は低くなっておシ1、
この低温流体の流勢に妨げられて、集熱管4の通過時に
加熱された高温流体の流れが、流出分岐通路2の流出連
部8に合流する部分で遮断され、との流出分岐通路2部
分に高温液体領域が発生していることが判明した。この
ため、高温液体の熱エネルギーの一部4...高温液体
領域から集熱板1外に放出され、残余め熱エネルギーだ
けが貯湯槽内の液体の加熱に寄与するのみであり、した
がって、   ゛□集熱効率の大幅な向上は望み得ない
という問題があった。
On the other hand, the inventors conducted an experiment to investigate the heat collection efficiency by circulating liquid in the heat collection circuit 5. It has been discovered that the flow velocity is not uniform in each section, and that the flow velocity gradually increases as the number of branches increases and the flow approaches the outflow passage 8. Therefore, when we examined the influence of the difference in flow velocity on the quality of heat collection efficiency, we found that the temperature of the liquid passing through the outflow passage 8 where the flow velocity is high becomes lower.
Obstructed by the flow force of the low-temperature fluid, the flow of the high-temperature fluid heated when passing through the heat collecting pipe 4 is blocked at the part of the outflow branch passage 2 that merges with the outflow connection part 8, and the outflow branch passage 2 portion It was found that a high-temperature liquid region was generated. For this reason, part of the thermal energy of the high temperature liquid 4. .. .. The problem is that only the residual thermal energy released from the high-temperature liquid region to the outside of the heat collection plate 1 contributes to heating the liquid in the hot water storage tank, and therefore no significant improvement in heat collection efficiency can be expected. there were.

この発明は、上記のような問題を解決するためになされ
たものであり、この発明の目的は、集熱板の集熱回路各
部分の流量を略一定とすることにより、太陽熱集熱器の
集熱面積を変更せずに、しかも、従来と同一コストで製
造することができて、高い集熱効率が得られる太陽熱集
熱器の集熱板を徒供することにある。
This invention was made in order to solve the above-mentioned problems, and an object of the invention is to make the flow rate of each part of the heat collecting circuit of the heat collecting plate substantially constant, thereby improving the efficiency of the solar heat collector. To provide a heat collection plate for a solar heat collector that can be manufactured at the same cost as conventional ones without changing the heat collection area and can provide high heat collection efficiency.

すなわち、この発明は、自然循環型太陽熱集熱器および
強制循環型太陽熱集熱器のいずれにも使用できるもので
あシ、第4−図ガいし第11図に示す実施例のように、
集熱板IK、貯湯槽に連通する流入通路6と、同じく貯
湯槽に連通する流出通路8とを、流入分岐通路3および
流出分岐通路2で連通し、さらに1流入分岐通路3と流
出分岐通路2とを、複数の集熱管4で連通してなる集熱
回路5を構成した太陽熱集熱器において、前記流入分岐
通路3また社集熱管4のうちの少なくともいずれか一方
の流出通路8側の断面積を、流入分岐通路3′または集
熱管4の流入通路6側の断面積よりも小さくしたことを
特徴とする太陽熱集熱器の集熱板に係る。
That is, the present invention can be used for both natural circulation type solar heat collectors and forced circulation type solar heat collectors, as shown in the embodiments shown in Figures 4-11.
The heat collecting plate IK, an inflow passage 6 communicating with the hot water storage tank, and an outflow passage 8 also communicating with the hot water storage tank are communicated by an inflow branch passage 3 and an outflow branch passage 2, and an inflow branch passage 3 and an outflow branch passage 2 are connected. In a solar heat collector in which a heat collecting circuit 5 is formed by communicating 2 with a plurality of heat collecting pipes 4, the inflow branch passage 3 or the outflow passage 8 side of at least one of the heat collecting pipes 4 The present invention relates to a heat collecting plate for a solar heat collector characterized in that the cross-sectional area is smaller than the cross-sectional area of the inflow branch passage 3' or the inflow passage 6 side of the heat collecting pipe 4.

以下、この発明の実施例について、図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図は、仁の発明の一実施例を示すものであシ、自然
循環型太陽熱集熱器の集熱板の内部構造を示す平面図中
ある。集熱板1は、接続管7,9によって図示し□な″
い貯湯槽に接続される。6は、貯湯槽から接続管7をi
で集熱回路5に、低温流体を流入させる°流入通路であ
シ、また、8は、集熱回路5から貯湯槽に高温液体を、
接続管9を経て流出きせる流出通路である。
FIG. 4 shows an embodiment of Jin's invention, and is a plan view showing the internal structure of a heat collecting plate of a natural circulation type solar heat collector. The heat collecting plate 1 is illustrated by the connecting pipes 7 and 9.
connected to a hot water storage tank. 6 connects the connecting pipe 7 from the hot water tank to i
8 is an inflow passage for causing low temperature fluid to flow into the heat collection circuit 5;
This is an outflow passage that allows outflow through the connecting pipe 9.

集熱回路5祉、集熱板1の左右に縦に配した流出通路8
と流入通路6とを、これらの上下端部において、各々流
出分岐通路2、流入分岐通路3にて連通し、さらに1こ
れら分岐通路2,3を該分岐通路2.3よ)小さな面積
を持った多数の集熱管4で連通するこiにょシ、集熱回
路5を構成している。
Heat collection circuit 5, outflow passages 8 arranged vertically on the left and right sides of the heat collection plate 1
and the inflow passage 6 are connected to each other by an outflow branch passage 2 and an inflow branch passage 3 at their upper and lower ends, respectively, and furthermore, one of these branch passages 2 and 3 is connected to the branch passage 2.3) having a small area. A large number of heat collecting tubes 4 communicate with each other, forming a heat collecting circuit 5.

図においそ、7は、流入通路−の上端を図示しない貯湯
槽に連絡する接続管であり、また、9は、流出通路8の
上端で同じく貯湯槽に連絡する接続管である。
In the figure, 7 is a connecting pipe that connects the upper end of the inflow passage to a hot water storage tank (not shown), and 9 is a connecting pipe that also connects the upper end of the outflow passage 8 to the hot water storage tank.

さらに、流入分岐通路3の、流出通路8側から該流入分
岐通路6の全長りの4〜40間の断面積S1を、流入通
路6側の断面積Sのン〜之として、5 絞シ部分10を形成している。
Further, the cross-sectional area S1 of the inflow branch passage 3 from the outflow passage 8 side to the total length of the inflow branch passage 6 from 4 to 40 is defined as the cross-sectional area S of the inflow passage 6 side, and 5. 10 is formed.

上記のようにi熱回路5を構成すると、貯湯槽との接続
管7を経て流入通路6に流入した低温液体が、集熱板1
下端部の流入分岐通路3に流入して集熱管4に分流され
、太陽熱によって加熱されながら核集熱管4を上昇して
流出分岐通路2に集められ、さらに、流出通路8から接
続管9を経て貯湯槽に戻る。この場合、流入分岐通路3
には絞り部分10があるため、液体の粘性によシ、絞シ
部分10での流速が抑えられ、流入通路6側の集熱管4
を通過する液体の流量と、流出通路8側の集熱管4を通
過する液体M速とが略等しくなシ・したがって、集熱回
路5全体の流量が略均−となる。
When the i-thermal circuit 5 is configured as described above, the low-temperature liquid that has flowed into the inflow passage 6 via the connection pipe 7 with the hot water storage tank is transferred to the heat collecting plate 1.
It flows into the inflow branch passage 3 at the lower end, is branched into the heat collection pipe 4, ascends the core heat collection pipe 4 while being heated by solar heat, is collected in the outflow branch passage 2, and then flows from the outflow passage 8 through the connection pipe 9. Return to the hot water tank. In this case, the inflow branch passage 3
Since there is a constriction part 10, the flow velocity at the constriction part 10 is suppressed due to the viscosity of the liquid, and the heat collecting pipe 4 on the inflow passage 6 side is
The flow rate of the liquid passing through the heat collecting tube 4 on the outflow passage 8 side is approximately equal to the speed of the liquid M passing through the heat collecting tube 4 on the side of the outflow passage 8. Therefore, the flow rate of the entire heat collecting circuit 5 becomes approximately equal.

第7図に示す図表において、実11gは、上記構成の集
熱板における流入分岐通路3の各分岐部分の流速を表し
ている。この図表が示すように、第す番目の分岐部から
第(n−1)IF目の分岐部までの流速は、略均−とな
っているが、第1番目の分岐部および第九番目の分岐部
は、いずれも流速が少し遅くなっている。これは、液体
の粘性係数が影譬しているものと考えられ、流速の遅れ
によシこの部分での集熱効率が低下し、このため、集熱
器全体としての集熱効率も若干低下している。
In the chart shown in FIG. 7, the symbol 11g represents the flow velocity at each branch portion of the inflow branch passage 3 in the heat collector plate having the above configuration. As this chart shows, the flow velocity from the 2nd branch to the (n-1)th IF branch is approximately equal, but at the 1st branch and the 9th branch, The flow velocity at all branching sections is slightly slower. This is thought to be due to the viscosity coefficient of the liquid, and the heat collection efficiency in this part decreases due to the delay in flow velocity, and as a result, the heat collection efficiency of the collector as a whole also decreases slightly. There is.

そこで、この発明者らは、前記流速の遅れを解消するた
め、各種の実験を行なった結果、流入分岐通路3の流入
通路6側から第1番目の分岐部と同第2番目の分岐部と
の間に、前記絞シ部分10と同様に断面積を縮少させた
オリフィス11を設けることによ〉、該液体の流速を、
破線すで示すように大きく改善工することができた。
Therefore, in order to eliminate the delay in flow velocity, the inventors conducted various experiments and found that the first branch from the inflow passage 6 side of the inflow branch passage 3 and the second branch from the same side. By providing an orifice 11 with a reduced cross-sectional area in the same way as the constriction part 10, the flow rate of the liquid can be adjusted to
As shown by the broken line, we were able to make major improvements.

上記構成の集;−板1 (オリフィス11は設けな1陰
、。
Collection of the above configurations: - Plate 1 (1 shade, without orifice 11.

い。)を適用した)太陽熱集熱器と従来の集熱板をもつ
太陽熱集熱器との比較実験を行なった結果を下記に示し
、これを第8図の集熱特性図に示す。
stomach. The results of a comparative experiment between a solar heat collector (applied with ) and a solar heat collector with a conventional heat collection plate are shown below, and are shown in the heat collection characteristics diagram in Figure 8.

絞り部分10の大きさは、流入分岐通路3の全長をLと
すると、’&、”4 、皇り、= 、〜倍の5種類の長
さを設定し、それぞれについて、流入分岐通路3の流入
通路6側の断面積Sの、”/4 % ””/2 、”/
、倍の3種類の断面積について各実験を行なった。
The size of the constricted portion 10 is determined by setting five lengths, ``&'', 4, =, and twice the length of the inflow branch passage 3, where L is the total length of the inflow branch passage 3. "/4%""/2,"/ of the cross-sectional area S on the inflow passage 6 side
Each experiment was conducted for three types of cross-sectional areas: , .

たときの、従来の集熱板による集熱効率との比率倍とし
たときの同比率を示す。同図岬かも明らかなように、絞
シ部分10の断面積S1を他の部分の断面積Sの4に縮
小することにより、最も高い集熱効率が得られ、従来の
ものよシも最高で101集熱効率を向上させることがで
きた。
The figure shows the same ratio when the heat collection efficiency is multiplied by that of a conventional heat collection plate. As is clear from the figure, the highest heat collection efficiency can be obtained by reducing the cross-sectional area S1 of the diaphragm part 10 to 4, which is the cross-sectional area S of the other parts, and the efficiency is even higher than that of the conventional one. We were able to improve heat collection efficiency.

第9図に示す図表の曲@fは、前記構成を有する集熱板
1を、強制循環型の太陽熱集熱器に使用した場合の、従
来の集熱板による集熱効率との比率を示す。同図および
下記に示すように、この場合にも、従来のものよシ最高
で8チ集熱効率を向上させることができた。
The curve @f in the chart shown in FIG. 9 indicates the ratio of the heat collection efficiency with a conventional heat collection plate when the heat collection plate 1 having the above structure is used in a forced circulation type solar heat collector. As shown in the figure and below, in this case as well, the heat collection efficiency was improved by up to 8 inches compared to the conventional method.

なお、強制循環方式においても、流入分岐通路6の各分
岐部分の流速は、第7図の図表に示す場合と同様の結果
が得られた。
In addition, even in the forced circulation method, the same results as shown in the diagram of FIG. 7 were obtained regarding the flow velocity of each branch part of the inflow branch passage 6.

また、第10図(へ)および(ロ)に示すように、集熱
管4の断面積を変化させる仁とによっても、第1の実施
例で説明したように、流入分岐通路3を□変形させる場
合と同様の効果を得ることができる。
Furthermore, as shown in FIGS. 10(f) and (b), the inflow branch passage 3 is deformed by changing the cross-sectional area of the heat collecting pipe 4, as explained in the first embodiment. You can get the same effect as in the case.

第11図に示す図が、上記の事柄を説明するものであり
、とれItli2つの態様がある。すなわち、その1つ
は、実線gl 、 g2. g3で示す(第10図(イ
)の場合に該当する。)ように、集熱管4の、流入分岐
通路3全長りの流出通路8側から4の長さ51間の断面
積TIを、−律に、その流入通路6側の断面積Tの/〜
4蹟倍とする場合である。実線g1は、断面積T1を、
断面積Tのイ倍としたものであり、また、実#g2は、
同様に7倍としたものであり、さらに、実線g3は、同
様にン倍としたものである。
The diagram shown in FIG. 11 explains the above matter, and there are two aspects. That is, one of them is the solid lines gl, g2. As shown by g3 (corresponding to the case in FIG. 10 (a)), the cross-sectional area TI of the heat collecting pipe 4 between the length 51 of the inflow branch passage 3 and the outflow passage 8 of the entire length of the 4 is - Specifically, the cross-sectional area T on the inflow passage 6 side is /~
This is a case where it is multiplied by 4 times. The solid line g1 represents the cross-sectional area T1,
The cross-sectional area T is multiplied by I, and the actual #g2 is
Similarly, the solid line g3 is multiplied by 7, and solid line g3 is multiplied by n.

第2の態様は、第10図の破線hl 、 h2. h3
で示す(第10図(りの場合に該当する。)ように、集
熱管4の、流入分岐通路3全長りの流出通路8側から4
の長さ51間の断面積TIを、その流入通路6側の断面
積Tの7〜7倍の大きさから、°゛これを逐次小さくす
る場合であシ1、この変化率は、図示するように、比例
的にり償・させてもよく、マた、直角双曲線的に変化さ
せるtうにしてもよい。こ。、うに、□4.4・・;1
1・鹸□Tll−111g変化させるようにした上記実
施例と同様の効果を得ることができる。
The second aspect is based on the broken lines hl, h2. h3
As shown in FIG.
In the case where the cross-sectional area TI between the length 51 is gradually decreased from 7 to 7 times the cross-sectional area T on the inflow passage 6 side, the rate of change is as shown in the figure. It may be compensated for proportionally, or it may be changed in a rectangular hyperbolic manner. child. , sea urchin, □4.4...;1
It is possible to obtain the same effect as in the above embodiment in which 1.Sen□Tll-111g is varied.

なお、絞シ部分10の長さLlは、流入分岐通路3全長
りの4〜イの範囲内であればよいことはもちろんである
It goes without saying that the length Ll of the constricted portion 10 may be within the range of 4 to A of the total length of the inflow branch passage 3.

この発明は、上述のように、流入分岐通路または集熱管
のうち少なくともいずれか一方の流出通路側の断面積を
、流入分岐通路または集熱管の流入通路側の断面積より
も小さくすることにより、集熱回路の各部分を通過する
液体の流速を調整することができ、したがって、集熱回
路の各部分の流量な略一定にすることができた。このた
め、集熱管を通過する際に加熱された高温液体の流れを
確保することができ、集熱された熱エネルギの外気中へ
の放出が抑制できて、集熱面積が同一である従来の集熱
板よシも大幅に集熱効率を向上させることができる。し
かも、製造力、法およびその工程も゛従来のものと変り
がりいがら、同一コストで高い集熱効率を4%Y太陽熱
集熱器の集熱板が得られるというすぐれ九効来がある。
As described above, the present invention makes the cross-sectional area of at least one of the inflow branch passage or the heat collection pipe on the outflow passage side smaller than the cross-sectional area of the inflow branch passage or the heat collection pipe on the inflow passage side. The flow rate of the liquid passing through each part of the heat collection circuit could be adjusted, and therefore the flow rate of each part of the heat collection circuit could be kept approximately constant. For this reason, it is possible to secure the flow of the high-temperature liquid heated when passing through the heat collection pipe, and it is possible to suppress the release of the collected thermal energy into the outside air, compared to the conventional method where the heat collection area is the same. Heat collection plates can also significantly improve heat collection efficiency. Moreover, although the manufacturing capacity, method, and process are different from those of conventional ones, it has the excellent advantage of being able to obtain a 4% Y solar collector heat collection plate with high heat collection efficiency at the same cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の集熱板の平面図、第2図は第1図のH−
H線断面図、第3図は従来の集熱回路による流速特性を
示す図表、第4図はこの発明の一実施例を示す平面図、
第5図は第4図のv−v線断面図、第6図は第4図のV
l−Vl線断面図、第7図はこの発明に係る集熱回路に
よる流速特性を示す図表、第8図は同集熱特性を示す図
表、第9図は強制循環型太陽熱集熱器に実施した場合の
集熱特性を示す図表、第10図(イ)はこの発明の他の
実施例を示す断面図、第10・図(ロ)はさらに他□の
実施例を示す断面図、第11図は1集熱管の断面積の変
化を示す図表である。 図中、1は集熱板、2は流出分岐通路、6は流入分岐通
路、4は集熱管、5は集熱回路、6け流入通路、8は゛
流出通路、10は絞シ部分、11はオリフィスである。 特許出願人  日本冶金工業株式会社 代理人 弁理士    森         哲   
 也弁理士    内    藤    嘉 ・  昭
弁理士    清    水         正5電
入9jIlj友通路の全長:L 第9図 歳入力&灸通」各り全長:L 第10図(イ) ゴ 5L、入分山(龜冨昏の全長:L 第10図(0) 5友人9J!友通」昏の全t:L
Figure 1 is a plan view of a conventional heat collecting plate, and Figure 2 is the H-
3 is a diagram showing the flow velocity characteristics of a conventional heat collecting circuit; FIG. 4 is a plan view showing an embodiment of the present invention;
Fig. 5 is a sectional view taken along the v-v line in Fig. 4, and Fig. 6 is a cross-sectional view taken along the line V-V in Fig. 4.
1-Vl line cross-sectional view, Figure 7 is a diagram showing the flow velocity characteristics of the heat collection circuit according to the present invention, Figure 8 is a diagram showing the heat collection characteristics, and Figure 9 is a diagram showing the flow velocity characteristics of the heat collection circuit according to the present invention. Figure 10 (a) is a sectional view showing another embodiment of the present invention, Figure 10 and (b) are sectional views showing another embodiment of the invention, and 11th The figure is a chart showing changes in the cross-sectional area of one heat collecting pipe. In the figure, 1 is a heat collection plate, 2 is an outflow branch passage, 6 is an inflow branch passage, 4 is a heat collection tube, 5 is a heat collection circuit, 6 inflow passages, 8 is an outflow passage, 10 is a constriction part, 11 is a It is an orifice. Patent applicant Nippon Yakin Kogyo Co., Ltd. Representative Patent attorney Satoshi Mori
Patent Attorneys Yoshi Naito and Akira Patent Attorneys Shimizu Sho 5 Deniri 9j Ilj Total length of the friend passage: L Figure 9 Total length of each ``Yoshi Input & Moxibustion Pass'': L Figure 10 (A) Go 5L, Iriwayama ( Total length of Tomomi: L Figure 10 (0) 5 Friends 9J! Tomomichi's total length: L

Claims (1)

【特許請求の範囲】 (1) 集熱板に、貯湯槽に連通ずる流入通路と、同じ
く貯湯槽に連通ずる流出通路とを、流入分岐通路および
流出分岐通等で連通し、さらに、流入分岐通路と流出分
岐通路とを、複数の集警管で連通してなる集熱回路を一
部した太陽熱集熱器において、前記流入分岐通路!たけ
集熱管のうち少なくともいずれか一方の流出通路側の断
面積を、流出分岐通路または集熱管の流入通路側の断面
積よりも小さく5シたことを特徴とする太陽熱集熱器の
集熱板。 2としたことを特徴とする特許請求の範囲第1項記載の
太陽熱集熱器の集熱板。 (3)集熱管の、流入分岐通路全長の流出通路側から−
〜4の間の断面積を、そ?流入通路側の断面積の14〜
kに、−律にまたは逐次小さくしたことを特徴とする特
許請求の範囲第1項記載の太陽熱集熱器の集熱板。
[Scope of Claims] (1) An inflow passage communicating with the hot water storage tank and an outflow passage also communicating with the hot water storage tank are connected to the heat collecting plate through an inflow branch passage, an outflow branch passage, etc., and an inflow branch In a solar heat collector that includes a part of a heat collecting circuit in which a passage and an outflow branch passage are connected through a plurality of collecting pipes, the inflow branch passage! A heat collecting plate for a solar heat collector, characterized in that the cross-sectional area on the outflow passage side of at least one of the bamboo heat collecting pipes is smaller than the cross-sectional area on the outflow branch passage or the inflow passage side of the heat collecting pipe. . 2. A heat collecting plate for a solar heat collector according to claim 1, characterized in that: (3) From the outflow passage side of the entire length of the inflow branch passage of the heat collecting pipe -
The cross-sectional area between ~4 and ? The cross-sectional area on the inflow passage side is 14~
2. The heat collecting plate for a solar heat collector according to claim 1, wherein the heat collecting plate is made smaller in a linear manner or in a stepwise manner.
JP56141509A 1981-09-08 1981-09-08 Heat collecting plate of solar heat collector Granted JPS5843358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141509A JPS5843358A (en) 1981-09-08 1981-09-08 Heat collecting plate of solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141509A JPS5843358A (en) 1981-09-08 1981-09-08 Heat collecting plate of solar heat collector

Publications (2)

Publication Number Publication Date
JPS5843358A true JPS5843358A (en) 1983-03-14
JPS6355615B2 JPS6355615B2 (en) 1988-11-02

Family

ID=15293607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141509A Granted JPS5843358A (en) 1981-09-08 1981-09-08 Heat collecting plate of solar heat collector

Country Status (1)

Country Link
JP (1) JPS5843358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013343A (en) * 1986-05-28 1991-05-07 Ryobi, Ltd. Dust collector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499145U (en) * 1977-12-26 1979-07-12
JPS57125967U (en) * 1981-02-02 1982-08-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499145U (en) * 1977-12-26 1979-07-12
JPS57125967U (en) * 1981-02-02 1982-08-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013343A (en) * 1986-05-28 1991-05-07 Ryobi, Ltd. Dust collector

Also Published As

Publication number Publication date
JPS6355615B2 (en) 1988-11-02

Similar Documents

Publication Publication Date Title
Ong Thermal performance of solar air heaters: mathematical model and solution procedure
CN107255425B (en) Heat exchange plate, machining method and heat exchanger
CN111595034B (en) Method for intelligently controlling solar heat storage heating through communication means
JPS5949518B2 (en) heat exchanger and panel
CN107976101A (en) A kind of outer fin heat exchange pipe and its application method
CN107941057A (en) Heat exchanger with bionical fractal structure
CN207163301U (en) A kind of individual layer heat exchanger provided with efficient spoiler
CN207832003U (en) Outer fin heat exchange pipe
JPS5843358A (en) Heat collecting plate of solar heat collector
ITTO20001183A1 (en) HEAT EXCHANGER APPARATUS.
CN201688739U (en) Novel corrugated plate sheet for a welded plate type heat exchanger
CN209263729U (en) A kind of box-type heat exchanger
JPS622238B2 (en)
KR101810134B1 (en) A heat transfer pin of heat exchanger for a boiler
CN206310762U (en) A kind of window plate-type solar water heater
CN111023870A (en) Non-blind area shell-and-tube heat exchange device
JPH0614782U (en) Heat exchanger
JPS616590A (en) Finned heat exchanger
CN206919707U (en) Parallel-flow heat exchanger, water tank and air-source water heater
TW552395B (en) Constant flow velocity vapor-liquid heat exchanger
CN206310764U (en) A kind of light blocking formula solar energy luffer boards
CN205580259U (en) Snakelike bank of tubes and heat exchange device
CN108955319A (en) A kind of box-type heat exchanger
CN205580257U (en) Snakelike bank of tubes of turbulent flow and heat exchange device
CN209310117U (en) Heat-storing device for phase-change thermal storage heater and the heat accumulation heater with it