JPS5843219A - Dry type waste gas desulfurization method and its apparatus - Google Patents

Dry type waste gas desulfurization method and its apparatus

Info

Publication number
JPS5843219A
JPS5843219A JP56139786A JP13978681A JPS5843219A JP S5843219 A JPS5843219 A JP S5843219A JP 56139786 A JP56139786 A JP 56139786A JP 13978681 A JP13978681 A JP 13978681A JP S5843219 A JPS5843219 A JP S5843219A
Authority
JP
Japan
Prior art keywords
adsorbent
pipe
tower
cooling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56139786A
Other languages
Japanese (ja)
Inventor
Takeo Komuro
小室 武勇
Norio Arashi
紀夫 嵐
Takao Hishinuma
孝夫 菱沼
Tsukasa Nishimura
西村 士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP56139786A priority Critical patent/JPS5843219A/en
Publication of JPS5843219A publication Critical patent/JPS5843219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To dispense with cooling water for cooling medium or sea water, and to reduce desulfurization cost, by using the air for cooling an adsorbent regenerated by heating desorption, and this heated air having recovered the waste heat for the combustion of a boiler. CONSTITUTION:The waste combustion gas is introduced into an adsorbing tower 101 from a boiler 100, SOx is adsorbed from the waste gas, denitrated and freed of dust with a dust collector 102, and exhausted through a duct 11. An adsorbent having adsorbed SOx is led through a pipe 12 to a heat desorption regenerating tower 103, and the desorbed gas is sent through a pipe 13 to a sulfur recovering apparatus 104. The regenerated adsorbent is led through a pipe 16 to a cooling tower 106 to cool it by heat exchange with the air sent through a pipe 17. The heated air is joined with the gas fed through a duct 4 as combustion air to the boiler 100. The cooled adsorbent is classified with a classifier 107, returned to the adsorbing tower 101 for recirculation use. The classified pulverized adsorbent is sent through a pipe 20 to a pipe 3 as a fuel for the boiler 100 to mix it with coal fuel.

Description

【発明の詳細な説明】 本発明は、石炭火力発電所等から発生する燃焼排ガス中
の硫黄酸化物を吸着剤に吸着して除去する乾式排煙脱硫
方法及びその装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry flue gas desulfurization method and apparatus for removing sulfur oxides from combustion flue gas generated from coal-fired power plants and the like by adsorbing them onto an adsorbent.

燃焼排ガス中の硫黄酸化物を除去する脱硫方法としては
種々の方法が提案され、その改良が行れてきている。
Various methods have been proposed as desulfurization methods for removing sulfur oxides from combustion exhaust gas, and improvements have been made.

最近、石炭火力発電所の建設計画が多くなってきており
、その排煙脱硫法として用水、排水量が湿式法に比較し
て少なく、クリーンな排ガスを大気に開放する際に再加
熱が不要などの特徴がある乾式法が注目されている。さ
らにこの脱硫方法において副生物を元素状硫黄として回
収することで湿式法の場合の石膏で回収するのに対して
その容量が約115と少なくなる特徴がある硫黄回収型
乾式排煙脱硫方法が注目されてきている。
Recently, there have been many construction plans for coal-fired power plants, and the flue gas desulfurization method requires less water and wastewater than the wet method, and requires no reheating when releasing clean flue gas into the atmosphere. The dry method is attracting attention because of its unique characteristics. Furthermore, in this desulfurization method, the by-product is recovered as elemental sulfur, and the sulfur recovery type dry flue gas desulfurization method is attracting attention because it has a smaller capacity of about 115% compared to the gypsum recovery method in the wet method. It has been done.

硫黄回収型乾式排煙脱硫方法は、燃焼排ガス中の硫黄酸
化物を吸着剤に吸着さ昼、硫黄酸化物を吸着した吸着剤
は、次に加熱脱着再生塔において加熱脱着再生して、再
生吸着剤は循環利用する。
In the sulfur recovery type dry flue gas desulfurization method, sulfur oxides in the combustion exhaust gas are adsorbed by an adsorbent.The adsorbent that has adsorbed sulfur oxides is then thermally desorbed and regenerated in a thermal desorption regeneration tower, and then regenerated and adsorbed. The agent is recycled.

加熱脱着再生塔で発生する脱着ガスは高濃度の硫黄酸化
物に濃縮されているので、脱着ガスは次に硫黄酸化物を
元素状硫黄に還元する硫黄回収工程に送り、副生品とし
て元素状硫黄を回収する方法である。
The desorption gas generated in the thermal desorption regeneration tower is concentrated to a high concentration of sulfur oxides, so the desorption gas is then sent to a sulfur recovery process that reduces the sulfur oxides to elemental sulfur. This is a method of recovering sulfur.

前述したように、吸着剤は吸着塔と加熱脱着再生塔間を
循環して利用することになる。この時、加熱脱着再生塔
では少なくとも350C〜450Cに吸着剤を加熱する
ことによって、吸着剤に希硫酸として吸着している硫黄
酸化物を脱着することが可能である。このため加“熱脱
着再生した吸着剤は吸着塔の燃焼排ガス温t12oc〜
150C付近まで冷却する必要かあ、gkt冷却するに
は、間接的に冷却水、あるいは海水などによって行うこ
とができるが、冷却水を用いるには冷水塔などの設備が
必要であり、海水を用いる場合には腐蝕及び温排水の問
題がある。海水を用いる場合には、温排水の2次環境汚
染を防止するだめ、海水の温度は取り入れ温度に対して
少なくとも4C以下にする必要があり、このためには膨
大な海水量、取シ入れポンプの容量が大きくなることな
どの問題がある。
As mentioned above, the adsorbent is used by circulating between the adsorption tower and the thermal desorption/regeneration tower. At this time, by heating the adsorbent to at least 350C to 450C in the thermal desorption regeneration tower, it is possible to desorb the sulfur oxides adsorbed on the adsorbent as dilute sulfuric acid. Therefore, the adsorbent regenerated by thermal desorption is heated to a temperature of t12oc~
Is it necessary to cool down to around 150C? gkt Cooling can be done indirectly with cooling water or seawater, but using cooling water requires equipment such as a cooling tower, so seawater is used. In some cases, there are problems with corrosion and hot drainage. When using seawater, the temperature of the seawater needs to be at least 4C below the intake temperature in order to prevent secondary environmental pollution from heated wastewater. There are problems such as increased capacity.

冷却水を循環利用する場合においても、冷水塔の消費電
力及び冷却水の補充などの問題点がある。
Even when cooling water is recycled, there are problems such as power consumption of the cooling tower and replenishment of cooling water.

本発明は上記欠点を改善しようとしたもので、その目的
は再生された吸着剤の冷却に空気を利用し、この熱回収
した空気でボイラ等燃焼排ガス発生装置の効率を向上し
、しかして乾式法の排脱コスト低減を行うものである。
The present invention attempts to improve the above-mentioned drawbacks, and its purpose is to use air to cool the regenerated adsorbent, and use the heat recovered air to improve the efficiency of combustion exhaust gas generators such as boilers. This is to reduce the cost of eliminating the law.

乾式法では燃焼排ガス中の硫黄酸化物を吸着剤に吸着さ
せ、吸゛着剤は加熱脱着再生して循環利用するが、加熱
し、、左眼着剤は燃焼排ガス温度付近まで冷ゆt6□’
frAih ’) O’*却、ヶいヮ。。0イ1]の酸
化、吸着量の低下などをきたす。冷却法には脱着塔の容
量を小さくして効率よく行うため冷却水によって間接冷
却することが行れる。しかし、この場合、前述したよう
な問題が発生することと、乾式法のユーティリティコス
トが過大なものとなる。乾式法でのランニング時のコス
トは脱硫剤の損耗量と、プロセス内で利用する機器の電
力が主であり、これに冷却水、あるいは海水を利用する
場合には、これらのユーティリティコストがランニング
コストに加算される。このため、乾式法での脱硫コスト
を低減させるには損耗脱硫剤を少なくして、プロセス内
の熱回収を効率よく行うことである。本発明ではプロセ
ス内の熱回収手段として、加熱脱着再生塔の加熱吸着剤
を燃焼排ガス温度付近まで冷却するのに、空気によって
行い、加熱された空気をボイラ等燃焼排ガス発生装置の
空気源の一部とすることで熱回収を計ったものである。
In the dry method, sulfur oxides in the combustion exhaust gas are adsorbed by an adsorbent, and the adsorbent is heated, desorbed, regenerated, and recycled. '
frAih') O'*Kore, Kaiwa. . This results in oxidation of 0-1] and a decrease in the amount of adsorption. In the cooling method, indirect cooling using cooling water can be used to reduce the capacity of the desorption tower and achieve efficiency. However, in this case, the above-mentioned problems occur and the utility costs of the dry method become excessive. The running cost of the dry method is mainly the amount of desulfurization agent wasted and the electricity used for the equipment used in the process.If cooling water or seawater is used for this, these utility costs are included in the running cost. will be added to. Therefore, in order to reduce the desulfurization cost in the dry method, it is necessary to reduce the amount of wasted desulfurization agent and to efficiently recover heat in the process. In the present invention, as a heat recovery means in the process, air is used to cool the heated adsorbent in the thermal desorption regeneration tower to around the flue gas temperature, and the heated air is used as an air source of the flue gas generator such as a boiler. The heat recovery was measured by making the

本発明の実施例を図面により説明する。Embodiments of the present invention will be described with reference to the drawings.

図面はボイラなどの燃焼排ガス発生装置(以下ボイラと
称す)100とそれに硫黄回収系を組みこんだ乾式脱硫
プロセスとを示し、実線は主として固体の流れを、点線
は主として気体あるいはガス状物を示す。燃料石炭は管
1,3からボイラ100に導入され、ボイラ100では
、空気管4゜5.6の空気によって燃焼され、その燃焼
排ガスは管7,8を介して吸着塔101に導入する。吸
着塔101では燃焼排ガス中の硫黄酸化物を吸着し、脱
硫された燃焼排ガスは管1oより脱硝及び脱しん器10
2を通り、管11から大気開放する。
The drawing shows a combustion exhaust gas generating device (hereinafter referred to as a boiler) 100 such as a boiler and a dry desulfurization process incorporating a sulfur recovery system therein, with solid lines mainly showing the flow of solids and dotted lines mainly showing gas or gaseous substances. . Fuel coal is introduced into a boiler 100 through pipes 1 and 3, and in the boiler 100 it is combusted by air from an air pipe 4°5.6, and its combustion exhaust gas is introduced into an adsorption tower 101 through pipes 7 and 8. The adsorption tower 101 adsorbs sulfur oxides in the combustion exhaust gas, and the desulfurized combustion exhaust gas is passed through the pipe 1o to the denitrification and desulfurization device 10.
2 and is released to the atmosphere from the pipe 11.

図面では脱硝工程を脱硫の後工程としているが、脱硫の
前工程としても可能である。硫黄酸化物を吸着した吸着
剤は次に管12より加熱脱着再生塔103に導ひき、温
度350〜450rに加熱することで、吸着剤に希硫酸
として吸着している硫黄酸化物は脱着される。SO2、
CO2、H2Oが主組成の脱着ガスは、管13より硫黄
回収装置104に導びき、S02を硫黄に還元あるいは
SO2の一部をH2Sにシテ、802 (!: H2s
ツク′ラウス反応を並用して、SO2を元素状硫黄に還
元し、副生硫黄14を回収する。硫黄回収装置104で
未反応H2S、あるいはcosなどのガスは管15より
酸化塔105に導びき、酸化塔105では硫黄化合物を
SO2に酸化し、酸化反応ガスは管9より前述した燃焼
排ガス6管7に合流させ吸着塔101に導びく。
In the drawing, the denitration process is shown as a post-desulfurization process, but it is also possible as a pre-desulfurization process. The adsorbent that has adsorbed sulfur oxides is then guided through the pipe 12 to the thermal desorption regeneration tower 103 and heated to a temperature of 350 to 450 r, thereby desorbing the sulfur oxides adsorbed to the adsorbent as dilute sulfuric acid. . SO2,
The desorption gas whose main composition is CO2 and H2O is led to the sulfur recovery device 104 through a pipe 13, and S02 is reduced to sulfur or a part of SO2 is converted to H2S, 802 (!: H2s).
A Zuklaus reaction is also used to reduce SO2 to elemental sulfur and recover by-product sulfur 14. Gas such as unreacted H2S or cos in the sulfur recovery device 104 is led to the oxidation tower 105 through a pipe 15, where the sulfur compound is oxidized to SO2, and the oxidation reaction gas is passed through the pipe 9 to the above-mentioned combustion exhaust gas pipe 6. 7 and led to the adsorption tower 101.

加熱脱着再生塔103で再生された吸着剤は管16より
次の冷却塔106に導びく(実際には加熱脱着塔103
と冷却塔106は一体化した塔で行れる)。
The adsorbent regenerated in the thermal desorption regeneration tower 103 is led to the next cooling tower 106 through a pipe 16 (actually, the adsorbent is guided through the thermal desorption tower 103
and cooling tower 106 can be implemented as an integrated tower).

冷却塔106では管17がら空気が導入され、温度の高
い吸着剤と空気とが間接熱交換し、冷却された吸着剤は
管18より次の分級器107に導びく。一方、加熱され
た空気は管6よりボイラ100の空気源として、管4の
空気と合流し、管5からボイラ100に導びかれる。一
方、冷却した吸着剤は官18より分級器107に導びき
、吸着剤の細く粉化分級したものは、ボイラ100の燃
料として管20より管3に送り、管1からの燃料石炭と
混合して使用するり、1.1’、’、ID、かし冷却し
たほとんどの吸着剤は管19より吸着塔101に戻し、
循環利用する。ここで、吸着塔101及び加熱脱着再生
塔103を循環過程で、吸着剤は管20の流れに相当す
る機械損耗量と加熱脱着再生時に吸から逸散する化学的
損耗量があるので、この機械的及び化学的損耗量の合計
量に相当する吸着剤は管21あるいは管22から補充す
る。管22から吸着剤を補充する場合は系外から吸着剤
をプロセス内に搬入するケースであり、管21から吸着
剤を補充する場合はプロセスサイトで吸着剤を製造する
ケースを示した。
In the cooling tower 106, air is introduced through a pipe 17, and the high-temperature adsorbent and air exchange indirect heat, and the cooled adsorbent is led to the next classifier 107 through a pipe 18. On the other hand, the heated air flows through the tube 6 as an air source for the boiler 100, joins with the air in the tube 4, and is guided through the tube 5 to the boiler 100. On the other hand, the cooled adsorbent is led to the classifier 107 from the duct 18, and the adsorbent classified into fine powder is sent to the pipe 3 from the pipe 20 as fuel for the boiler 100, where it is mixed with fuel coal from the pipe 1. Most of the cooled adsorbent is returned to the adsorption tower 101 through pipe 19,
Use in circulation. Here, in the process of circulating the adsorbent through the adsorption tower 101 and the thermal desorption regeneration tower 103, the adsorbent undergoes mechanical loss corresponding to the flow in the pipe 20 and chemical loss that evaporates from the adsorption during thermal desorption regeneration. Adsorbent corresponding to the total amount of physical and chemical loss is replenished from pipe 21 or pipe 22. When replenishing the adsorbent from the pipe 22, the adsorbent is brought into the process from outside the system, and when replenishing the adsorbent from the pipe 21, the adsorbent is produced at the process site.

すなわち、プロセスサイトで吸着剤を作る場合は、吸着
剤の原料石炭を燃料石炭の一部を使用する場合、管2か
ら原料石炭が吸着剤製造装置108に導びき、燃料石炭
以外の石炭を使用する場合は原料石炭を管24から導入
し、管23から吸着剤製造装置108に導びく。これら
損耗脱硫剤の補充は前述した数ケースの方法によって行
うことかり 可能である・   1゜ 以上、本発明では加熱脱着再生塔で加熱された吸着剤を
空気で冷却し、加熱空気をボイラの空気源として使用す
るので、冷却水、海水などが不要であり、ユーティリテ
ィコスト低減と、熱回収ができ、脱硫コスト低減が計れ
る。。
That is, when making an adsorbent at a process site, if part of the fuel coal is used as the raw material coal for the adsorbent, the raw coal is led from the pipe 2 to the adsorbent manufacturing device 108, and coal other than fuel coal is used. In this case, the raw coal is introduced from the pipe 24 and led from the pipe 23 to the adsorbent manufacturing device 108. Replenishment of these depleted desulfurization agents can be carried out by the methods described in several cases. Since it is used as a source, cooling water, seawater, etc. are not required, and utility costs can be reduced, heat can be recovered, and desulfurization costs can be reduced. .

本発明によれば、加熱脱着再生した吸着剤を冷却するの
に空気で行い、ここで熱交換した加熱空気はボイラ等燃
焼排ガス発生装置の空気として使用するものであるから
、冷却媒体としての冷却水、海水など、さらにそれに付
帯設備が不要である。
According to the present invention, air is used to cool the adsorbent that has been thermally desorbed and regenerated, and the heated air heat-exchanged here is used as air for a combustion exhaust gas generating device such as a boiler. Water, seawater, etc., and additional equipment are not required.

さらに、加熱空気はボイラ等燃焼排ガス発生装置の空気
源として使用することによって、ボイラの燃焼効率が向
上でき、脱硫コスト低減に効果がある。
Furthermore, by using the heated air as an air source for a combustion exhaust gas generating device such as a boiler, the combustion efficiency of the boiler can be improved and desulfurization costs can be reduced.

【図面の簡単な説明】 薯−図面は本発明の一実施例となる硫黄回収型乾式排煙
脱硫プロセスを示す系統図である。
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a system diagram showing a sulfur recovery dry flue gas desulfurization process according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、燃焼排ガス発生装置から排出された排ガス中の硫黄
酸化物を吸着剤に吸着させ、この硫黄酸化物を吸着した
吸着剤を加熱脱着再生し、前記再生した吸着剤を循環利
用する乾式排煙脱硫法において、前記再生された吸着剤
を空気冷却によシ冷却したのち吸着剤として再利用し、
また、吸着剤冷却の熱交換によって温度上昇した空気を
燃焼排ガス発生装置へ送入するようにしたことを特徴と
す・る乾式脱硫方法。 2、燃焼排ガス発生装置から排出された排ガス中の硫黄
酸化物を吸着剤に吸着させる吸着塔と、前記吸着塔で硫
黄酸化物を吸着した吸着剤を加熱脱着再生する加熱脱着
再生塔と、この加熱脱着再生塔で再生された吸着剤を循
環利用する乾式排煙脱硫装置において、前記再生された
吸着剤を空気によって間接冷却する冷却塔と、前記冷却
塔での冷却により温度低下した吸着剤を上記吸着塔に戻
す管路と、また前記冷却塔で吸着剤との熱交換によって
温度上昇した空気を燃焼排ガス発生装置に送入する管路
を設けてなることを特徴とする乾式排煙脱硫装置。
[Claims] 1. Sulfur oxides in exhaust gas discharged from a combustion exhaust gas generator are adsorbed onto an adsorbent, the adsorbent that has adsorbed the sulfur oxides is thermally desorbed and regenerated, and the regenerated adsorbent is In the dry flue gas desulfurization method for recycling, the regenerated adsorbent is cooled by air cooling and then reused as an adsorbent,
In addition, the dry desulfurization method is characterized in that air whose temperature has been increased by heat exchange for cooling the adsorbent is sent to the combustion exhaust gas generator. 2. An adsorption tower that adsorbs sulfur oxides in the exhaust gas discharged from the flue gas generator onto an adsorbent; a thermal desorption regeneration tower that thermally desorbs and regenerates the adsorbent that has adsorbed sulfur oxides in the adsorption tower; In a dry flue gas desulfurization device that recycles and uses the adsorbent regenerated in a thermal desorption regeneration tower, there is provided a cooling tower that indirectly cools the regenerated adsorbent with air, and a cooling tower that cools the adsorbent whose temperature has been lowered by cooling in the cooling tower. A dry flue gas desulfurization device characterized by being provided with a pipe line for returning to the adsorption tower and a pipe line for sending the air whose temperature has been increased by heat exchange with the adsorbent in the cooling tower to the combustion exhaust gas generator. .
JP56139786A 1981-09-07 1981-09-07 Dry type waste gas desulfurization method and its apparatus Pending JPS5843219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139786A JPS5843219A (en) 1981-09-07 1981-09-07 Dry type waste gas desulfurization method and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139786A JPS5843219A (en) 1981-09-07 1981-09-07 Dry type waste gas desulfurization method and its apparatus

Publications (1)

Publication Number Publication Date
JPS5843219A true JPS5843219A (en) 1983-03-12

Family

ID=15253388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139786A Pending JPS5843219A (en) 1981-09-07 1981-09-07 Dry type waste gas desulfurization method and its apparatus

Country Status (1)

Country Link
JP (1) JPS5843219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181742A (en) * 2021-11-11 2022-03-15 北京铝能清新环境技术有限公司 Blast furnace gas source treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181742A (en) * 2021-11-11 2022-03-15 北京铝能清新环境技术有限公司 Blast furnace gas source treatment system

Similar Documents

Publication Publication Date Title
US8500886B2 (en) Apparatus for removing carbon dioxide from a gas
JP4988864B2 (en) Use of SO2 from flue gas in ammonia acid cleaning
CN106524771B (en) Process method for denitration of sintering flue gas
AU2012212630B2 (en) Gas treatment process and system
US2992065A (en) Process for removing sulfur oxides from gases
JP3486220B2 (en) Combustion exhaust gas purification method and apparatus
CA2596127C (en) Integrated lime kiln process
WO2011152552A1 (en) Exhaust gas treatment system and method
JP5525992B2 (en) Thermal power plant with carbon dioxide absorber
WO2011152550A1 (en) Exhaust gas treatment system and method
JP3504674B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
JP5324701B2 (en) Carbon dioxide recovery type power generation system
AU2020104494A4 (en) System and method for integrated removal of multiple pollutants in flue gas with near-zero emission
WO2011152547A1 (en) Exhaust gas treatment system and method
WO2011152546A1 (en) Exhaust gas treatment system and method
JP2014128775A (en) Exhaust gas treatment equipment and gas turbine power generation system using the same
JPH1180760A (en) Gas refiner
JPH08155262A (en) Water-or carbon dioxide-recovering-type wet desulfurization and apparatus therefor
CN108211698A (en) Coal-fired flue-gas all contaminants level Four cleaning system and method
WO2014129402A1 (en) Exhaust gas treatment system and exhaust gas treatment method
CN203916428U (en) A kind of flue gas combined desulfurization nitre carbon device
JP3239094U (en) Near-zero emission flue gas multi-pollutant integrated removal system.
JPS5843219A (en) Dry type waste gas desulfurization method and its apparatus
JP3305001B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
Jahnig et al. A Comparative Assessment of Flue Gas Treatment Processes Part I—Status and Design Basis