JPS5843204Y2 - Concentric tubular resistor - Google Patents

Concentric tubular resistor

Info

Publication number
JPS5843204Y2
JPS5843204Y2 JP5532778U JP5532778U JPS5843204Y2 JP S5843204 Y2 JPS5843204 Y2 JP S5843204Y2 JP 5532778 U JP5532778 U JP 5532778U JP 5532778 U JP5532778 U JP 5532778U JP S5843204 Y2 JPS5843204 Y2 JP S5843204Y2
Authority
JP
Japan
Prior art keywords
resistor
tubular resistor
tube
concentric tubular
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5532778U
Other languages
Japanese (ja)
Other versions
JPS54158245U (en
Inventor
敏夫 宮木
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP5532778U priority Critical patent/JPS5843204Y2/en
Publication of JPS54158245U publication Critical patent/JPS54158245U/ja
Application granted granted Critical
Publication of JPS5843204Y2 publication Critical patent/JPS5843204Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)

Description

【考案の詳細な説明】 本考案は、例えばトカマク形核融合装置の電源回路に設
けられる変流器コイル電流の変化の時定数を調整する為
の可変抵抗装置に適した抵抗体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistor suitable for a variable resistance device for adjusting the time constant of change in a current transformer coil current provided in a power supply circuit of a tokamak-type nuclear fusion device, for example.

最近トカマク形核融合装置の研究、開発がなされ、実験
用の小形装置から大形装置による実施の準備が始められ
ているが、それに伴って電源回路においても種々の性能
が要望されている。
Recently, research and development of tokamak-type nuclear fusion devices has been carried out, and preparations have begun for implementation from small to large-scale experimental devices.As a result, various performances are required of power supply circuits.

そこで現在計画されているもの・一例について第1図に
より説明し、特に之に使用される可変抵抗装置に要望さ
れている性能について述べる。
An example of what is currently planned will be explained with reference to FIG. 1, and in particular the performance required of the variable resistance device used therein will be described.

第1図に示す電源回路は、変流器コイル直流電源1、垂
直磁場コイル直流電源2、空心変流器コイル4、垂直磁
場コイル5、二段のプラズマ励起用エネルギー蓄積コイ
ル6.7、時定数調整用可変抵抗装置8、電圧上昇率制
限用コンデンサ及び抵抗9゜10、しゃ断極性切換投入
等に必要なスイッチ11゜しゃ敵側スイッチ12.13
、エネルギー蓄積コイル電流の逆流防止装置14,15
、可変抵抗の投入切離用スイッチ16、垂直磁場コイル
電流逆流防止用ダイオード17及び垂直磁場コイル電源
の投入用スイッチ18より構成されている。
The power supply circuit shown in FIG. 1 includes a current transformer coil DC power source 1, a vertical magnetic field coil DC power source 2, an air-core current transformer coil 4, a vertical magnetic field coil 5, two-stage plasma excitation energy storage coils 6.7, Variable resistance device 8 for constant adjustment, capacitor and resistor 9゜10 for voltage increase rate limit, switch 11゜ necessary for switching on/off polarity, etc. Opposite side switch 12.13
, energy storage coil current backflow prevention device 14, 15
, a variable resistance switch 16 for turning on/off, a diode 17 for preventing backflow of the vertical magnetic field coil current, and a switch 18 for turning on the vertical magnetic field coil power supply.

なお図中3は、フ。ラズマ回路で゛ある。Note that 3 in the figure is F. It is a lasma circuit.

而して真空容器に近接して設置される空心変流器コイル
4(それ自身が主たる誘導エネルギー蓄積コイルである
)よりプラズマ回路3との電磁的結合を得る。
Thus, electromagnetic coupling with the plasma circuit 3 is obtained from the air-core current transformer coil 4 (which is itself the main inductive energy storage coil) located close to the vacuum vessel.

この回路に要求される機能はプラズマ電流の励起その維
持と制御及び停止である。
The functions required of this circuit are the excitation, maintenance, control, and termination of plasma current.

プラズマ電流の励起はあらかじめ空心変流器コイルに一
定の直流電流を通して電磁エネルギーを蓄え、この電流
を急速にシャ断することによってプラズマへの誘起電圧
を発生する。
To excite the plasma current, electromagnetic energy is stored in advance by passing a constant DC current through an air-core current transformer coil, and by rapidly cutting off this current, an induced voltage is generated in the plasma.

このため、多段誘導性エネルギー蓄積方式を採用するが
、各段の蓄積エネルギーは数十MJに達すると計算され
ている。
For this reason, a multi-stage inductive energy storage method is adopted, and it is calculated that the stored energy in each stage reaches several tens of MJ.

即ちこのような巨大な電磁エネルギーをパルス的に扱う
必要があるわけである。
In other words, it is necessary to handle such huge electromagnetic energy in the form of pulses.

本考案に関係ある可変抵抗装置8は変流器コイル電流の
変化の時定数を調整してプラズマ電流の立上り時間を変
化させるために必要なものである。
The variable resistance device 8, which is relevant to the present invention, is necessary for adjusting the time constant of the change in the current transformer coil current and changing the rise time of the plasma current.

現在ではこの抵抗値は例えば、0.01〜1.0Ω程度
の間を0.018飛びに100段程度の可変が要望され
ている。
At present, it is desired that this resistance value be variable, for example, in about 100 steps in 0.018 increments between about 0.01 and 1.0 Ω.

この可変抵抗装置に要望されている性能は、上記多段切
換可能の化炭のようなものがある。
The desired performance of this variable resistance device is the above-mentioned multi-stage switching capability.

(イ)設定した各抵抗値において、インダクタンスが出
来るだけ小さいこと。
(a) Inductance should be as small as possible for each set resistance value.

例えば数十μH以下。(ロ)抵抗体の温度上昇による抵
抗値の増加は、+10数%以下のこと。
For example, several tens of μH or less. (b) The increase in resistance value due to temperature rise of the resistor shall be less than +10%.

従って抵抗体に使う材料の温度係数から温度上昇が制約
されること。
Therefore, the temperature rise is limited by the temperature coefficient of the material used for the resistor.

(ハ)電流は例えば、2〜5秒程度パルス的に印加され
、数分、例えば5〜10分程度の休止時間があり之をく
りかえす。
(c) The current is applied in a pulsed manner, for example, for about 2 to 5 seconds, and then there is a rest period of several minutes, for example, about 5 to 10 minutes, and this process is repeated.

従って上述のパルス電流で上昇した抵抗体の温度上昇は
、休止時間中に始発温度迄下るように充分冷却について
考える必要があること。
Therefore, it is necessary to consider sufficient cooling so that the temperature of the resistor increases due to the above-mentioned pulse current, so that the temperature decreases to the initial temperature during the rest period.

従来実験室的に作られている数十分の1の小形装置では
、気中形の所謂グリッド抵抗体の組合せが用いられてい
る。
Conventionally, small devices of several tenths of size that have been manufactured in a laboratory use a combination of so-called grid resistors of an air type.

しかしこの方式で大形のものを設計すると、上述(ロ)
の条件から各抵抗体の寸法が長大となり、これを組合せ
た全体装置は、極めて大形となる。
However, if you design a large item using this method, the above (b)
Due to these conditions, the dimensions of each resistor become long, and the overall device combining them becomes extremely large.

例えば成る設計例では据付面積が約5QmX20mにも
及ぶと云う試算がある。
For example, it is estimated that the installation area for the design example is approximately 5Qm x 20m.

このことは(イ)の条件であるインダクタンスを出来る
だけ小さくすると云う要望に反し、不都合である。
This is inconvenient as it goes against the requirement (a) of reducing the inductance as much as possible.

インダクタンスが小さく且つ冷却効果のよい抵抗体とし
て金属管を同じ状に配置し、電流が内外管往復して流れ
且該管内を冷媒で、強制冷却する構成は、電流が折返し
流れるので、インダクタンスは内、外管で打消し合って
小さく、且つ管内を冷媒で強制冷却するので、冷却効果
がよく本目的の抵抗体として適したものである。
In a configuration in which metal tubes are arranged in the same shape as resistors with low inductance and good cooling effect, current flows back and forth between the inner and outer tubes, and the inside of the tube is forcedly cooled with a refrigerant, the current flows back and forth, so the inductance inside the tube is , the outer tube cancels each other out, making it small, and the inside of the tube is forcibly cooled with a refrigerant, so it has a good cooling effect and is suitable as a resistor for this purpose.

第2図a及びbにその構成を例示する。The configuration is illustrated in FIGS. 2a and 2b.

図に於て20は抵抗体の全体を示すものである。In the figure, 20 indicates the entire resistor.

21.22は同心状に配置された内側管状抵抗体、外側
管状抵抗体で、これ等面抵抗体21.22は固有抵抗値
が比較的大きく且つ非磁性の例えばオーステナイト系ス
テンレス鋼管より戊りその断面積は夫々はぼ等しくしで
ある。
Reference numerals 21 and 22 denote an inner tubular resistor and an outer tubular resistor arranged concentrically, and these surface resistors 21 and 22 have a relatively large specific resistance value and are made of non-magnetic material such as austenitic stainless steel tube. The cross-sectional areas are approximately equal.

23は内側管状抵抗体21及び外側管状抵抗体22の一
端を電気的に接続し且つ液密に封する金属製の端板で、
材料として例えば上記面抵抗体21.22と同じステン
レス材を用い、溶接等の手段で内、外側管状抵抗体21
.22に取付けることにより達成される。
23 is a metal end plate that electrically connects one end of the inner tubular resistor 21 and the outer tubular resistor 22 and seals it liquid-tight;
For example, the same stainless steel material as the sheet resistors 21 and 22 is used as the material, and the inner and outer tubular resistors 21 are attached by welding or other means.
.. This is achieved by attaching it to 22.

24は内側管状抵抗体21の金属製端板23の近傍に設
けられた、1ケ又は複数個の冷媒連通孔である。
Reference numeral 24 designates one or more refrigerant communication holes provided near the metal end plate 23 of the inner tubular resistor 21.

又25は、内、外側管状抵抗体21.22に於て金属製
端板23と反対端に位置し、内側管状抵抗体21の外周
と外側管状抵抗体22の内周間隙を、外部に対し液密且
つ電気的には、絶縁して封する絶縁物製リングで、その
材料は例えば強化プラスチック(FRP)を用いる。
Further, 25 is located at the opposite end of the metal end plate 23 in the inner and outer tubular resistors 21 and 22, and makes the outer periphery of the inner tubular resistor 21 and the inner periphery gap of the outer tubular resistor 22 externally. It is a ring made of an insulating material that insulates and seals liquid-tightly and electrically, and its material is, for example, reinforced plastic (FRP).

この絶縁物製リング25を装着するには、例えばエポキ
シ樹脂等の接着剤を用いる。
To attach this insulating ring 25, an adhesive such as epoxy resin is used, for example.

26.27は夫々絶縁物製リング25の近傍で、内、外
側管状抵抗体21.22に設けた電気端子である。
Reference numerals 26 and 27 are electrical terminals provided on the inner and outer tubular resistors 21 and 22, respectively, near the insulating ring 25.

図では夫々管状抵抗体21.22の外周に板状端子を溶
接等の方法で取付けた場合を示す。
The figure shows a case in which plate-shaped terminals are attached to the outer peripheries of tubular resistors 21 and 22 by a method such as welding.

電気端子26.27の取付は方はこれに限るものではな
く、ねじ込式又はその他の端子構成でも差支えないこと
は勿論である。
The method of attaching the electrical terminals 26, 27 is not limited to this, and it goes without saying that a screw type or other terminal configuration may be used.

28.29は絶縁物製リング25近傍の外側管状抵抗体
22の周面部に設けた冷媒口である。
28 and 29 are refrigerant ports provided on the peripheral surface of the outer tubular resistor 22 near the insulating ring 25.

内側管状抵抗体21の冷媒口は、その開口端を用いるこ
とが出来る。
The open end of the inner tubular resistor 21 can be used as the refrigerant port.

これらの冷媒口28 、29は、例えば絶縁ホース30
を介し冷媒31の供給部、戻り部(図示せず)へ接続さ
れる。
These refrigerant ports 28 and 29 are connected to an insulating hose 30, for example.
It is connected to a supply section and a return section (not shown) of the refrigerant 31 via.

この場合冷媒31は特定はしないが油の如く液状で且つ
絶縁性のよいものが考えられる。
In this case, although the refrigerant 31 is not specified, it may be liquid like oil and have good insulation properties.

なお図中点線矢印32は冷媒31の流れを又実線矢印3
3は電流の流れを示す。
Note that the dotted line arrow 32 in the figure indicates the flow of the refrigerant 31, and the solid line arrow 3
3 indicates the flow of current.

流れの方向は、図と逆でも差支えないことは勿論である
Of course, the flow direction may be opposite to that shown in the figure.

このように構成しであるのでインダクタンスが小さく、
冷却効果のよい核融合装置電源の可変抵抗装置に適した
抵抗素子が得られたのである。
With this configuration, the inductance is small.
A resistance element suitable for a variable resistance device of a fusion device power source with good cooling effect was obtained.

所で上述した抵抗体は、(ロ)の条件から抵抗体として
の金属管の断面積は温度上昇の点がら決る値があり、そ
れ以下に小さくして抵抗値を大きくするわけには行かな
い。
By the way, in the above-mentioned resistor, from the condition (b), the cross-sectional area of the metal tube as a resistor has a value determined by the temperature rise, and the resistance value cannot be increased by reducing it below that value. .

即ち長さが長大となる。例えば、現在計画されているも
の・一例として負荷エネルギー76 MJ 5秒とし、
例えば抵抗値0.3Ω金属管の固有抵抗値P=74μQ
−cm温度上昇を100℃とすると、本考案者等の試算
では、必要断面積は約70m2抵抗体の長さは約280
mに達する。
That is, the length becomes long. For example, what is currently planned is a load energy of 76 MJ for 5 seconds.
For example, the specific resistance value of a metal tube with a resistance value of 0.3Ω is P = 74μQ
-cm Assuming that the temperature rise is 100℃, the required cross-sectional area is approximately 70m2, and the length of the resistor is approximately 280m2, according to the inventors' calculations.
reach m.

上述の同心管状抵抗体を直列に接続すると例えば長さ1
0m(往復長さ20m)で14本必要となる。
When the above-mentioned concentric tubular resistors are connected in series, for example, the length is 1
0m (round trip length 20m), 14 pieces are required.

即ち直列本数をあまり増さないとすれば1本当りこの程
度の長さが必要となる。
In other words, if the number of wires in series is not to be increased too much, each wire needs to have a length of about this length.

構成は同心配置であるから内外管間の電磁機械力は、全
周を考えると打消されOに近い筈であるが上述の如く長
い為僅かの管の曲りで強い電磁機械力を生じ、内管が変
形、破損を生ずるおそれがある。
Since the configuration is concentric, the electromagnetic mechanical force between the inner and outer tubes should be canceled out and close to 0 when considering the entire circumference, but since it is long as mentioned above, a slight bend in the tube will generate a strong electromagnetic force, and the inner tube will may cause deformation or damage.

又水平に使用する場合は内外管が自重で撓みを生ずるの
で上記の傾向は一層大きくなる。
Furthermore, when used horizontally, the inner and outer tubes bend under their own weight, so the above-mentioned tendency becomes even more pronounced.

本考案は、同心管状抵抗体に冷媒の通過を阻害せず且つ
内、外抵抗管の隙間を確保した電磁機械力に対して強度
の大きい構成を提案するものである。
The present invention proposes a configuration in which concentric tubular resistors have high strength against electromagnetic mechanical forces without obstructing the passage of refrigerant and ensuring a gap between the inner and outer resistance tubes.

本考案の一実施例を第3図に示す。An embodiment of the present invention is shown in FIG.

之は第2図の構成を基としているので、同一部分は同じ
記号で示し説明は省略する。
Since this is based on the configuration shown in FIG. 2, the same parts are indicated by the same symbols and their explanation will be omitted.

第3図に於て、34が連続したらせん状の絶縁物製スペ
ーサーである。
In FIG. 3, 34 is a continuous spiral spacer made of an insulating material.

之は丁度内側管状抵抗管21の外周と外側管状抵抗管2
2の内周の隙間に係合するように製作する。
This is exactly the outer circumference of the inner tubular resistance tube 21 and the outer circumference of the outer tubular resistance tube 2.
Manufactured to fit into the gap on the inner circumference of No. 2.

製作法は例えば内側管状抵抗管21の外周にFRPを巻
付けておき、その厚さを隙間とほぼ等しくしておく。
As for the manufacturing method, for example, FRP is wound around the outer circumference of the inner tubular resistance tube 21, and its thickness is made almost equal to the gap.

之を機械加工で連続したらせん状に作る。This is machined into a continuous spiral shape.

外側管状抵抗管22の内周との密着をよくする為、図示
するようにらせんの表面に弾力性の大きい例えば耐油ゴ
ム製ガスケット35を貼りつける。
In order to improve the close contact with the inner periphery of the outer tubular resistance tube 22, a highly elastic gasket 35 made of oil-resistant rubber, for example, is pasted on the surface of the spiral as shown in the figure.

このようにして、内側管状抵抗体21の外周部にらせん
状スペーサー34、ガスケット35を取付けた状態で之
を外側管状抵抗体22の孔へ挿入する。
In this manner, the inner tubular resistor 21 is inserted into the hole of the outer tubular resistor 22 with the helical spacer 34 and gasket 35 attached to its outer periphery.

内側管状抵抗体21と外側管状抵抗体22は、らせん状
スペーサー34及びガスケット35により一体となり電
磁機械力に対する強度が大きく、水平に使用しても撓み
が少い。
The inner tubular resistor 21 and the outer tubular resistor 22 are integrated by a helical spacer 34 and a gasket 35, have high strength against electromagnetic mechanical force, and are not easily bent even when used horizontally.

又たとえ若干撓んだとしても内、外紙抗体は全体として
撓むので電気的、機械的に問題ない。
Furthermore, even if it is slightly bent, there is no problem electrically or mechanically since the inner and outer paper antibodies are bent as a whole.

又冷媒は、らせん溝に沿って流れる。The refrigerant also flows along the spiral groove.

第4図に本考案の変形例を示す。FIG. 4 shows a modification of the present invention.

即ち、短いらせん状スペーサー34、ガスケット35を
1ケ又は複数個設けることでも差支えない。
That is, one or more short spiral spacers 34 and gaskets 35 may be provided.

図ではほぼ中央部に1ヶ設けた場合を示した。The figure shows a case where one is provided almost in the center.

第5図に本考案の他の実施例を示す。FIG. 5 shows another embodiment of the present invention.

内側管状抵抗体は必ずしも管ではなく棒38でも差支え
ない。
The inner tubular resistor is not necessarily a tube, but may also be a rod 38.

この場合は冷媒の人口、出口は外側管状抵抗体22の反
対端に位置するようになる。
In this case, the refrigerant outlet will be located at the opposite end of the outer tubular resistor 22.

電気端子26゜27の位置は変りない。The positions of the electrical terminals 26° and 27 do not change.

本考案によれば電磁機械力に対して、強度大で、水平使
用も可能な且つ冷却効果のよい抵抗体が得られる。
According to the present invention, a resistor with high strength against electromagnetic mechanical force, which can be used horizontally, and has a good cooling effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、核融合装置の電源回路を示す構成図、第2図
は従来の同心管状抵抗体で、aはその両端部を切欠断面
して示す正面図、bはaのX−X線に沿う矢視断面図、
第3図は本考案による同心管状抵抗体の一実施例を示す
もので、両端部を切欠断面して示す正面図、第4図、第
5図は本考案の他の実施例を示すもので、両端部を切欠
断面して示す正面図である。 1・・・・・・変流器コイル直流電源、2・・・・・・
垂直磁場コイル直流電源、3・・・・・・プラズマ回路
、4・・・・・・空心変流器コイル、5・・・・・・垂
直磁場コイル、6,7・・・・・・二段のプラズマ励起
用エネルギー蓄積コイル、8・・・・・・時定数調整用
可変抵抗装置、9,10・・・・・・電圧上昇率制限用
、コンデンサ及び抵抗、11・・・・・・しゃ断、極性
切換投入に必要なスイッチ、12.13・・・・・・し
ゃ所用スイッチ、14.15・・・・・・エネルギー蓄
積コイル電流の逆流防止装置、16・・・・・・可変抵
抗の投入、切離用スイッチ、17・・・・・・垂直磁場
コイル電流逆流防止用ダイオード2.18・・・・・・
垂直磁場コイル電源投入スイッチ、20・・・・・・抵
抗体全体を示す、21・・・・・・内側管状抵抗体、2
2・・・・・・外側管状抵抗体、23・・・・・・金属
製端板、24・・・・・・冷媒連通孔、25・・・・・
・絶縁物製リング、26.27・・・・・・電気端子、
28.29・・・・・・冷媒口、30・・・・・・絶縁
物製ホース、31・・・・・・冷媒、32・・・・・・
−・ν冷媒の流れを示す矢印、33・・・・・・→電流
の流れを示す矢印、34・・・・・・絶縁物製らせん状
スペーサー、35・・・・・・ガスケット。
Fig. 1 is a configuration diagram showing the power supply circuit of a fusion device, Fig. 2 is a conventional concentric tubular resistor, a is a front view with both ends cut away, and b is an X-X line of a. A cross-sectional view along the arrows,
FIG. 3 shows one embodiment of the concentric tubular resistor according to the present invention, and a front view showing a cutaway cross section of both ends, and FIGS. 4 and 5 show other embodiments of the present invention. , is a front view showing a cutaway cross section of both ends. 1... Current transformer coil DC power supply, 2...
Vertical magnetic field coil DC power supply, 3...Plasma circuit, 4...Air core current transformer coil, 5...Vertical magnetic field coil, 6, 7...2 Energy storage coil for plasma excitation in stages, 8... Variable resistance device for time constant adjustment, 9, 10... Capacitor and resistor for voltage increase rate limitation, 11... Switches required for switching off, polarity switching, and turning on, 12.13...Switch for switching off, 14.15...Device for preventing backflow of energy storage coil current, 16...Variable resistor Switch for turning on and cutting off, 17... Vertical magnetic field coil current backflow prevention diode 2.18...
Vertical magnetic field coil power supply switch, 20... shows the entire resistor, 21... inner tubular resistor, 2
2...Outer tubular resistor, 23...Metal end plate, 24...Refrigerant communication hole, 25...
・Insulator ring, 26.27... Electrical terminal,
28.29... Refrigerant port, 30... Insulating hose, 31... Refrigerant, 32...
-.ν Arrow indicating the flow of refrigerant, 33...→Arrow indicating the flow of current, 34... Spiral spacer made of insulator, 35... Gasket.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)金属製外管とその中へ同心状に内管を挿入し一端
を液密且つ導電性に端板で封じ電流が、内外管往復折返
して流れ、且つ該管内に冷媒を流して冷却出来るように
構成し、上記内外管の隙間に係合し且つ軸方向に連続し
たらせん状溝を有する絶縁物製スペーサーを介在するよ
うに構成したことを特徴とする同心管状抵抗体。
(1) An inner tube is inserted concentrically into a metal outer tube, and one end is sealed with a liquid-tight and conductive end plate. Current flows back and forth between the inner and outer tubes, and a refrigerant is allowed to flow inside the tube for cooling. A concentric tubular resistor, characterized in that the concentric tubular resistor is constructed such that an insulating spacer is interposed therebetween, the spacer being engaged with the gap between the inner and outer tubes and having a spiral groove continuous in the axial direction.
(2)らせん状溝を有する絶縁物製スペーサーを軸方向
に断続的に介在させるようにしたことを特徴とする実用
新案登録請求範囲第1項記載の同心管状抵抗体。
(2) The concentric tubular resistor according to claim 1, which is a utility model registration, characterized in that an insulating spacer having a spiral groove is interposed intermittently in the axial direction.
(3)内管を金属棒としたことを特徴とする実用新案登
録請求範囲第1項記載の同心管状抵抗体。
(3) A concentric tubular resistor according to claim 1, wherein the inner tube is a metal rod.
JP5532778U 1978-04-27 1978-04-27 Concentric tubular resistor Expired JPS5843204Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5532778U JPS5843204Y2 (en) 1978-04-27 1978-04-27 Concentric tubular resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5532778U JPS5843204Y2 (en) 1978-04-27 1978-04-27 Concentric tubular resistor

Publications (2)

Publication Number Publication Date
JPS54158245U JPS54158245U (en) 1979-11-05
JPS5843204Y2 true JPS5843204Y2 (en) 1983-09-30

Family

ID=28951025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5532778U Expired JPS5843204Y2 (en) 1978-04-27 1978-04-27 Concentric tubular resistor

Country Status (1)

Country Link
JP (1) JPS5843204Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3002160C2 (en) * 1980-01-18 1984-04-12 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Liquid-cooled resistor
EP2897137B1 (en) * 2014-01-16 2020-04-29 Vishay MCB Industrie High-power compact electrical resistance

Also Published As

Publication number Publication date
JPS54158245U (en) 1979-11-05

Similar Documents

Publication Publication Date Title
US3414698A (en) High voltage transformer type heater for heating fluids
US2963669A (en) Air-core transformer
CN102997037A (en) Dewar with magnetic shielding or electromagnetic shielding
JPS5843204Y2 (en) Concentric tubular resistor
US3946300A (en) High frequency power supply
US3231842A (en) Electromagnetic devices
US3359394A (en) Persistent current switch
Schneider-Muntau Polyhelix magnets
JPS592361B2 (en) concentric tubular resistor
US2799836A (en) Pulse transformer
CN213660107U (en) Adjustable magnetic core
US3036247A (en) Electromagnet
US4851629A (en) High-frequency heating device
JP2016225590A (en) Inductor for current-limiting circuit
JPH08273932A (en) Magnetization apparatus
CN2465290Y (en) High-efficient high and intermediate frequency transformer
CN105304267A (en) Nano amorphous alloy high-frequency pulse transformer and application thereof
JP2538049Y2 (en) Work coil of induction heating cooker
US2994808A (en) High flux density apparatus
JPS6052561B2 (en) concentric tubular resistor
CN212750593U (en) Ultrahigh voltage isolation type transformer
US2957124A (en) High frequency choke coil
CN208126995U (en) A kind of low magnetic leakage high frequency transformer
CN108750407B (en) Utilize cold-storage insulation can temperature control equipment of vortex technique
US6888268B1 (en) Energy storage device