JPS5843017A - Controlling system for power generating device of power distribution system - Google Patents

Controlling system for power generating device of power distribution system

Info

Publication number
JPS5843017A
JPS5843017A JP56141472A JP14147281A JPS5843017A JP S5843017 A JPS5843017 A JP S5843017A JP 56141472 A JP56141472 A JP 56141472A JP 14147281 A JP14147281 A JP 14147281A JP S5843017 A JPS5843017 A JP S5843017A
Authority
JP
Japan
Prior art keywords
voltage
load
power
generating device
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56141472A
Other languages
Japanese (ja)
Other versions
JPH0465619B2 (en
Inventor
Shoichi Maki
牧 正一
Masaomi Nagae
永江 正臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP56141472A priority Critical patent/JPS5843017A/en
Publication of JPS5843017A publication Critical patent/JPS5843017A/en
Publication of JPH0465619B2 publication Critical patent/JPH0465619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To prevent an increase of the width of the load voltage fluctuation which is caused by the connection of a power generating device, by starting the supply of a phase-advanced reactive current at a time point when the load voltage is approximate to the set upper-limit voltage and then controlling the output current of the generating device. CONSTITUTION:A power generating device 1 is provided with a power generating element 11, a DC filter containing a smoothed reactor 12 and a capacitor 13, and an inverter 14. The pulse width of the inverter 14 is modulated by a control circuit 16, and the output of a waveform synthesizing circuit 17 is applied to the circuit 16. The load voltage that is detected by a voltage detector 18 plus the input signals of an active current operating part 19 and a reactive current operating part 20 are applied to the circuit 17. The active current command value given from arithmetic part 21 for an active current command value is fed to the part 19 and a reactive current command arithmetic part 22. The reactive current command value given from the part 22 is transmitted to the part 20 via a characteristic changing element 23.

Description

【発明の詳細な説明】 本発−は、−一系iに′連系連転される発−装置の制御
方式に関し、その目的とするところはMの系統構成の兇
直しを賛することなく、許容される一圧変I?幅を守り
つ一一電装置め連系運転を行なわせるにある。
[Detailed Description of the Invention] The present invention relates to a control method for a generating device that is interconnected to a system i, and its purpose is not to support the modification of the system configuration of M. , Is it acceptable? The goal is to allow all electrical devices to operate in a grid-connected manner while maintaining the same width.

配電系統において高圧母線より柱上変圧器を介して接続
される低圧負荷の電・圧は101±6vが一般的゛であ
り・、・・ま−た低圧負荷は通常101±10v−ご耐
え得るように設計されている。すなわ卦、電圧の一許容
変動幅一は201である゛。従来の配電系、銃は負荷変
動−あらて(電圧が・充分この許容変動副内に収ま−る
よう系統構成および運用制御がなされている0石油危機
以来′エネルギー問題の解決策として燃料電池や太陽電
池などの新エネルギー源にはる分散形不i力発電装置が
将来多数使用される動向に166 oこれらの発電装置
は負荷電圧の安定供給および新iネルギーの゛有効利用
の見地から既存配電系統と連系運転される方向にある。
In the distribution system, the voltage and voltage of low-voltage loads connected from the high-voltage bus through pole transformers is generally 101±6V...Also, low-voltage loads can usually withstand 101±10V. It is designed to. In other words, the permissible voltage fluctuation range is 201. Conventional power distribution systems are configured and operated in such a way that the load fluctuations (voltage) are well within this allowable fluctuation range.Since the oil crisis, fuel cells and There is a trend that many distributed inert power generation devices will be used in the future as new energy sources such as solar cells. It is in the direction of being operated in connection with the grid.

とく番と単機発電容量が小さい(例えば家庭用太陽光発
電装置なと)場合化は柱上変圧器2次低圧回路暴ζ発電
装置が接続され、発電装置普及が進むにつれて軽負荷時
に高圧系統への電力逆送が起り、末端負荷電圧上昇′に
より負荷端電圧変動幅が拡大する@こψような点から系
統構成の蒐直しが必要になってくる。
In cases where the single power generation capacity is small (for example, a home solar power generation system), a pole-mounted transformer is connected to a secondary low-voltage circuit power generation system, and as power generation systems become more popular, it is possible to connect to a high-voltage system during light loads. Reverse power transfer occurs, and the voltage fluctuation range at the load end expands due to the rise in the end load voltage.From this point of view, it becomes necessary to reconsider the system configuration.

次にとの問題点につき、具体的数値を挙げながらさらに
詳しく説明する。
The following problems will be explained in more detail using specific numerical values.

5111g4(示すようIζ、高圧母線を定電圧受電点
とし、単相、 50KV人の柱上変圧器Tを介して接続
されている低圧系統について一般的に使用されている回
路常数を利、用して話を進める・変圧器の一インピーダ
ンスを3−とし、負荷りは単相、50KV人、カ率pt
 = o、ss (おくれ)とする。低圧配線は60m
m”架空で末端負荷tでの距離がxooz(m)トし、
10100(当りのインピーダンスを0.03(1+j
(LO8(0)とする。この場合、計算により次の値が
求まる。
5111g4 (as shown in Iζ, using the circuit constants commonly used for low voltage systems connected via a single-phase, 50 KV pole transformer T, with the high voltage bus as the constant voltage receiving point) Let's move on to the discussion. The impedance of the transformer is 3-, the load is single phase, 50KV, and the power rate is pt.
= o, ss (late). Low voltage wiring is 60m
m'' hypothetically, the distance at the terminal load t is xooz (m),
10100 (per impedance 0.03 (1+j
(LO8(0). In this case, the following value is found by calculation.

線路抵抗Rj ;0.03j(Q) 線路リアクタンス Xz=αos、t(Ω)(jll[
r )             、+る等価回路を示
し、第3図は上記例における負荷端電圧VLの変動(*
)と低圧配線長係数tとの関係を示す。
Line resistance Rj; 0.03j (Q) Line reactance Xz = αos, t (Ω) (jll[
r), +, and Figure 3 shows the variation of the load end voltage VL in the above example (*
) and the low voltage wiring length coefficient t.

館3図に右いて、直線(人)は負荷L(定インピーダン
ス特性の1例)のみの場合の全負荷時特性を示す。発電
装置(定電流特性の1例)が並存する場合に、図示を容
易にするため化発電装置の力率も、0.85とすると、
無負荷時における発電装置501 、100−に対す6
11i性4−1ソt1.Jf’t1.Tjl@ (B)
、(C)で表わすことができる。これから判るように、
発電装置Gが並存しないときには、末端負荷電圧変動幅
を20%に抑えるのに許容される配線長は約112mで
ある@これに対して、発電装置が並存すると無負荷時に
逆送亨カζζよる負荷電圧突上げが起り、20−の変動
幅を一持するのに許容される配線長は発電装置1001
1の場合には約47mに短縮されてしまう。
On the right side of Figure 3, the straight line (person) shows the full load characteristics when only the load L (an example of constant impedance characteristics) is present. When a power generator (an example of constant current characteristics) coexists, the power factor of the power generator is also assumed to be 0.85 for ease of illustration.
6 for power generators 501 and 100- during no-load
11i sex 4-1 sot1. Jf't1. Tjl@ (B)
, (C). As you will see,
When the generator G is not present at the same time, the allowable wiring length to suppress the terminal load voltage fluctuation width to 20% is approximately 112 m. On the other hand, when the generator G is present at the same time, the reverse feed force will be increased during no-load. The allowable wiring length for the load voltage to rise and maintain the fluctuation range of 20- is the power generation device 1001.
1, the length would be shortened to about 47 m.

上述から明ら必のように配電系統に発電装置を接続する
場合には配電系統の見直しが必要となり、場合によって
は系統構成ないしは運用制御の変更のための、費用が発
生する。         、 。
As is clear from the above, when connecting a power generation device to a power distribution system, it is necessary to review the power distribution system, and in some cases, costs may be incurred for changing the system configuration or operational control. , .

この解決策として過電圧継電・器で発電装置を解列する
一方式が考えられるが、この方式はポンピング現象をひ
き起仁し、エネルギー利用率も愚い。
One possible solution to this problem is to use an overvoltage relay to disconnect the generator, but this method causes a pumping phenomenon and has poor energy utilization.

さらに、自動電圧調整装置により発電装置無効電力の可
変制御を行なって電圧安定化を計る方法も考えられる。
Furthermore, a method of stabilizing the voltage by variable control of the reactive power of the power generator using an automatic voltage regulator may also be considered.

゛しかしながら、先に例示した如く、配電系統の場合線
路の抵抗とりアクタンスとが同じオーダーなので・効き
が悪く、発電装置の有効出力を大幅に上回る無効電力が
必要であり、!l!現性に乏しい。また、多数の小容量
発電装置で適正な相互電力配分をとりつつ系統の電圧調
整を行な5うことは現実的に不可能である。
However, as shown in the example above, in the case of a power distribution system, the resistance and actance of the line are of the same order, so it is ineffective and requires reactive power that significantly exceeds the effective output of the power generator. l! It lacks reality. Further, it is practically impossible to adjust the voltage of the system while maintaining appropriate mutual power distribution among a large number of small-capacity power generation devices.

本発明の目的は、既存配電系統の見直しを景する仁とな
くそのま\利用しながらも、発電f!−接続による。負
荷電圧変動幅の拡大を防止し、柱上変圧器容量の許す範
囲内においてできるだけ多くの発電装置や設備を可能に
、するこ・とにある。
The purpose of the present invention is to generate power while using the existing power distribution system as is, without having to review the existing power distribution system. - Depends on the connection. The purpose is to prevent the widening of load voltage fluctuations and enable as many power generation devices and facilities as possible within the capacity of the pole transformer.

この目的は、配電系統に連系運転される発llIc装置
の出力電流を負荷電圧監視のもとで次のように制御する
こと、すなわち負荷電圧が設定上限電圧に接近した段階
より進相無効電流の供給を開始させ、負荷電圧が設定上
限電圧に達したときに、配電系統として7の走電圧受電
点と発電装置との間のインピーダンスに発電装置出方電
流を乗じた電圧と定電圧受電点!圧とのベクトル和の大
きさが定電圧受電点電圧や大Ikさに等しくなるよう制
御することによって達成される。
The purpose of this is to control the output current of the generator that is connected to the power distribution system by monitoring the load voltage as follows.In other words, when the load voltage approaches the set upper limit voltage, the phase-advanced reactive current When the load voltage reaches the set upper limit voltage, the distribution system calculates the voltage obtained by multiplying the impedance between the running voltage receiving point 7 and the generator by the generator output current and the constant voltage receiving point. ! This is achieved by controlling the magnitude of the vector sum with the voltage to be equal to the constant voltage receiving point voltage or magnitude Ik.

本発明原理を説明するために、第4図に再び配電系統と
しての定電圧受電点と負荷端との間の等価インピーダン
スが示されている。このインピーダンスに関し1.ζζ
ては第2図における変圧器リアクタンスxtと線路リア
クタンスXjとの合成値をXて表わし、また第2図にお
ける線路抵抗8tを8で表わすものとする。定電圧受電
点の電圧詔よび負荷端の電圧をそれぞれB*、VLにて
ベクトル表示し、そして各ベクトルの大きさをi*、V
sJ(で表わす・さらに負荷りは有効電流IPLと遅り
の無効電流IQLをとるものとすると、負荷電流ILは
、IL = IPL −jIqL と表わす、ことができる。また、発電装置()は有効電
流1poと進みの無効電流を供給するものとすると、発
電装置出力電流I・は、 Io = Ipo +jlqa と表わすことができる。
In order to explain the principle of the present invention, FIG. 4 again shows the equivalent impedance between a constant voltage receiving point and a load end as a power distribution system. Regarding this impedance, 1. ζζ
In this case, the combined value of transformer reactance xt and line reactance Xj in FIG. 2 is expressed as X, and the line resistance 8t in FIG. 2 is expressed as 8. The voltage at the constant voltage receiving point and the voltage at the load end are expressed as vectors by B* and VL, respectively, and the magnitude of each vector is expressed by i* and V.
sJ (Furthermore, if the load is the active current IPL and the reactive current IQL lagging behind it, then the load current IL can be expressed as IL = IPL - jIqL. Also, the power generation device () is effective Assuming that a current 1po and a leading reactive current are supplied, the generator output current I can be expressed as Io = Ipo + jlqa.

今、負荷のみの場合(Io=Qの場合)について考える
と、この場合には、 が成り立で。−の場合には、もちろん配電系統は、負荷
電圧VRの大きさV真の変動が許容幅内におさまるよう
構成ないし運用されている。許容変動幅内にある最悪条
件下にある負荷端について考えるとすると、無負荷時に
はVL (=ER,) =111V全負荷時にはVL=
91Vとなる。したがって、定電圧受電点の電圧E”を
基準とす、るでクトル図を示す第5図によれば、負荷゛
電圧VRのベクトル先端は□)l 無負荷時には点Aにあるが、全′竺荷時には点HJこ移
動する9とになる。これに対して、発電装置Gの出力電
流Ioが存在するときは、逆送電力によるもきびしくな
る。発電装置Gの出力電流が11・= IF(1+jI
qa であるとき、無負荷時の負荷電圧板は、?L−=M内+
(R+ jX)(Ira+jIQQ)と表わすことがで
きる。本発明は、負荷電圧の大きさVLの監視のもとに
、負荷電圧の大きさVLが設定上限電圧VLmaxに接
近した段階より(VL =VLmax −aとなった段
階より)発電装置Gに進相無効電流IQ(1の供給を開
始させ、VL = Vtmaxとなったときに、上記の
無負荷時電圧VLの大きさがiRの大きさIBRI =
 IRに等しくなる。ように、即ち、 HiR+(a+jx)(xpa+jIqta>l =E
訃・・・・・・・・(1)となるように発電装置Gの出
力電流を制御するものである。か−る制御によれば、 
VL(VLmax−6の範囲では、発電−置Gは有効電
流Ipoのみを供給し、この場合に前動電流IPQ4g
負荷電圧増大方向に作用するので、負荷電圧の低下方向
の変動を許容範囲にとどめるこきに関しては何ら間−は
ない。また、VL 〉VLmaxの範囲では、最悪条件
下にあっても第5図のベクトル図−こおし1て負荷電圧
ベクトルの尖端は最大許容限界を示す円上尋ことどまる
(一点C)。すなわち、無負荷であっても負荷電圧の大
きさVLは発電装置Gがなl、%ときと同様に定電圧受
電点電圧の大きさBR番こととめられる。その都度に詔
いて供給すべき無効分1qaの値6まその都度における
有効分IP@に応じて異なる値をとる。
Now, considering the case of only load (Io=Q), in this case, the following holds true. In the case of -, of course, the power distribution system is configured or operated so that the variation in the magnitude V of the load voltage VR falls within an allowable range. Considering the load end under the worst condition within the allowable fluctuation range, VL (=ER,) = 111V at no load, VL = at full load
It becomes 91V. Therefore, according to Fig. 5, which shows a vector diagram based on the voltage E'' at the constant voltage receiving point, the tip of the vector of the load voltage VR is at point A when there is no load; During direct loading, the point HJ moves to 9.On the other hand, when the output current Io of the generator G exists, it becomes severe due to the reverse power.The output current of the generator G becomes 11・=IF (1+jI
When qa, the load voltage plate at no load is? L-=M inside+
It can be expressed as (R+jX)(Ira+jIQQ). In the present invention, the load voltage VL is monitored, and the power generation device G is started from the stage when the load voltage magnitude VL approaches the set upper limit voltage VLmax (from the stage when VL = VLmax - a). When the supply of phase reactive current IQ (1 is started and VL = Vtmax), the magnitude of the above-mentioned no-load voltage VL becomes the magnitude of iR IBRI =
equals IR. As such, that is, HiR+(a+jx)(xpa+jIqta>l =E
This is to control the output current of the power generator G so that (1) is achieved. According to this control,
In the range VL (VLmax-6, the generator G supplies only the active current Ipo, in which case the premotive current IPQ4g
Since it acts in the direction of increasing the load voltage, there is no time limit for keeping fluctuations in the decreasing direction of the load voltage within an allowable range. Furthermore, in the range of VL>VLmax, even under the worst conditions, the peak of the load voltage vector remains just above the circle indicating the maximum allowable limit (point C) as shown in the vector diagram of FIG. That is, even when there is no load, the magnitude of the load voltage VL can be determined from the magnitude of the constant voltage receiving point voltage BR in the same way as when the generator G is at zero. The value 6 of the invalid portion 1qa to be supplied each time takes a different value depending on the valid portion IP @ each time.

その都度化おける有効分IP(lに応じて式(1)を満
足する無効分Iqaを算出する場合薯こ、その算出式と
BRとおくと、 が得られる。したがって、VL > Vtmaxの範囲
における発電装置Gの動作点(IPQ 、 IQG )
Gま第5図に破@OYて示すような特性曲線上尋こある
。式(1)’iこおいてR,XおよびERは既知の値で
あるので、IP(1の値が与えられればそれに応じてI
Q(1のs*−bs求まる0 11g6図に本発明による制御方式の実施例を示すOこ
の図において、1は配電系統8に連系運転される発電装
置であり、2は負荷である。発電装置1は例えば太陽電
池である発光素子11と、平滑リアクトル12およびコ
ンデンサ13からなる直流フィルタと、インバータ14
とから構成すること力Sできる。インバータ14は例え
ばブロック内薯こ一相分を略示するようにトランジスタ
大電圧形インツイータを使用することができる。この場
合番と発電装置1の系統への接続点とイン1<−夕14
の出力端との間の各相接続線に交流リアク)/し15を
挿入するとよい。インバータ14は制御回路16によっ
てノ4)レス輪変調制御される。インバータ14に所望
の出力電流IQを流すために変調制御回路16に与える
べき制御信号波形は波形合成回路17が発生する。波形
合成回路17には電圧検出器18によって検出される負
荷電圧板に和尚する正弦波信号が導かれ、さらに有効電
流操作部19および無効電流操作部20の出力信号を導
かれる。有効電流指令値演算部21によって、例えば太
陽電池11の電圧、電流の検出値からその@度太陽電池
11から最大出力を取り出し得るように有効電流指令値
が形成される0操作部19はこの指令値どう“りの有効
電流IPGが流れるよう波形合成回路17に作用する。
When calculating the invalid component Iqa that satisfies the formula (1) according to the effective component IP (l) in each case, let the calculation formula and BR be as follows. Therefore, in the range of VL > Vtmax, Operating point of power generator G (IPQ, IQG)
G is below the characteristic curve as shown in Fig. 5. In equation (1)'i, R,
Q(s*-bs of 1 is found 0 11g6 Figure shows an embodiment of the control method according to the present invention. In this figure, 1 is a power generation device operated in connection with the power distribution system 8, and 2 is a load. The power generation device 1 includes a light emitting element 11 which is, for example, a solar cell, a DC filter consisting of a smoothing reactor 12 and a capacitor 13, and an inverter 14.
It is possible to compose the force S from . As the inverter 14, for example, a transistor high-voltage type intweeter can be used, as shown schematically for one phase in the block. In this case, the connection point of generator 1 to the grid and in1<-14
It is preferable to insert an AC reactor (15) into each phase connection line between the output terminal of the The inverter 14 is controlled by the control circuit 16 in 4) less wheel modulation. A waveform synthesis circuit 17 generates a control signal waveform to be applied to the modulation control circuit 16 in order to cause a desired output current IQ to flow through the inverter 14. The waveform synthesis circuit 17 is led to a sine wave signal that affects the load voltage plate detected by the voltage detector 18, and is further led to the output signals of the active current operating section 19 and the reactive current operating section 20. The active current command value calculation unit 21 forms an effective current command value from the detected values of the voltage and current of the solar cell 11 so that the maximum output can be extracted from the solar cell 11.The operation unit 19 uses this command. It acts on the waveform synthesis circuit 17 so that an effective current IPG of different values flows.

また、この有効電流”指令値は゛′演算回路22にも導
かれ、演算回路22は先の式(1′)′にしたがらで無
効電流指令−を算出す′る。この無効電流指令値jよ特
性変更要素23を芥して無効電流−操゛作゛部20に伝
達され′るにの要素23は電圧検出部18からのVLに
相当する信号からその大きさVLを求め、このVtに応
己て変化するゲインを持つ可変ゲイン要素である。第7
図にはVLに対する出力IQG”の特性が演算回路22
からの2つの異なる入力値について示されている。これ
かられかるまうに、VL (’ VLmax−εの範囲
においては要素VLのゲインは零であり、したがって発
電装置1は有効電流めみを供給する。’ VL 〉VL
maxの範囲では要乗23°のゲインは1であ6′;演
算回路22によって一―された無効電流指令値力iそあ
ま\操作部20に伝達さiる。VLmax−ε<VL 
<’VLInaXの範′囲ともなって直線的に上昇する
。これにより円滑な特性変更を行なわせることができる
。     ′
In addition, this active current command value is also led to the calculation circuit 22, and the calculation circuit 22 calculates the reactive current command - according to the above equation (1'). The element 23, which removes the characteristic changing element 23 and transmits the reactive current to the operating section 20, determines the magnitude VL from the signal corresponding to VL from the voltage detection section 18, and responds to this Vt. It is a variable gain element with a gain that changes itself.
The figure shows the characteristics of the output IQG with respect to VL from the arithmetic circuit 22.
is shown for two different input values from . As we will see from now on, VL (' In the range of VLmax-ε, the gain of element VL is zero, so the power generator 1 supplies the effective current.' VL 〉VL
In the range of max, the gain of the power of 23° is 1 and 6';VLmax−ε<VL
<'VLInaX' range and increases linearly. This allows for smooth changes in characteristics. ′

【図面の簡単な説明】[Brief explanation of drawings]

第1図は配電系統における定電圧受電点と1つの負荷端
との間の線路の概略図、第2図は第1図に対する等価回
路図、第3図は負荷端電圧の変動と線路長との関係につ
いての説明図、第4図はインピーダンス等価回路図−第
5図は本発明を説明するhめ゛の電圧、電流ベクzbi
g、p6図は本発明一実施例を示すブロック図、−第7
図は第6図の実−例の動作についての説明図である。 1・・・・・・発電装置、2・・・・・・負荷、11・
・・・・・発電素子、12.13・・・・・・フィルタ
、14・・・・・・インバータ、15・・・・・・交流
す千りトル、16・・・・・・変調制御回路、17・・
・・・・波形合一回路、18・・・・・・電圧検出器、
φ嶌 21・・・・・・有効電流指令値演算部、22・・・・
・・無効電流指令値演算部、才1口 才 2 ロ 一1′; 才4回
Figure 1 is a schematic diagram of a line between a constant voltage receiving point and one load end in a power distribution system, Figure 2 is an equivalent circuit diagram for Figure 1, and Figure 3 is a diagram showing variations in load end voltage and line length. Fig. 4 is an impedance equivalent circuit diagram - Fig. 5 is an explanatory diagram of the relationship between
Figures g and p6 are block diagrams showing one embodiment of the present invention;
The figure is an explanatory diagram of the operation of the example shown in FIG. 1... Generator, 2... Load, 11.
...Power generation element, 12.13...Filter, 14...Inverter, 15...1,000 liters of AC, 16...Modulation control Circuit, 17...
... Waveform combining circuit, 18 ... Voltage detector,
φ 21... Effective current command value calculation section, 22...
...Reactive current command value calculation section, 1st time 2nd time 1st time; 4th time

Claims (1)

【特許請求の範囲】[Claims] 1)配−電系統に連系゛運転される発電装置の出力電流
゛を負荷電圧i゛視のもどセ次のように制御するよう番
としたこと、′すなわ−ち負荷電圧か設定上−電圧に接
近した段階より進癲無効電流め供給を−゛始させ、°−
負荷電圧が設定上限電圧に達したとjに、配電系統とし
ての定電圧受電点と発電装置との間のインピーダンスに
発電装置出力電流を乗じた電圧表定電圧受電゛点電圧と
めベクトル和の大きさが定電圧受電詠−圧の大きざに等
しくなるように制御す菖こと番特徴とす乞配電系統発電
装置の制御方式。        ゛゛
1) The output current of the power generation equipment connected to the power distribution system is controlled as follows from the viewpoint of the load voltage i. − Start supplying the reactive current from the stage when the − voltage approaches − −
When the load voltage reaches the set upper limit voltage, the voltage table is calculated by multiplying the impedance between the constant voltage receiving point in the power distribution system and the generator by the generator output current. A control method for power distribution system generators characterized by controlling the constant voltage to be equal to the magnitude of the receiving voltage.゛゛
JP56141472A 1981-09-08 1981-09-08 Controlling system for power generating device of power distribution system Granted JPS5843017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141472A JPS5843017A (en) 1981-09-08 1981-09-08 Controlling system for power generating device of power distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141472A JPS5843017A (en) 1981-09-08 1981-09-08 Controlling system for power generating device of power distribution system

Publications (2)

Publication Number Publication Date
JPS5843017A true JPS5843017A (en) 1983-03-12
JPH0465619B2 JPH0465619B2 (en) 1992-10-20

Family

ID=15292675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141472A Granted JPS5843017A (en) 1981-09-08 1981-09-08 Controlling system for power generating device of power distribution system

Country Status (1)

Country Link
JP (1) JPS5843017A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549747A (en) * 1977-06-25 1979-01-24 Mitsubishi Electric Corp Non-stopping power source unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549747A (en) * 1977-06-25 1979-01-24 Mitsubishi Electric Corp Non-stopping power source unit

Also Published As

Publication number Publication date
JPH0465619B2 (en) 1992-10-20

Similar Documents

Publication Publication Date Title
US8085564B2 (en) DC bus voltage control for two stage solar converter
CN108879765B (en) Bidirectional power converter control method for preventing micro-grid alternating current bus current distortion
Kotb et al. A hybrid HVDC transmission system supplying a passive load
WO1996018937A1 (en) Grid connected bi-directional converter including a pwm, dc-dc chopper, and energy storage/supply device
JPH0318236A (en) Uninterruptible power equipment having no magnetic device for low-frequency power
US11239663B2 (en) Energy storage device and power system and control method thereof
EP2922170B1 (en) Control device for voltage source converter and operating method thereof
JP4494562B2 (en) Power converter for photovoltaic power generation
EP2947743A2 (en) Converter and operating method thereof
JP3386295B2 (en) Interconnected power converter
AU2019262602A1 (en) Systems and methods of DC power conversion and transmission for solar fields
US20210281183A1 (en) High-voltage dc transformation apparatus and power system and control method thereof
US10903761B2 (en) Microgrid controller with one or more sources
CN108199567A (en) A kind of pre-charging device and method of middle pressure big-power transducer
US20240162705A1 (en) Method for operating an energy supply system, device for exchanging electrical power in an energy supply system, and energy supply system
CN107612025A (en) Current-control type inverter improves control method in microgrid
CN110661247A (en) Power coefficient compensation-based power equalization control method and system for direct-current micro-grid
CN112491075B (en) Novel energy storage inverter control device and control method thereof
JPS5843017A (en) Controlling system for power generating device of power distribution system
EP0085249B1 (en) Method and apparatus for electrical power conversion
CN210927096U (en) Direct current coupling system
CN208353048U (en) DC charging system based on new-energy automobile
CN112152253A (en) Oil well area multi-source micro-grid power supply device system
SU1534625A1 (en) Device for regulation of power of single-phase transverse capacitance compensation unit
US11799298B1 (en) System and method for frequency modulation based on direct current controllable load