JPS584299A - X-ray high voltage generating device - Google Patents

X-ray high voltage generating device

Info

Publication number
JPS584299A
JPS584299A JP10266581A JP10266581A JPS584299A JP S584299 A JPS584299 A JP S584299A JP 10266581 A JP10266581 A JP 10266581A JP 10266581 A JP10266581 A JP 10266581A JP S584299 A JPS584299 A JP S584299A
Authority
JP
Japan
Prior art keywords
current
high voltage
stray capacitance
ray
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10266581A
Other languages
Japanese (ja)
Inventor
Takayuki Nishida
隆之 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP10266581A priority Critical patent/JPS584299A/en
Publication of JPS584299A publication Critical patent/JPS584299A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/265Measurements of current, voltage or power

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To eliminate the current which flows through a floating capacity and enable the accurate tube current measuring of the captioned device to be conducted, by improving in some degree an X-ray tube current measuring circuit. CONSTITUTION:A current measuring circuit is divided into two parts 2' and 2'', the node is connected to the earth 3, and the direction of the current which flows through a floating capacity shall be the direction of IC1A. The current which flows through the floating capacity of a negative potential side is IC1A= IC2B which is to be in the direction of IC2B and the direction of the current which flows through an X-ray tube current measuring circuits 2' and 2'' is reversed to the said direction, therefore when outputs of two measuring circuits standardized by the earthing point are mutually subtracted, the final output does not appear, and the X-ray tube current can be measured without being affected by the floating capacity.

Description

【発明の詳細な説明】 この発明は、X線高電圧装置、特にX@雷電流針調囮路
の精度の向上を計ったX線高電圧発生装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray high-voltage device, and more particularly to an X-ray high-voltage generator designed to improve the accuracy of an X@lightning current needle decoy path.

一般番ζ、X線高電圧装置においては0通常使用するX
線管電圧が最高150にマと非常に高いため。
General number ζ, 0 for X-ray high voltage equipment, normally used X
This is because the line tube voltage is extremely high, reaching a maximum of 150.

高電圧発生装置の二次巻線を2つに分けて電圧の中間点
(中性点)を接地して使用している。又X線管電流の計
測も通常この接地点に回路を設けて行なっている。
The secondary winding of the high voltage generator is divided into two parts and the midpoint (neutral point) of the voltage is grounded. In addition, measurement of the X-ray tube current is also normally carried out by providing a circuit at this ground point.

一方、高電圧変圧器は通常、鉄芯上に一次巻線シーオド
板、絶縁体、二次巻線の順に同軸上に巻かれており、−
次、二次巻線間のシールド板は安全のため接地端子に接
続され、高電圧変圧器全体は油浸タンク内に収納されて
いる。したがってその構造上、二次巻線は前記シールド
板あるいは鉄心継鉄部、収納タンク等の夫々の間に浮遊
容量を持つことになる。卸ち二次巻線対接地点間の浮遊
容量が存在する。
On the other hand, high-voltage transformers usually have a primary winding shield plate, an insulator, and a secondary winding coaxially wound around an iron core in this order.
Next, the shield plate between the secondary windings is connected to a ground terminal for safety, and the entire high voltage transformer is housed in an oil-immersed tank. Therefore, due to its structure, the secondary winding has stray capacitance between the shield plate, core yoke, storage tank, etc. There is stray capacitance between the wholesale secondary winding and the ground point.

このために、−次巻線に電圧を印加すると、この容量の
充放電電流が流れその値は例えば100にマ程度の使用
嘗電圧では約l鵬ム程度となる。
For this reason, when a voltage is applied to the -order winding, a charging/discharging current of this capacitance flows, and its value becomes about 1 μm at a working voltage of, for example, about 100 μm.

この電流は5通常単相装置、あるいは3相装置の場合で
高電圧側に平滑用コンデンサが接続されている装置では
、X**電流計測回路に流れ込むため、測定誤差となる
This current flows into the X** current measurement circuit in a single-phase device or a three-phase device in which a smoothing capacitor is connected to the high voltage side, resulting in a measurement error.

第1図は従来の単相装置の高電圧変圧器の二次巻線から
対接地浮遊容量に流れる電流の経路をも含めた高電圧発
生装置の回路図である。Wi1図においてimは高電圧
変圧器の一次巻線、1bは高電圧変圧器の分割された一
方の二次巻線、lcは高電圧変圧器の分割された他方の
二次巻線、2はX線雷電流計測回路(伺えば抵抗]、3
は接地。
FIG. 1 is a circuit diagram of a high voltage generator including a path of current flowing from a secondary winding of a high voltage transformer of a conventional single-phase device to a stray capacitance to ground. In diagram Wi1, im is the primary winding of the high voltage transformer, 1b is one divided secondary winding of the high voltage transformer, lc is the other divided secondary winding of the high voltage transformer, and 2 is the secondary winding of the high voltage transformer. X-ray lightning current measurement circuit (resistance if you ask), 3
is grounded.

4は二次巻線lbと対地間の浮遊容量、5は二次巻線1
cと対地間の浮遊容量、6は高電圧盤a!器。
4 is the stray capacitance between the secondary winding lb and ground, 5 is the secondary winding 1
The stray capacitance between c and ground, 6 is the high voltage panel a! vessel.

7はX線管である。7 is an X-ray tube.

1111ffiにおいで、浮遊容量4に流れる電流Ic
1はX線雷電流計測回路2には流れないが、浮遊容量5
に流れる電流Ic2はX線管電流計測回路2に流れるた
め、特に透視のような小電流負荷の場合には大きな誤差
となる。
At 1111ffi, the current Ic flowing through the stray capacitance 4
1 does not flow to the X-ray lightning current measurement circuit 2, but the stray capacitance 5
The current Ic2 that flows through the X-ray tube current measurement circuit 2 causes a large error, especially in the case of a small current load such as in fluoroscopy.

112図は従来の高電圧変圧器の出方側に高電圧コンデ
ンサを接続した3相X線装置において、高電圧変圧器の
二次巻線対接地間浮遊容量に流れ込む電流の経路をも含
めた高電圧発生装置の回路図である。高電圧コンデンサ
はX線管電圧のリップル低域の目的あるいは3極X線管
を用いたパルスシネ撮影装置用のX線高電圧装置等に用
いられることが多い。
Figure 112 shows a conventional three-phase X-ray system in which a high-voltage capacitor is connected to the output side of a high-voltage transformer, including the path of current flowing into the stray capacitance between the secondary winding of the high-voltage transformer and the ground. FIG. 2 is a circuit diagram of a high voltage generator. High-voltage capacitors are often used for the purpose of reducing ripples in the low range of X-ray tube voltage or in high-voltage X-ray devices for pulse cine imaging devices using triode X-ray tubes.

第2図番こおいて、1mは高電圧変圧器の一次巻線、I
bは高電圧変圧器の分割された二次巻線の1 !11 
e  l Cは高電圧変圧器の分割された他方の二次巻
線の他の1組、2はX線雷電流計測回路、3は接地、4
は高電圧変圧器二次巻線l b (b l相分と対地間
の浮遊容量、5は同1 c cI)1組分と対地間の浮
遊容量、6は高電圧盤11EII1.7はX線管。
In Figure 2, 1m is the primary winding of the high voltage transformer, I
b is 1 of the divided secondary winding of the high voltage transformer! 11
e l C is another set of the other divided secondary winding of the high voltage transformer, 2 is an X-ray lightning current measurement circuit, 3 is grounding, 4
is the stray capacitance between the high voltage transformer secondary winding l b (bl phase and ground, 5 is the same 1 c cI) and the ground, 6 is the high voltage board 11EII1.7 is X wire tube.

8.9は夫々高電圧コンデンサである。この回路におい
て、浮遊容量4に流れる電@Ic1a 、Xcsbは接
地点の関係で電流計測側路2には流れないが。
8.9 are high voltage capacitors, respectively. In this circuit, the electric current @Ic1a and Xcsb flowing through the stray capacitance 4 does not flow into the current measurement side path 2 due to the grounding point.

浮遊容量5に流れる電流Ic1a、Ic1bは電流計測
   ゛回路2に流れる。この場合2組の高電圧変圧器
二次巻線の出力電圧は夫々独立して全波整流されている
ため、浮遊容量に流れる電流は電源電圧の極性により流
れる経路が異なる。又、X**電流計測回路に流れるX
線管電流(負荷電流)は直流であるが、浮遊容量全通し
て流ねる電流は交流となる。以上の説明における浮遊容
量がいかに存在するかを模式的に示したのが@3図であ
る。183図では3相高電圧変圧器の1組分の巻線構造
の一例が示されている。図中、l≦、llは高電圧変圧
器の一次巻線 、g、l、1は同二次巻線、12’、1
3’−次、二次巻線間のシールド板であり、1組分にこ
れらが2組づつあるのは高電圧側で対地に対して正電位
側巻線と負電位側巻線を提供するためである。10は鉄
芯、11は収納タンクを示している。4.4.4は、二
次巻線1bと収納タンク11゜シールド板l感および鉄
芯lOとの夫々の間に生ずる浮遊容量、 5.5.5は
二次巻線lJと収納タンクll、シールド板15および
鉄芯lOとの夫々の聞に生ずる浮遊容量を示している。
The currents Ic1a and Ic1b flowing through the stray capacitance 5 flow into the current measurement circuit 2. In this case, since the output voltages of the two sets of high voltage transformer secondary windings are each independently full-wave rectified, the current flowing through the stray capacitance takes different paths depending on the polarity of the power supply voltage. Also, X**X flowing through the current measurement circuit
The tube current (load current) is direct current, but the current flowing through all stray capacitances is alternating current. Diagram @3 schematically shows how the stray capacitance exists in the above explanation. FIG. 183 shows an example of a winding structure for one set of a three-phase high voltage transformer. In the figure, l≦, ll is the primary winding of the high voltage transformer, g, l, 1 are the secondary windings of the same, 12', 1
3' - This is a shield plate between the primary and secondary windings, and the reason why there are two sets of these in each set is to provide a positive potential side winding and a negative potential side winding to the ground on the high voltage side. It's for a reason. 10 indicates an iron core, and 11 indicates a storage tank. 4.4.4 is the stray capacitance generated between the secondary winding 1b and the storage tank 11゜shield plate 1 and the iron core IO, and 5.5.5 is the stray capacity between the secondary winding 1b and the storage tank 11. , shows the stray capacitance generated between the shield plate 15 and the iron core lO.

この図から明らかなように、浮遊容量は二次巻線と接地
導電体との間に広範囲に存在し、これを高電圧変圧器の
構造上の改良で取除くことはほとんど不可能である。通
常これらの浮遊容量は数百pF程度であるが、に次巻線
と対接地導電体の組立構造によって異なり、°且つ浮遊
容量4.4.4は夫々異なった値を有している。
As is clear from this figure, stray capacitance exists extensively between the secondary winding and the ground conductor, and it is almost impossible to remove it with structural improvements to high voltage transformers. Normally, these stray capacitances are on the order of several hundred pF, but they vary depending on the assembly structure of the secondary winding and the ground conductor, and the stray capacitances 4, 4, and 4 have different values.

又、X線雷電流計測回路に浮遊容量を経路して流れる電
流は高電圧コンデンサの容量値を大きくすればする程そ
の影響が大きくなり、従って管電圧の安定化の要求する
方向とは矛盾することになる。そして、X線写真撮影に
おいて特に短時間撮影での管電流最大値を測定する場合
には、この誤差が非常に問題となる。
Additionally, the larger the capacitance value of the high-voltage capacitor, the greater the influence of the current flowing through the stray capacitance in the X-ray lightning current measuring circuit, which is inconsistent with the direction required to stabilize the tube voltage. It turns out. This error becomes a serious problem in X-ray photography, especially when measuring the maximum tube current value during short-time photography.

この発明は以上に鑑み、xmtm流計測回路の若干の改
良により、前記浮遊容量に流れる電流がX線雷電流計測
回路では除去出来、従って正確な雷電流計測を可能にし
たX線高電圧発生装置を提供するものである。
In view of the above, the present invention is an X-ray high voltage generator that makes it possible to remove the current flowing through the stray capacitance in the X-ray lightning current measuring circuit by slightly improving the xmtm current measuring circuit, thus making it possible to accurately measure lightning current. It provides:

次にこの発明を第4図の実施例について説明する。#!
4図はこの発明を実施した3相X線装置の電圧発生回路
を示すもので、高電圧変圧器の二次巻線対接地間浮遊容
量に#Iれ込む電流経路もあわせて示されており、また
第2図と同一構成部品には同一符号が付されている。
Next, the present invention will be explained with reference to the embodiment shown in FIG. #!
Figure 4 shows the voltage generation circuit of a three-phase X-ray device embodying this invention, and also shows the current path flowing into the stray capacitance between the secondary winding and ground of the high voltage transformer. , and the same components as in FIG. 2 are given the same reference numerals.

112図と異なるところは、電流計測回路がi。The difference from Figure 112 is that the current measurement circuit is i.

iの2つに分割されており、その接続点が接地3に接続
されていることである。
i, and its connection point is connected to ground 3.

上記構成において、今正電位側二次巻線の1相に注目し
、電圧極性を示す・印極性に電圧が発生しているとする
と、浮遊容量4を流れる電流はICI鳳の方向となる。
In the above configuration, if we focus on one phase of the secondary winding on the positive potential side and assume that a voltage is generated in the positive polarity indicating the voltage polarity, the current flowing through the stray capacitance 4 will be in the ICI direction.

この時の負電位側の対応する相に注目すれば浮遊容量5
に流れる電流はIc!bの方向となる。
If we pay attention to the corresponding phase on the negative potential side at this time, the stray capacitance 5
The current flowing through is Ic! The direction is b.

ところでこの種X線装置において通常平滑用に!’用す
る高電圧コンデンサは2〜1/I OμF程度であり、
浮遊容量と比較すると10”〜l O’倍程度の差があ
る。従って浮遊容量を流れる電流は、電圧の極性によっ
て経路を異にし、方向も変化する交流成分であるがその
最大値はほとんど変わらず、はぼ完全な電流分となる。
By the way, this kind of X-ray equipment is usually used for smoothing! 'The high voltage capacitor used is about 2 to 1/I OμF,
Compared to stray capacitance, there is a difference of about 10" to lO' times. Therefore, the current flowing through stray capacitance is an alternating current component that takes different paths and directions depending on the polarity of the voltage, but its maximum value hardly changes. This is almost the complete amount of current.

即ち、高電圧コンデンサを通る経路においても、このコ
ンデンサの容量が浮遊容量に比べて格段に大きく電流値
はほとんど浮遊容量値にて決まることになる。
That is, even in a path passing through a high voltage capacitor, the capacitance of this capacitor is much larger than the stray capacitance, and the current value is almost determined by the stray capacitance value.

従って、  Icl畠+Ic!bであり、且つこれらの
X線管電流計測回路2.2に流れる方向は逆になるので
接地点を基準とした2つの計測回路の出力を減算すれば
、相互に打消し合い、最終出力には現われなくなる。こ
のことは電源電圧の極性が反転した場合も同様にIc5
b + Icxaであるので減算回路の出力ではこの電
流分は相殺される。一方実際のX線管電流ILは、2つ
の計測■略2,2を同方向に流れるので上記減算の結果
は和として現われ。
Therefore, Icl Hatake+Ic! b, and the directions of the current flowing into these X-ray tube current measurement circuits 2 and 2 are opposite, so if you subtract the outputs of the two measurement circuits with the ground point as a reference, they will cancel each other out, and the final output will be will no longer appear. This also applies to Ic5 when the polarity of the power supply voltage is reversed.
Since b + Icxa, this current is canceled out at the output of the subtraction circuit. On the other hand, since the actual X-ray tube current IL flows in the same direction through the two measurements, the result of the above subtraction appears as a sum.

必要なXII雷電流ILのみが採り出せる仁とになる。Only the necessary XII lightning current IL can be extracted.

(但し、実際の計測回路は図示していない。2′。(However, the actual measurement circuit is not shown. 2'.

iは検出部のみを示すことになる) 従って浮遊容量に影響されることなくxmw電流を計測
できることになる。
(i indicates only the detection part) Therefore, the xmw current can be measured without being affected by stray capacitance.

以上の説明では二次巻線と接地導体との間に広範囲に存
在する浮遊容量が全て等しい値を有し。
In the above description, the stray capacitances that exist in a wide range between the secondary winding and the ground conductor all have the same value.

浮遊容量電流分が相殺されるものとして説明した。  
  ・しかしながら、94図での浮遊容量4.5は第3
図で言えば、4.4.4.および5.5.5の夫々の総
和として表現されているもので、厳密には分離して考え
ねばならない。
The explanation has been made assuming that the stray capacitance current is canceled out.
・However, the stray capacitance of 4.5 in Figure 94 is the third
In the diagram, 4.4.4. and 5.5.5, and strictly speaking, they must be considered separately.

また、高電圧変圧器の構造上第3図に示す浮遊量t4′
・gあるいは4・5.4・5は夫々等しく作ることが出
来るが 、+に対するgあるいはガに対する6等は等し
く製作することは実質上困難である。
Also, due to the structure of the high voltage transformer, the stray amount t4' shown in FIG.
・Although g or 4, 5, 4, and 5 can be made equally, it is practically difficult to make g for + or 6 for Ga, etc. equally.

したがって浮遊容量を分離して考えると第4図において
第3図に示す正電位側浮遊量4.4.4と負荷電位側浮
遊容量5.5.5とに流れる電流は互いに打消し合うこ
とになる。この場合、atr述したように4′と斥ある
いは4と5との容量値は等しくなく、又等しく作ること
は難かしいので浮遊容量電流分は完全に打消されないこ
とになる。
Therefore, if we consider the stray capacitance separately, the currents flowing through the positive potential side floating amount 4.4.4 and the load potential side floating capacitance 5.5.5 shown in FIG. 3 in FIG. 4 cancel each other out. Become. In this case, as mentioned above, the capacitance values of 4' and 4 and 5 are not equal, and it is difficult to make them equal, so the stray capacitance current will not be completely canceled.

その結果l!4図の回路構成ではli2図の従来の装置
に比し浮遊容量の影響は著しるしく改善されるものの、
浮遊容量電流分を完全に相殺することができず、浮遊容
量の差による僅かな電流が電流計測囲路に流1その分課
差となる。
The result is l! Although the circuit configuration shown in Figure 4 significantly improves the effect of stray capacitance compared to the conventional device shown in Figure li2,
The stray capacitance current cannot be completely canceled out, and a small amount of current due to the difference in stray capacitance flows through the current measurement circuit, resulting in a difference in current.

第5図はこの点に鑑み浮遊容量電流分を完全に相殺でき
るようにした他の実施例の構成を示すもめで、1高電圧
変圧器の分割された二次巻線の正電位側巻線と負電位側
巻線の発生電圧極性が互に逆極性となる巻線構造にした
もので、他の構成は第4図と何等変わることはない。
In view of this point, Figure 5 shows the configuration of another embodiment in which the stray capacitance current can be completely canceled out. The winding structure is such that the generated voltage polarities of the windings on the negative potential side are opposite to each other, and the other configuration is the same as that of FIG. 4.

上記構成によりIcl員=Ic!b(Ic1b=Icz
i )となり、またその方向も逆であるので、接地点を
基準とした2つの電流計測回路の出力を減算すれば相互
に打消し合い、X線管電流のみが計測されることになる
With the above configuration, Icl member = Ic! b(Ic1b=Icz
i ), and the directions are also opposite, so if the outputs of the two current measurement circuits with respect to the ground point are subtracted, they will cancel each other out, and only the X-ray tube current will be measured.

y7お、第4図の実施例では分割された二次巻線を同一
方向に巻回し6発生電圧極性が同一である変圧器を用い
て二次巻線の最上端の点、即ち93図における高電圧整
流器群の正電位側電位に接続されている二次巻線lbに
対するA点と、高電圧整流器群の負電位に接続されてい
るB点間電圧が低く、一般に使用されている高電圧変圧
器をそのまま使用できる利点がある。
y7 In the embodiment shown in Fig. 4, the divided secondary windings are wound in the same direction, and a transformer with the same generated voltage polarity is used. The voltage between point A to the secondary winding lb, which is connected to the positive potential side of the high voltage rectifier group, and point B, which is connected to the negative potential of the high voltage rectifier group, is low, making it a commonly used high voltage. There is an advantage that the transformer can be used as is.

なお、第4図、第5図の実施例では高電圧変圧器の巻線
結線方法をΔIΔ−Δとしたが、こfLに限定されず0
例えばΔ// Y −Y結線でもよく、更に3相変圧器
結線にて通常使用される種々の結線法Y〃Δ−Δ、 Y
//Y−Y  においてもこあ発明は適用できるもので
ある。
In addition, in the embodiments shown in FIGS. 4 and 5, the winding connection method of the high voltage transformer is ΔIΔ−Δ, but this is not limited to fL.
For example, Δ//Y-Y connection may be used, and various wiring methods commonly used in three-phase transformer connection Y〃Δ-Δ, Y
This invention can also be applied to //YY.

また、Δ/lΔ−YあるいはY//Δ−Yの組合であっ
ても、よい。この場合正電位側二次巻線と負電位側二次
巻線との間に30°の位相差が存在するので。
Alternatively, a combination of Δ/lΔ-Y or Y//Δ-Y may be used. In this case, there is a phase difference of 30° between the positive potential side secondary winding and the negative potential side secondary winding.

浮遊容量電流分を完全に打消し合うことはなくなるが、
第2図の従来装置に較べ1ば格段に浮遊容量による計測
誤差を低減できることは明白である。
Although the stray capacitance current will not completely cancel each other out,
It is clear that measurement errors due to stray capacitance can be significantly reduced compared to the conventional device shown in FIG.

又、単相装置においても第1図に示す方法ではなく正電
位側、負電位側二次巻線に夫々全波整流回路を設け、そ
の出力が加算されるように直列接続し、平滑用高電圧コ
ンデンサを接続した場合には本発明が適用出来るもので
ある。
Also, in a single-phase device, instead of using the method shown in Figure 1, a full-wave rectifier circuit is provided for the positive potential side and negative potential side secondary windings, and the outputs are connected in series so that the outputs are added. The present invention can be applied when a voltage capacitor is connected.

以上詳述したようにこの発明は簡単な構成で。As detailed above, this invention has a simple configuration.

浮遊容量に影響されることなく、X線管電流を正確に計
測できるX線高電圧発生装置を提供できるものである。
It is possible to provide an X-ray high voltage generator that can accurately measure X-ray tube current without being affected by stray capacitance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、従来のX線装置の直電圧発生回路を
示す図、第3r!gは、3相高電圧変圧器の1相分巻線
構造を示す略図、第4図は、この発明の一実施例の構成
を示す回路図、95図は他の実施例の構成を示す回路図
である。 la: 1次巻線t’lb、le:2次巻線2、2 :
 X線管電流計測回路、3:接地。 4.5:浮遊容量、6:高電圧整流器、7zXli管。 特許出願人 株式会帖島津製作所 代理人 弁理士 武 石 端 彦1’J1.:L 占−
’j”慕/図 訃2囚 冶3図 y+。
Figures 1 and 2 are diagrams showing the direct voltage generation circuit of a conventional X-ray apparatus, and Figure 3r! g is a schematic diagram showing a one-phase winding structure of a three-phase high voltage transformer, FIG. 4 is a circuit diagram showing the configuration of one embodiment of the present invention, and FIG. 95 is a circuit diagram showing the configuration of another embodiment. It is a diagram. la: Primary winding t'lb, le: Secondary winding 2, 2:
X-ray tube current measurement circuit, 3: Ground. 4.5: Stray capacitance, 6: High voltage rectifier, 7zXli tube. Patent applicant Shimadzu Corporation Representative Patent attorney Hiko Takeishi 1'J1. :L Fortune-
'j' 楕/囃2 凯 3 fig. y+.

Claims (1)

【特許請求の範囲】 閏にそれぞれ平滑用コンデンサを接続してなる高電圧発
生装置において前記負荷電流計測回路を2つに分割し、
その中間点を接地したことを特徴とするX線高電圧発生
装置。 (2) 2つに分けられた二次巻線が、互いKその電圧
極性が逆極性となる巻線構造を有するものであることを
特徴とする特許請求の範囲第1項記載のX線高電圧発生
装置。
[Claims] In a high voltage generator in which a smoothing capacitor is connected to each jumper, the load current measuring circuit is divided into two,
An X-ray high voltage generator characterized in that its intermediate point is grounded. (2) The X-ray height according to claim 1, characterized in that the two divided secondary windings have a winding structure in which the voltage polarities thereof are opposite to each other. Voltage generator.
JP10266581A 1981-06-30 1981-06-30 X-ray high voltage generating device Pending JPS584299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10266581A JPS584299A (en) 1981-06-30 1981-06-30 X-ray high voltage generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10266581A JPS584299A (en) 1981-06-30 1981-06-30 X-ray high voltage generating device

Publications (1)

Publication Number Publication Date
JPS584299A true JPS584299A (en) 1983-01-11

Family

ID=14333521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10266581A Pending JPS584299A (en) 1981-06-30 1981-06-30 X-ray high voltage generating device

Country Status (1)

Country Link
JP (1) JPS584299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639446A (en) * 1979-09-07 1981-04-15 Toyobo Co Ltd Method for detecting reaction progress by using infrared ray spectroscope
JPS61271798A (en) * 1985-05-27 1986-12-02 Toshiba Corp X-ray device
JPH0626058A (en) * 1992-06-22 1994-02-01 Kyowa Sekkei:Kk Method of laying nonwoven fabric which can be used for various processes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639446A (en) * 1979-09-07 1981-04-15 Toyobo Co Ltd Method for detecting reaction progress by using infrared ray spectroscope
JPS61271798A (en) * 1985-05-27 1986-12-02 Toshiba Corp X-ray device
JPH0626058A (en) * 1992-06-22 1994-02-01 Kyowa Sekkei:Kk Method of laying nonwoven fabric which can be used for various processes

Similar Documents

Publication Publication Date Title
Kojovic Rogowski coils suit relay protection and measurement~ of power systems\
Douglass Potential transformer accuracy at 60Hz voltages above and below rating and at frequencies above 60 Hz
JPS584299A (en) X-ray high voltage generating device
Lloyd et al. Methods used in investigating corona loss by means of the cathode ray oscillograph
Chubb et al. The calibration of the sphere gap voltmeter
US3293497A (en) Ground fault detector
JPH09318696A (en) Method and device for diagnosing insulation deterioration of active line power cable
US1571224A (en) Measuring device
EP0309254B1 (en) Apparatus and process for deriving an AC voltage from a DC voltage including detecting direct current magnetic flux deflections of an electrical transformer
US2864037A (en) Fault detector for polyphase circuits
JP2552163B2 (en) DC high voltage generator with high voltage floating charging circuit
JPH0425659Y2 (en)
DE2108606C3 (en) Earth fault protection device for electrical devices with star-connected windings
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JPS59190672A (en) Measurement of corona for electric equipment
US1961823A (en) Electric measuring system
JP2802651B2 (en) Hot wire insulation resistance measurement method
US1557038A (en) Power-factor meter
DE911867C (en) Peak voltmeter with capacitor reloading for the measurement of one-off processes
JPH0428065Y2 (en)
DE950576C (en) Direct reading electrical frequency meter
Weller 132-kv. Shielded Potentiometer for Determining the Accuracy of Potential Transformers
US1535624A (en) Electrical system
Kusters Current comparators-a new class of transformer-like devices
JP3292562B2 (en) DC high voltage generator