JPS584298B2 - Delayed fracture test method and device - Google Patents

Delayed fracture test method and device

Info

Publication number
JPS584298B2
JPS584298B2 JP14458978A JP14458978A JPS584298B2 JP S584298 B2 JPS584298 B2 JP S584298B2 JP 14458978 A JP14458978 A JP 14458978A JP 14458978 A JP14458978 A JP 14458978A JP S584298 B2 JPS584298 B2 JP S584298B2
Authority
JP
Japan
Prior art keywords
test
cell
test liquid
test piece
delayed fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14458978A
Other languages
Japanese (ja)
Other versions
JPS5570731A (en
Inventor
宮本勝良
小野昭紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14458978A priority Critical patent/JPS584298B2/en
Publication of JPS5570731A publication Critical patent/JPS5570731A/en
Publication of JPS584298B2 publication Critical patent/JPS584298B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は亀裂つき試験片を用いる片持梁曲げ重錘方式あ
るいは引張り方式により高張力鋼及び高張力合金等の金
属材料の遅れ破壊強度を求める場合、試験液の組成及び
pHは常時一定に保ちながら遅れ破壊強度を測定する試
験方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION When determining the delayed fracture strength of metal materials such as high-strength steel and high-strength alloys using a cantilever bending weight method or a tensile method using a test piece with cracks, the present invention provides a method for determining the composition of a test solution. The present invention relates to a test method and apparatus for measuring delayed fracture strength while keeping the pH constant at all times.

近年、鋼構造物の軽量化の要求が強まり、それに伴ない
鋼の高張力化が必要になっている。
In recent years, there has been an increasing demand for lighter steel structures, and as a result, it has become necessary to increase the tensile strength of steel.

しかしながら、鋼の高張力化においては、製造時あるい
は使用中の環境から侵入する水素によって遅れ破壊を発
生する問題がある。
However, in increasing the tensile strength of steel, there is a problem in that delayed fracture occurs due to hydrogen entering from the environment during manufacturing or use.

遅れ破壊は、鋼などの金属材料が静荷重下で一定時間経
過したのち、外見上はほとんど塑性変形を伴なわずに突
然脆性的に破壊する現象で、見かけ上は突然破壊したよ
うに見えるが実際は材料の切欠き、疲労亀裂、腐食ピッ
ト等の応力集中部から静的荷重負荷中にクラツクが発生
し、時間とともに進行し、最終に急速破壊するものであ
る。
Delayed fracture is a phenomenon in which metal materials such as steel suddenly break brittle with almost no apparent plastic deformation after a certain period of time has passed under static load. In reality, cracks occur during static loading from stress concentration areas such as notches, fatigue cracks, and corrosion pits in the material, progress over time, and eventually rapidly break.

この金属材料の遅れ破壊強度の測定試験は、その材料の
使用条件下で試験を実施するのが望ましいが非常に長期
間を要し実際的でないために、一般に相対的な遅れ破壊
挙動の比較による促進試験方法が採用されている。
Although it is desirable to conduct tests to measure the delayed fracture strength of metal materials under the conditions in which the material is used, it requires a very long period of time and is therefore impractical, so it is generally performed by comparing the relative delayed fracture behavior. An accelerated testing method is used.

現在、採用されている試験方法としては、ノッチ、疲労
亀裂等の亀裂つき角棒あるいは丸棒の試験片を用いる片
持梁曲げ重錘方式及び亀裂つき丸棒試験片を用いる引張
り重錘方式とがある。
The currently adopted test methods are the cantilever bending weight method using a rectangular bar or round bar test piece with cracks such as notches and fatigue cracks, and the tensile weight method using a round bar test piece with cracks. There is.

これらの方式は試験片に対する静的負荷荷重のかけ方に
よる区別によるものであるが、遅れ破壊試験においては
試験片に対する試験環境がもつとも重要な要件である。
These methods are distinguished by the way static loads are applied to the test piece, but in delayed fracture testing, the test environment for the test piece is also an important requirement.

高張力鋼などの金属材料が使用される自然条件下で試験
を行なうのがもつとも理想的であるが、長期間を要する
ために、従来一般的には第1図に示すような試験方式に
よって、試験片1を試験液を満たしたセル2内を貫通さ
せて試験片への水素の侵入を促進させろ方法を採用して
いる。
Although it would be ideal to conduct the test under the natural conditions in which metal materials such as high-strength steel are used, it requires a long period of time, so conventionally, the test method shown in Figure 1 was generally used. A method is adopted in which a test piece 1 is passed through a cell 2 filled with a test liquid to promote hydrogen penetration into the test piece.

すなわち、従来は試験片を一定容量の試験溶液中に浸漬
した状態の試験環境下で荷重3をかけて遅れ破壊強度を
測定する方法を採用していた。
That is, conventionally, a method has been adopted in which the delayed fracture strength is measured by applying a load of 3 under a test environment in which a test piece is immersed in a constant volume of a test solution.

このときに使用する試験液としては、一般に0.1N塩
酸や3〜3.5%塩化ナトリウム溶液を用いているが、
この試験方法においては、試験液の組成やpHが測定結
果に大きな影響を与える問題がある。
The test solution used at this time is generally 0.1N hydrochloric acid or a 3-3.5% sodium chloride solution, but
This test method has a problem in that the composition and pH of the test solution have a large effect on the measurement results.

従って、同一形状の試験片で、同一組成の試験液を用い
て試験を行なっているが、試験には通常3週間程度の長
期間を要することもあって試験液による試験片の溶解が
進行し、試験液のpHが高くなり、また試験片から鉄な
どが溶け出すことなどによって、試験液のpH及び組成
の変動を防止することは困難であった。
Therefore, tests are carried out using test specimens of the same shape and test liquid of the same composition, but the test usually takes a long period of time, about three weeks, and the dissolution of the test specimen by the test liquid progresses. However, it has been difficult to prevent fluctuations in the pH and composition of the test solution due to the increased pH of the test solution and the dissolution of iron and the like from the test piece.

とくに試験液のpHが4付近より上昇すると試験片への
水素の侵入が著しく少くなることが知られており、試験
液のpHを一定に維持することは遅れ破壊試験において
非常に重要である。
In particular, it is known that when the pH of the test solution rises above about 4, the penetration of hydrogen into the test piece is significantly reduced, and maintaining the pH of the test solution constant is very important in delayed fracture tests.

これらの理由から材料試験関係においては、試験液組成
やpHを簡単な方法によって安定に維持しながら、高張
力鋼などの金属材料の遅れ破壊強度を測定できる試験方
法及び装置の開発が強く要請されていた。
For these reasons, in the field of materials testing, there is a strong demand for the development of testing methods and equipment that can measure the delayed fracture strength of metal materials such as high-strength steel while maintaining a stable test solution composition and pH using a simple method. was.

本発明は以上説明したような目的に基ずき、試験液中に
溶解してくる鉄イオン等の金属イオンをイオン交換樹脂
で除去し、ついで酸性溶液を添加して、試験液を循環し
ながらpHを一定に保持するよう自動的に制御すること
を特徴とする簡易で実用的な遅れ破壊試験方法及び装置
を新規に提供するものである。
Based on the purpose explained above, the present invention removes metal ions such as iron ions dissolved in the test liquid using an ion exchange resin, then adds an acidic solution and circulates the test liquid. The purpose of the present invention is to provide a new simple and practical delayed fracture test method and apparatus, which are characterized by automatically controlling the pH to be kept constant.

第2図は本発明の実施例装置の説明図である。FIG. 2 is an explanatory diagram of an apparatus according to an embodiment of the present invention.

1は試験片、2は試験片を試験液中に浸漬するセルであ
り、この部分の遅れ破壊試験装置全体に対する位置は第
1図に、またこの部分の構造の詳細については第3図に
示した。
1 is a test piece, and 2 is a cell in which the test piece is immersed in the test liquid. The position of this part in relation to the entire delayed fracture test apparatus is shown in Figure 1, and the details of the structure of this part are shown in Figure 3. Ta.

4は試験液をセルに供給するための細管、5はセルから
発生する水素ガス等の排出管、6は試験液がセルから流
れ出る排出管、7は試験液のセルへの充填及び排出の流
路を切り替えるコック、8は試験液のセルへの流入量を
一定にするための流量調節バルブ9付きの流量計、10
は試験液タンク、11は試験液中の溶存酸素を追い出す
ためのアルゴンガス、窒素ガス等の不活性ガス吹き込み
管、12は試験液中の金属イオン等を除去するためのキ
レート樹脂等の充填剤13を充填した除去槽、14は攪
拌機18pH測定電極19を備えたpH調整槽、15は
酸性溶液タンク、20はpHメーター、21はpHコン
トローラー、22は試験液を循環するためのポンプであ
る。
4 is a thin tube for supplying the test liquid to the cell, 5 is a discharge pipe for hydrogen gas etc. generated from the cell, 6 is a discharge pipe from which the test liquid flows out from the cell, and 7 is a flow for filling and discharging the test liquid into the cell. A cock for switching the flow, 8, a flow meter with a flow rate adjustment valve 9 for keeping the amount of test liquid flowing into the cell constant; 10;
11 is a test liquid tank, 11 is an inert gas injection pipe such as argon gas or nitrogen gas for expelling dissolved oxygen in the test liquid, and 12 is a filler such as chelate resin for removing metal ions, etc. from the test liquid. 13 is a removal tank filled with 13, 14 is a pH adjustment tank equipped with a stirrer 18 and a pH measurement electrode 19, 15 is an acidic solution tank, 20 is a pH meter, 21 is a pH controller, and 22 is a pump for circulating the test liquid.

試験液は遅れ破壊試験を実施中には、第2図の矢印の流
路で循環され、その間に金属イオンの除去及びpHの一
定値の維持が自動的になされる。
During the delayed fracture test, the test solution is circulated in the flow path indicated by the arrow in FIG. 2, during which metal ions are automatically removed and the pH is maintained at a constant value.

pH調整槽14中で一定pHに調整された試験液はポン
プ22によってセルよりも高い位置に設置した試験液タ
ンク10に移送し、このタンク中の試験液を流量計8を
介して一定流量でセル2に供給する。
The test liquid adjusted to a constant pH in the pH adjustment tank 14 is transferred by a pump 22 to a test liquid tank 10 installed at a higher position than the cell, and the test liquid in this tank is fed at a constant flow rate through a flow meter 8. Supply to cell 2.

第2図は図面をわかりやすくするためにセル2を1個だ
け示してあるが、遅れ破壊試験は通常1試料について約
3週間程度の長期間を要するために、一般的には第1図
に示すような試験装置を数台並べて複数の試験片を同時
に並行して試験を実施する。
Figure 2 shows only one cell 2 to make the drawing easier to understand, but since delayed fracture tests usually require a long period of time of about 3 weeks for one sample, generally Figure 1 is Several test devices as shown are lined up and multiple test pieces are tested in parallel at the same time.

従ってセルの箇数は通常複数であり、試験液タンク10
から試験液供給管を分岐して各流量計を通って各々のセ
ルに試験液を供給するようにしてある。
Therefore, the number of cells is usually plural, and the test liquid tank 10
A test liquid supply pipe is branched from the flowmeter, and the test liquid is supplied to each cell through each flowmeter.

セル2が1個の場合には、ポンプ22の流量を一定にし
、タンク10や流量計8を用いずにセル2に直接試験液
を供給する方法がとれる。
When there is only one cell 2, a method can be used in which the flow rate of the pump 22 is kept constant and the test liquid is directly supplied to the cell 2 without using the tank 10 or the flow meter 8.

試験液のセル2への供給は、セル内の試験液のpH及び
金属イオン濃度等の組成の変動が試験に影響を与えない
範囲の流量で供給すればよい訳であるが、内容積が約2
00mlのセルを使用した場合、試験液の流量は約1m
l/min程度の比較的少ない流量で供給すればよい。
The test liquid can be supplied to the cell 2 at a flow rate that does not affect the test due to changes in the composition such as the pH and metal ion concentration of the test liquid in the cell, but if the internal volume is approx. 2
When using a 00ml cell, the flow rate of the test solution is approximately 1m
It is sufficient to supply the gas at a relatively low flow rate of about 1/min.

このように試験液の流量を少なくすることは、装置全体
を小型化するため及び製作上有効なことであるが、一方
、セル内の試験液の拡散が悪くなり、試験を一定条件下
で実施できなくなる問題がある。
Reducing the flow rate of the test liquid in this way is effective for downsizing the entire device and for manufacturing purposes, but on the other hand, it reduces the diffusion of the test liquid within the cell, making it difficult to conduct tests under certain conditions. There is a problem that makes it impossible.

着色液を用いて試験液の供給及び排出位置を種々検討し
たが、試験液を試験片につけられている亀裂に対して垂
直方向から供給することが重要であることがわかった。
We investigated various supply and discharge positions of the test liquid using a colored liquid, and found that it is important to supply the test liquid from a direction perpendicular to the crack in the test piece.

すなわち、第3図に示すような角形試験片の亀裂部23
に対して、4の試験液導入管を通して亀裂部に垂直に試
験液を供給する。
That is, the crack part 23 of the square test piece as shown in FIG.
In contrast, the test liquid is supplied perpendicularly to the crack through the test liquid introduction pipe No. 4.

一方試験片表面と試験液との反応により水素ガスが発生
し、一部は試験片内に侵入するが大部分はセル上部に上
昇して来る。
On the other hand, hydrogen gas is generated due to the reaction between the surface of the test piece and the test liquid, and although some of it enters the test piece, most of it rises to the top of the cell.

これを管5を通してセル外に排出する。This is discharged outside the cell through the pipe 5.

第3図において試験液を管6から供給した場合、亀裂部
は試験液の流れが停滞した状態になる。
When the test liquid is supplied from the tube 6 in FIG. 3, the flow of the test liquid is stagnant at the cracked portion.

これは着色液を添加するとはっきりと判り、亀裂部の液
の交換は不完全となる。
This becomes obvious when colored liquid is added, and the exchange of liquid in the cracks becomes incomplete.

すなわち、亀裂部に常に新らしい試験液を供給するには
、試験液を亀裂部に対して垂直方向から供給する方法が
最も適している。
That is, in order to constantly supply a new test liquid to the crack, the most suitable method is to supply the test liquid from a direction perpendicular to the crack.

第1図に示すように角形試験片を用いる片持梁曲げ重錘
方式の場合には試験片の亀裂部は上側に位置するために
、試験液は上述したようにセルの上方から下方に流すの
が最も適している。
As shown in Figure 1, in the case of the cantilever bending weight method using a rectangular test piece, the crack part of the test piece is located on the upper side, so the test liquid is flowed from the top to the bottom of the cell as described above. is the most suitable.

この理由と同様に、円周に亀裂を設けた丸棒を試験片と
する引張り重錘方式の遅れ破壊試験装置においては、試
験液は丸棒の円周にきぎみ込んだ亀裂部に対して垂直方
向、すなわち横方向から試験液を供給するのが効果的で
ある。
Similar to this reason, in a tensile weight type delayed fracture testing device that uses a round bar with a crack on its circumference as a test specimen, the test liquid is applied to the cracked part of the round bar's circumference. It is effective to supply the test liquid from the vertical direction, ie from the side.

セル2から排出された試験液は金属イオン除去槽12に
入る。
The test liquid discharged from the cell 2 enters the metal ion removal tank 12.

槽12にはキレート樹脂、陰イオン交換樹脂あるいは陽
イオン交換樹脂等の充填剤を充填してある。
The tank 12 is filled with a filler such as a chelate resin, an anion exchange resin, or a cation exchange resin.

IN酢酸ナトリウム溶液200ml、1N塩酸溶液18
5ml及び水615mlを混合して調製したpH3.5
の試験液を1ml/minの流量で供給し、試験片には
10×10×50ml(表面積22cm2)の高張力鋼
の角棒を用いた場合、セルから排出される試験液中には
、約65μg/mlの鉄が溶け出していた。
200ml of IN sodium acetate solution, 18ml of 1N hydrochloric acid solution
pH 3.5 prepared by mixing 5 ml and 615 ml of water
When the test liquid is supplied at a flow rate of 1 ml/min and a 10 x 10 x 50 ml (surface area 22 cm2) square rod of high-tensile steel is used as the test piece, the test liquid discharged from the cell contains approximately 65 μg/ml of iron was leached out.

この試験液をキレート樹脂を充填した槽12に通した場
合、鉄イオンはすべてキレ−ト樹脂に吸着捕捉され、槽
12から排出される試験液中からは鉄イオン等の金属イ
オンは除去されていた。
When this test solution is passed through the tank 12 filled with chelate resin, all iron ions are adsorbed and captured by the chelate resin, and metal ions such as iron ions are not removed from the test solution discharged from the tank 12. Ta.

キレート樹脂はpH約3以上の溶液中の金属イオンを溶
易に吸着補捉し、試験液中のその他のイオンであるナト
リウムイオンや塩素イオンを捕捉することはないので、
試験液組成はほとんど変化することはない。
Chelate resin easily adsorbs and captures metal ions in solutions with a pH of approximately 3 or higher, and does not capture other ions such as sodium ions and chloride ions in the test solution.
The test liquid composition hardly changes.

キレート樹脂はNa型とH型の両方とも用いることがで
きるが、Na型の方が一般に金属イオンの吸着捕捉力が
強い。
Both Na-type and H-type chelate resins can be used, but the Na-type generally has a stronger ability to adsorb and capture metal ions.

また、試験液に0.1N塩酸のように強酸性のものを用
いる場合にはキレート樹脂は吸着捕捉性態が低下し不適
当であるので陰イオン交換樹脂を用いる方が適当である
Furthermore, when a strong acid such as 0.1N hydrochloric acid is used as the test liquid, a chelate resin is unsuitable because its adsorption/trapping property deteriorates, so it is more appropriate to use an anion exchange resin.

このようにキレート樹脂等を充填した槽12で鉄イオン
等の金属イオンを除去しない場合には、pH調整槽14
あるいは試験液タンク10中で鉄イオン等が加水分解を
起し水酸化物の沈殿を生成し、この沈殿物粒子が流量計
8をつまらせたり、あるいはセル2において試験片の亀
裂部に付着したりして測定の支障となる。
When metal ions such as iron ions are not removed in the tank 12 filled with chelate resin etc., the pH adjustment tank 14 is used.
Alternatively, iron ions or the like may undergo hydrolysis in the test liquid tank 10 to produce hydroxide precipitates, and these precipitate particles may clog the flowmeter 8 or adhere to cracks in the test piece in the cell 2. This may interfere with measurement.

pHコントロールはpH調整槽内の溶液のpHをpHメ
ーター20が読み取り、pHコントローラー21に設定
した値よりもずれて来た場合、電磁弁16の開閉を行い
、酸性溶液槽15内にあらかじめ、用意しておいた試験
液より濃い溶液を継続的にpH調整槽に流し込みpH調
整を行う。
For pH control, the pH of the solution in the pH adjustment tank is read by the pH meter 20, and if it deviates from the value set in the pH controller 21, the solenoid valve 16 is opened and closed, and the pH of the solution prepared in the acidic solution tank 15 is prepared in advance. The pH is adjusted by continuously pouring a solution that is thicker than the previously prepared test solution into the pH adjustment tank.

第2図のセル2内への試験液の導入は試験液タンク10
より三方コツク7を通してセル下部より流入させ迅速に
セル内を充填させる。
The test liquid is introduced into the cell 2 in Fig. 2 using the test liquid tank 10.
The liquid flows from the lower part of the cell through the three-way tank 7 to quickly fill the inside of the cell.

その後三方コックを閉じ8の流量計を通し所定の流量に
調整しセル上部に試験液供給管4より流入させる。
Thereafter, the three-way cock is closed, the flow rate is adjusted to a predetermined level through a flow meter 8, and the test liquid is allowed to flow into the upper part of the cell from the supply pipe 4.

試験中排液は試験液排出管6の途中より取り出し、セル
液面より高く、ガス排出管上部先端よりも低い所に設け
られた排出管25を通して金属イオン除去槽に入る。
Drainage liquid during the test is taken out from the middle of the test liquid discharge pipe 6 and enters the metal ion removal tank through the discharge pipe 25 provided at a location higher than the cell liquid level and lower than the upper tip of the gas discharge pipe.

試験終了後、試験液の排出は試験液排出管6の下部より
三方コックを通り金属イオン除去槽に速やかに排出され
る。
After the test is completed, the test liquid is quickly discharged from the lower part of the test liquid discharge pipe 6 through a three-way cock into the metal ion removal tank.

また試験液は緩衝溶液を用いてもバツテ式の場合はpH
は大きく変動する。
In addition, even if a buffer solution is used for the test solution, in the case of the Batte type, the pH
varies greatly.

たとえばpH3.5に調整した緩衝溶液200ml中に
表面積22cm2の低合金鋼を浸漬すると1時間後には
3.62、4時間後3.70、24時間後4.20、7
2時間後4.80と変化する。
For example, when low alloy steel with a surface area of 22 cm2 is immersed in 200 ml of a buffer solution adjusted to pH 3.5, the result is 3.62 after 1 hour, 3.70 after 4 hours, 4.20 after 24 hours, and 7
After 2 hours, it changes to 4.80.

これに対し、本発明の場合にはpHの変動は、酢酸ナト
リウムと塩酸からなるpH 3.5の試験液中で、高張
力鋼の遅れ破壊試験を行なった結果を第4図に示したが
、pHはほとんど変化せずぼゞ一定である。
On the other hand, in the case of the present invention, the pH fluctuation is as shown in Figure 4, which shows the results of a delayed fracture test of high-strength steel in a test solution of pH 3.5 consisting of sodium acetate and hydrochloric acid. , the pH hardly changes and remains almost constant.

また排出された試験液中には約60μg/mlの鉄が溶
け込んでくるが、キレート樹脂を用いているため、溶液
の汚れもなく組成変動もほとんど認められなかった。
Furthermore, about 60 μg/ml of iron was dissolved in the discharged test solution, but since a chelate resin was used, there was no staining of the solution and almost no change in composition was observed.

さらに本発明では試験液を循環式にしているため、たれ
流し方式に比べて経済的である。
Furthermore, in the present invention, the test liquid is circulated, which is more economical than the dripping method.

すなわち、たれ流し方式で1ml/minで21日間試
験を行なった場合、試験機1台で試験液は30l必要で
ある。
That is, when the test is conducted for 21 days using the drip method at 1 ml/min, 30 liters of the test liquid is required for one testing machine.

この種の試験は通常、複数の試験機を用いるが5台稼動
させたと仮定すれば、毎日7.2l消費する。
This type of test typically uses multiple test machines, but assuming five machines are in operation, it will consume 7.2 liters each day.

また毎日これだけ使用する溶液の調整を行うための試薬
費もさることながら労力、時間も大きな負担となる。
In addition, preparing the solutions used every day requires not only reagent costs but also a large amount of labor and time.

一方これだけの量の試験液を排出するならば環境汚染の
観点から排液は中和されなければならない。
On the other hand, if such a large amount of test fluid is to be discharged, the discharged fluid must be neutralized from the viewpoint of environmental pollution.

これらの点は、本発明のごとく試験液を循環方式にする
ことによってすべて解決される。
All of these points can be solved by using a circulating system for the test liquid as in the present invention.

本発明の内容を主として鉄鋼を例にして説明してきたが
、本発明の方法および装置は金属材料全般に適用できる
ことはもちろんである。
Although the content of the present invention has been explained mainly using steel as an example, it goes without saying that the method and apparatus of the present invention can be applied to metal materials in general.

以下に実施例を説明する。Examples will be described below.

実施例 1 低合金鋼(組成C0.20%、Si0.21%、Mn0
.75%、P0.013%、S0.010%、Cr1.
03%)の試験片(10×10×50mm、表面積22
cm2)を本装置に設定し、荷重100kgをかけ、酢
酸ナトリウム及び塩酸を含む試験液(pH3.5)を用
い、セル中には1ml/minの流量で流し、遅れ破壊
試験を実施した。
Example 1 Low alloy steel (composition C0.20%, Si0.21%, Mn0
.. 75%, P0.013%, S0.010%, Cr1.
03%) test piece (10 x 10 x 50 mm, surface area 22
cm2) was set on this device, a load of 100 kg was applied, and a test solution (pH 3.5) containing sodium acetate and hydrochloric acid was flowed into the cell at a flow rate of 1 ml/min to conduct a delayed fracture test.

試験過程における試験片の浸漬時間とセル中のpH変化
との関係を調べた結果を第4図に示した。
Figure 4 shows the results of investigating the relationship between the immersion time of the test piece and the pH change in the cell during the test process.

試験に用いた低合金鋼の試験片は試験開始後7日目に破
断したが、この間におけるpHの変動はほとんど認めら
れなかった。
The low-alloy steel specimen used in the test broke on the seventh day after the start of the test, but almost no pH fluctuation was observed during this period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は片持梁曲げ試験の説明図、第2図は本発明実施
例装置の説明図、第3図は実施例装置のセル部分の説明
図、第4図は本発明装置を用いた測定結果を示す説明図
である。 1・・・・・・試験片、2・・・・・・セル、計・・・
・・重錘、4・・・・・・試験液供給管、5・・・・・
・ガス排出管、6・・・・・・試験液排出管、7・・・
・・・液路切替コック、8・・・・・・流量計、9・・
・・・・流量調節バルブ、10・・・・・・試験液タン
ク、11・・・・・・不活性ガス吹き込み管、12・・
・・・・金属イオン除去槽、13・・・・・・充填剤、
14・・・・・・pH調整槽、15・・・・・・酸性溶
液槽、16・・・・・・電磁弁、17・・・・・・添加
管、18・・・・・・攪拌機、19・・・・・・pH測
定電極、20・・・・pHメーター、21・・・・・・
pHコントローラー、22・・・・・・ポンプ、23・
・・・・・亀裂部、24・・・・・・液面計、25・・
・・・・排出管、→印・・・・・・試験液循環流路。
Fig. 1 is an explanatory diagram of the cantilever beam bending test, Fig. 2 is an explanatory diagram of the apparatus according to the embodiment of the present invention, Fig. 3 is an explanatory diagram of the cell portion of the apparatus according to the embodiment, and Fig. 4 is an explanatory diagram of the apparatus according to the present invention. It is an explanatory diagram showing a measurement result. 1...test piece, 2...cell, total...
... Weight, 4 ... Test liquid supply pipe, 5 ...
・Gas discharge pipe, 6...Test liquid discharge pipe, 7...
...Liquid path switching cock, 8...Flowmeter, 9...
...Flow rate adjustment valve, 10...Test liquid tank, 11...Inert gas blowing pipe, 12...
...metal ion removal tank, 13... filler,
14: pH adjustment tank, 15: acidic solution tank, 16: solenoid valve, 17: addition tube, 18: stirrer , 19... pH measurement electrode, 20... pH meter, 21...
pH controller, 22...Pump, 23.
...Crack, 24...Liquid level gauge, 25...
...Discharge pipe, → mark...Test liquid circulation channel.

Claims (1)

【特許請求の範囲】 1 セル内に設定した亀裂つき試験片の亀裂部に対して
垂直方向から試験液を供給し、該セルから排出された試
験液を金属イオン除去槽を通して試験片から溶解した金
属イオンを除去後、pH調整して再び該セル中に循環供
給することを特徴とする金属材料の遅れ破壊試験方法。 2 試験片の亀裂部に対して垂直方向に試験液供給口、
試験片上方にガス排出口、試験片下方に試験液排出口を
備えた亀裂つき試験片設定セルを有し、該セルの試験液
排出口より、金属イオン除去槽、pH調整用溶液添加装
置と連動するpHコントローラー及びpH 測定電極及
び攪拌機を備えたpH調整槽、試験液循環ポンプを細管
で順次連結し、該細管の末端を前記セルの試験液供給口
に連結した構成を特徴とする金属材料の遅れ破壊試験装
置。
[Claims] 1. A test liquid is supplied from a vertical direction to the cracked part of a cracked test piece set in a cell, and the test liquid discharged from the cell is dissolved from the test piece through a metal ion removal tank. A delayed fracture testing method for metal materials, which comprises removing metal ions, adjusting the pH, and circulating the metal ions into the cell again. 2 Test liquid supply port in the direction perpendicular to the crack part of the test piece,
It has a cracked test piece setting cell with a gas outlet above the test piece and a test solution outlet below the test piece, and from the test solution outlet of the cell, a metal ion removal tank, a pH adjustment solution addition device, and a pH adjustment solution addition device are connected. A metal material characterized by a configuration in which a pH controller, a pH measuring electrode, a pH adjusting tank equipped with a stirrer, and a test liquid circulation pump are sequentially connected by a thin tube, and the end of the thin tube is connected to the test liquid supply port of the cell. Delayed fracture testing equipment.
JP14458978A 1978-11-22 1978-11-22 Delayed fracture test method and device Expired JPS584298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14458978A JPS584298B2 (en) 1978-11-22 1978-11-22 Delayed fracture test method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14458978A JPS584298B2 (en) 1978-11-22 1978-11-22 Delayed fracture test method and device

Publications (2)

Publication Number Publication Date
JPS5570731A JPS5570731A (en) 1980-05-28
JPS584298B2 true JPS584298B2 (en) 1983-01-25

Family

ID=15365594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14458978A Expired JPS584298B2 (en) 1978-11-22 1978-11-22 Delayed fracture test method and device

Country Status (1)

Country Link
JP (1) JPS584298B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806244A3 (en) * 1996-05-07 1998-01-14 Ecografica S.r.l. Process for controlling the pH value op liquids used in industrial processes and system for carrying out the process
JP4635247B2 (en) * 2003-08-06 2011-02-23 独立行政法人物質・材料研究機構 Durability test method and apparatus for biomaterials
CN105223129A (en) * 2015-10-12 2016-01-06 西南石油大学 Solution chemistry automaton in a kind of iron and alloy corrosion process thereof and using method thereof
CN105510218A (en) * 2015-12-29 2016-04-20 中国石油化工股份有限公司 Solution-ionic-concentration-controlling experimental device and method

Also Published As

Publication number Publication date
JPS5570731A (en) 1980-05-28

Similar Documents

Publication Publication Date Title
Angst et al. The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI
Hansson et al. The effect of chloride cation type on the corposion of steel in concrete by chloride salts
CN101377461B (en) Apparatus and method for measuring welding tube corrosion under stress condition
CN101226167B (en) Method for rapidly measuring reinforcing steel tarnishing criticality chlorine ion concentration
JP2680075B2 (en) Method and device for selectively measuring content of substances dissolved in solution
CN108663347A (en) Optical dissolved oxygen sensor multi-parameter interference compensation corrects system and method
Andresen et al. Crack Tip Microsamplingand Growth Rate Measurementsin Low-Alloy Steel in High-Temperature Water
CN206975034U (en) Using the device of half infusion method measure concrete accumulation of salt in the surface soil amount
CN110296932A (en) A kind of electro-chemical test sample and preparation method thereof
JPS584298B2 (en) Delayed fracture test method and device
Schiessl et al. Influence of autogenous healing of cracks on corrosion of reinforcement
Zhong et al. How to Maintain a Stable Solution Chemistry when Simulating CO₂ Corrosion in a Small Volume Laboratory System
JPS5836055Y2 (en) Delayed fracture test equipment
US4887453A (en) Method and system for on-line calibration and validation of process instrumentation
Sosa et al. Concentration cells and pitting corrosion of copper
Ieamsupapong Mechanisms of Iron Carbonate Formation on Mild Steel in Controlled Water Chemistry Conditions
Mrzljak et al. On-line monitoring of cobalt ion zinc plant electrolyte by differential pulse adsorptive stripping voltammetry
CN216484545U (en) System for detecting corrosion rate of metal in normal-temperature aqueous solution
CH705686A2 (en) Method for determining hardness of water in water stream, involves determining temporal integral of product from conductivity increase and from mass flow and volume flow of water over measuring time
NO149562B (en) METHOD AND APPARATUS FOR AUTOMATIC AA DETERMINE THE QUANTITY OF ONE OR MORE SUBSTANCES IN A CASE
CN221100431U (en) Reinforcement corrosion rate measuring device under tide area multi-ion coupling erosion effect
JPS6133553Y2 (en)
CN117092020A (en) Device and method for measuring corrosion rate of steel bar in multi-ion coupling corrosion environment
CN104898724A (en) Automatic pH value control device for sulfide stress cracking resistance test, and control method thereof
JP2002531700A (en) Apparatus and method for controlling the pickling process of steel