JPS5842980A - Detecting method for accident point of submarine cable - Google Patents

Detecting method for accident point of submarine cable

Info

Publication number
JPS5842980A
JPS5842980A JP56140941A JP14094181A JPS5842980A JP S5842980 A JPS5842980 A JP S5842980A JP 56140941 A JP56140941 A JP 56140941A JP 14094181 A JP14094181 A JP 14094181A JP S5842980 A JPS5842980 A JP S5842980A
Authority
JP
Japan
Prior art keywords
submarine cable
accident point
current
bubbles
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56140941A
Other languages
Japanese (ja)
Inventor
Saburo Takahashi
三郎 高橋
Kimihiro Mizuno
公博 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP56140941A priority Critical patent/JPS5842980A/en
Publication of JPS5842980A publication Critical patent/JPS5842980A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To evade overlooking and to detect an accident point easily with high efficiency without using large-scale electricity feeding facilities by supplying superposed DC and AC currents to a submarine cable together, and searching the production of bubbles and variation in magnetic flux. CONSTITUTION:A submarine cable 11 is supplied with superposed DC and AC currents together from a DC power source 1 and an AC power source 5. When magnetic flux variation with the AC current at an accident point 13 are searched for by an electromagnetic pickup 15, bubbles produced by the electrolysis of seawater DC current which is caused by the DC current without reference to earth resistance and breakdown conditions is observed. This constitution suppresses misdetection without using large-scale feeding facilities to perform accident point detection easily with high precision.

Description

【発明の詳細な説明】 本発明は、海底に布設されている海底ケーブルの事故点
検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting fault points in submarine cables laid on the ocean floor.

海底ケーブルの従来の事故点検出方法では、海底ケーブ
ルに交流電流を流し、事故点の発熱から気泡を発生させ
、潜水者(ダイノ々−)が海底ケーブルに沿って気泡の
発生個所ご探索し、その発生個所から事故点を検出して
いる。この場合、事故点の接地抵抗値や破損形状等によ
っては気泡が全く発生しなかったり、不十分であつたり
して、気泡の探索が困難になる場合がある@気泡の発生
量を増大させるために交流電流を増大させることは、大
掛りな通電設備を必要とし、不利である0まだ、たとえ
十分な量の気泡が発生していたとしても、気泡の発生は
見逃され易い。
The conventional method for detecting fault points in submarine cables is to apply alternating current to the submarine cable, generate air bubbles from the heat generated at the fault point, and have divers (dynos) search along the submarine cable for the point where the bubbles are generated. The accident point is detected from the location where the accident occurred. In this case, depending on the ground resistance value of the accident point, the shape of the damage, etc., bubbles may not be generated at all or may be insufficient, making it difficult to search for bubbles. Increasing the alternating current requires large-scale current supply equipment, which is disadvantageous.However, even if a sufficient amount of bubbles are generated, the generation of bubbles is likely to be overlooked.

本発明の目的は・大掛りな通電設備を用いることなく、
また、事故点の見逃しを十分に回避して、事故点を容易
罠かっ能率よく検出することができる海底ケーブルの事
故点検出方法を提供すること〒ある。
The purpose of the present invention is to: - without using large-scale electrical equipment;
Another object of the present invention is to provide a method for detecting a fault point in a submarine cable, which can sufficiently avoid overlooking the fault point and detect the fault point easily and efficiently.

この目的を達成するために本発明の海底ケーブルの事故
点検出方法によれば、 海底に布設されている海底ケーブルに・直流電流と交流
電流とが互いに重畳されている電流を流し、海底ケーブ
ルに沿って気泡゛の発生および磁束変化を探索すること
Kより、海底ケーブルの事故点を検出する。
In order to achieve this object, according to the submarine cable fault detection method of the present invention, a current in which a direct current and an alternating current are superimposed is passed through the submarine cable laid on the ocean floor. By searching for the generation of bubbles and changes in magnetic flux along the cable, the fault point of the submarine cable is detected.

図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.

直流電源1は、容易に入手および運搬可能な蓄電池・あ
るいは充電器等から成り、一端において直流電−計2お
よび交流阻止フィル3を介して給電端子4へ接続され、
他端においてアースされている。交流電源5は変圧器6
を介して交流電流計7と直流阻止コンデンサ8との間に
接続され、交流電流計7は他端において給電端子4へ接
続され、直流阻止コンデンサ8の他端はアースされてい
る。海面9より下の海底10に布設されている海底ケー
ブル!1は一端12を海面9より上方の空中へ露出され
て給電端子4へ接続されている。給電端子4をケーブル
終端部12に接続することにより、海底ケーブル11に
、直流電流と交流電流とが互いに重畳されている電流が
流れる。海底ケーブル11に破損等の事故点13が鼠れ
ば、事故点13が症ある゛いは負の電極となり・海底が
負あるいは正の電極となり、この結果、海水が電気分解
1に、事故点13から酸素あるいは水素の気泡14が生
じる。さらに事故点13″I!は磁束が他の個所と異な
るので、磁束を検出できる電磁ピックアップ15を海底
ケーブル11に沿って移動させることにより事故点13
を検出することができる。潜水者は電磁ピックアップ1
5およびその出力の検出計を持って海底ケーブル11に
沿って移動し・気泡14を目視により、および電磁ピッ
クアップ!5の検出計から磁束の異常を認識することに
より、事故点13を検出することができる。あるいは水
中テレビカメラを海底ケーブル11に沿って移動させ、
電磁ピックアップ15の検出器は船上に置くことにより
、船上におけるテレビおよび検出器の観察から事故点1
3を検出することも可能である。
The DC power source 1 consists of a storage battery, a charger, etc. that can be easily obtained and transported, and is connected at one end to a power supply terminal 4 via a DC voltmeter 2 and an AC blocking filter 3.
Grounded at the other end. AC power supply 5 is transformer 6
The other end of the AC ammeter 7 is connected to the power supply terminal 4, and the other end of the DC blocking capacitor 8 is grounded. A submarine cable laid on the seabed 10 below sea level 9! 1 has one end 12 exposed to the air above the sea level 9 and connected to the power supply terminal 4. By connecting the power supply terminal 4 to the cable termination part 12, a current in which a direct current and an alternating current are superimposed flows through the submarine cable 11. If an accident point 13 such as damage occurs on the submarine cable 11, the accident point 13 becomes a negative or negative electrode, and the seabed becomes a negative or positive electrode, and as a result, seawater becomes electrolyzed 1 and the accident point Oxygen or hydrogen bubbles 14 are generated from 13. Furthermore, since the magnetic flux at the fault point 13''I! is different from other locations, by moving the electromagnetic pickup 15 that can detect magnetic flux along the submarine cable 11, the fault point 13''I!
can be detected. Diver uses electromagnetic pickup 1
5 and its output detector, move along the submarine cable 11, visually check the bubbles 14, and pick up the electromagnetic bubbles! By recognizing an abnormality in the magnetic flux from the detector 5, the fault point 13 can be detected. Alternatively, move an underwater television camera along the submarine cable 11,
By placing the detector of the electromagnetic pickup 15 on the ship, the accident point 1 can be identified from the observation of the TV and detector on the ship.
It is also possible to detect 3.

第2図は直流電流と交流電流とを互いに重畳させる装置
の他の実施例を示している。第1図と同じ部分は同符号
1指示して説明を省略し、異なる部分にもいてのみ説明
する。交流阻止コイル3と給電i子゛4との間の導線の
外周に結合フィル18が設けられ、交流−送信機19が
結合コイル18へ接続され、これにより交流電流を直流
電流に重畳させることが!きる。
FIG. 2 shows another embodiment of a device for superimposing direct current and alternating current. The same parts as in FIG. 1 are indicated by the same reference numerals 1, and the explanation will be omitted, and only the different parts will be explained. A coupling filter 18 is provided on the outer periphery of the conductor between the AC blocking coil 3 and the feeding element 4, and an AC-transmitter 19 is connected to the coupling coil 18, thereby making it possible to superimpose the alternating current on the direct current. ! Wear.

このように本発明によれば、直流電流と交流電流とを互
いに重畳して形成された電流を海底ケーブルに流し、気
泡の発生および磁束変化から事故点を検出することが1
きる。気泡は・事故点における発熱によってではなく直
流電流に因る海水の電気分解により生じるの1、事故点
の接地抵抗や破損形状等に関係なく、また簡易な通電設
備に−より・十分な気泡発生を得ることが1きる。さら
に、気泡発生の探索に並行して磁束変化も探索されるの
で、事故点の見−逃しを抑制することができ、事故点検
出の作業を容易かつ能率的なものにすることができる。
As described above, according to the present invention, it is possible to flow a current formed by superimposing a direct current and an alternating current through a submarine cable, and to detect a fault point from the generation of bubbles and changes in magnetic flux.
Wear. Bubbles are generated not by heat generation at the accident point, but by electrolysis of seawater caused by direct current1. Sufficient bubble generation occurs regardless of the grounding resistance at the accident point, the shape of the damage, etc., and due to simple energizing equipment. You can get 1. Furthermore, since changes in magnetic flux are searched for in parallel with the search for bubble generation, it is possible to prevent failure points from being overlooked, and the work of detecting failure points can be made easier and more efficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の説F!A図、第2図は直流電
流と交流電流とを重畳する装置の他の実施例の回路図で
ある。 1・・・直流電源、5・・・交流電源、10・・・海底
、11・・・海底ケーブル、13・・・事故点、14・
・・気泡、15・・・電磁ピックアップ、19・・・交
流送信機。 第1図 第2図
FIG. 1 shows an example of the embodiment of the present invention. Figures A and 2 are circuit diagrams of other embodiments of a device for superimposing direct current and alternating current. 1... DC power supply, 5... AC power supply, 10... submarine, 11... submarine cable, 13... accident point, 14.
...Bubble, 15...Electromagnetic pickup, 19...AC transmitter. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 海底に布設されている海底ケーブルに、直流電流と交流
電流とが互いに重畳されている電流ご流し、海底ケーブ
ルに沿って気泡の発生および磁束変化な探索することに
より、海底ケーブルの事故点を検出することを特徴とす
る海底ケーブルの事故点検出方法。
Detects fault points in submarine cables by passing a superimposed direct current and alternating current through submarine cables laid on the ocean floor and searching for bubbles and changes in magnetic flux along the submarine cable. A method for detecting a fault point in a submarine cable, characterized by:
JP56140941A 1981-09-09 1981-09-09 Detecting method for accident point of submarine cable Pending JPS5842980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140941A JPS5842980A (en) 1981-09-09 1981-09-09 Detecting method for accident point of submarine cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140941A JPS5842980A (en) 1981-09-09 1981-09-09 Detecting method for accident point of submarine cable

Publications (1)

Publication Number Publication Date
JPS5842980A true JPS5842980A (en) 1983-03-12

Family

ID=15280371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140941A Pending JPS5842980A (en) 1981-09-09 1981-09-09 Detecting method for accident point of submarine cable

Country Status (1)

Country Link
JP (1) JPS5842980A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115391A (en) * 1993-10-15 1995-05-02 Nec Corp Optical submarine cable grappling method and optical submarine cable system
CN105572545A (en) * 2014-10-29 2016-05-11 中国石油化工股份有限公司 Power line fault location device and method
EP3264115A1 (en) * 2016-06-28 2018-01-03 Bender GmbH & Co. KG Method for determining an isolation fault location on an electrical conductor of a submarine supply conduit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115391A (en) * 1993-10-15 1995-05-02 Nec Corp Optical submarine cable grappling method and optical submarine cable system
CN105572545A (en) * 2014-10-29 2016-05-11 中国石油化工股份有限公司 Power line fault location device and method
EP3264115A1 (en) * 2016-06-28 2018-01-03 Bender GmbH & Co. KG Method for determining an isolation fault location on an electrical conductor of a submarine supply conduit
CN107544003A (en) * 2016-06-28 2018-01-05 本德尔有限两合公司 The method and alignment system of the insulation fault position on electric conductor for determining seabed supply lines
US10598716B2 (en) 2016-06-28 2020-03-24 Bender Gmbh & Co. Kg Methods and locating systems for determining an insulation fault location on an electric conductor of a subsea supply line
CN107544003B (en) * 2016-06-28 2020-07-24 本德尔有限两合公司 Method and positioning system for determining the location of an insulation fault on an electrical conductor of an undersea power supply line
DE102016211651B4 (en) 2016-06-28 2022-03-24 Bender Gmbh & Co. Kg Method for determining an insulation fault location on an electrical conductor of a submarine umbilical

Similar Documents

Publication Publication Date Title
CN106516051B (en) The far-reaching transportable buoy base-in sea is plugged into box oceanographic observation system
WO1994009558A1 (en) Contactless power delivery system
US4788448A (en) Power transfer of direct current with inductive couplings
CN107524653A (en) A kind of hydraulic system of deep ocean work type underwater robot
US9627862B2 (en) Methods and systems for subsea direct current power distribution
GB2137358A (en) Cable catching apparatus for use in locating submarine cables
CN102667566B (en) Underwater optical fibre cable
US4503526A (en) Device for water inflow detection inside a seismic streamer
JPS5842980A (en) Detecting method for accident point of submarine cable
CN104361974A (en) Movable demagnetizing device
CN109507525A (en) A kind of earth-fault detecting method based on amendment transient reactive power method
US3930977A (en) Protection system for equipment and metallic fittings of non-metallic hulls of power boats
CN104483526A (en) Grounding current induction monitor for power grid transformer
US11919411B2 (en) Leak detection in a cable assembly
JPH07240704A (en) Probing system for submarine cable
JPS5842979A (en) Detecting method for accident point of submarine cable
Haibing et al. Comparison of two electromagnetic couplers in an inductive power transfer system for autonomous underwater vehicle docking application
CN211112232U (en) Intelligent cathode protection data acquisition equipment
CN209028220U (en) A kind of fixture for submarine cable detection coil
Huang et al. Research and application for active detection of burial depth on 500kv ultra-high voltage live submarine cable
JP2878665B2 (en) Leakage alarm device for ships
JPS5842982A (en) Detecting method for accident point of submarine cable
CN214380315U (en) Ocean vertical observation system
CN219039256U (en) Submarine cable fault positioning system based on underwater beacon
CN108390223A (en) A kind of oceanographic equipment outer starting device and method