JPS5842761A - Manufacture of titanium plate - Google Patents

Manufacture of titanium plate

Info

Publication number
JPS5842761A
JPS5842761A JP14216381A JP14216381A JPS5842761A JP S5842761 A JPS5842761 A JP S5842761A JP 14216381 A JP14216381 A JP 14216381A JP 14216381 A JP14216381 A JP 14216381A JP S5842761 A JPS5842761 A JP S5842761A
Authority
JP
Japan
Prior art keywords
plate
grain size
cold rolling
diameter
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14216381A
Other languages
Japanese (ja)
Other versions
JPS6257705B2 (en
Inventor
Yasuo Moriguchi
森口 康夫
Masato Fukuda
正人 福田
Akiyoshi Tanabe
田部 明芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14216381A priority Critical patent/JPS5842761A/en
Publication of JPS5842761A publication Critical patent/JPS5842761A/en
Publication of JPS6257705B2 publication Critical patent/JPS6257705B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a Ti plate with high bendability and high surface accuracy by regulating the average grain size of a blank Ti plate and the diameter of a cold rolling roll so as to provide a specified relation, descaling the plate with a fine shot blasting material, and cold rolling it. CONSTITUTION:Assuming the average grain size of a blank Ti plate to be Xmum and the diameter of a cold rolling roll to be Ymm., they are regulated so that the relation between them satisfies equationI. By regulating the grain size X when the roll diameter Y is fixed or the roll diameter Y when the grain size X is fixed, the maximum oil pit depth can be restricted to <= about 10mum. After regulating the relation between the grain size X and the roll diameter Y as mentioned above, the plate is descaled with a fine shot blasting material having less than the volume corresponding to 0.4mm.phi spheres, and it is cold rolled to manufacture a cold rolled Ti plate.

Description

【発明の詳細な説明】 本発明は1曲げ加工性及び表面精度の良好なチタン板を
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a titanium plate with good bending workability and surface precision.

チタンは焼付き易い金属であフ、高圧力、高すベシ速度
のもとでは容易に焼付きを生じ、冷間圧延の場合には上
記特性が災いをなして−る。チタン板の冷間圧延におけ
る焼付きの特徴は、圧延工程でチタンがロール表面に強
固に凝着すると共に。
Titanium is a metal that easily seizes, and it easily seizes under high pressure and high rolling speed, and the above properties are detrimental in the case of cold rolling. Seizure during cold rolling of titanium sheets is characterized by the fact that titanium firmly adheres to the roll surface during the rolling process.

一旦焼付きが起こると以後の圧延で焼付きが更に着しく
なる点にある。そして一旦畑付傘り生じると原振係数が
急増して圧延荷重が増加し、安定した圧延及び良好な板
形状を確保することが極めて困#[&る。特に高速圧延
が可能で良好な板形状が得られ易いとされる大径ロール
圧延において上記の様な焼付きを防止する為には、十分
な潤f!R伏態の下で圧延する必要があ夛、この要請に
関しては下記の改善措りを開発し既に特許出願を済ませ
ている。
Once seizure occurs, it becomes more likely to occur during subsequent rolling. Once cracking occurs, the original oscillation coefficient increases rapidly and the rolling load increases, making it extremely difficult to ensure stable rolling and a good sheet shape. Particularly in large-diameter roll rolling, where high-speed rolling is possible and it is easy to obtain a good plate shape, sufficient moisture f! There is a growing need for rolling under the R condition, and in response to this requirement, we have developed the following improvement measures and have already filed a patent application.

11)鹸化価が170以上の高鹸化油を圧延用潤滑剤と
して使用する方法(特開昭54−145849号)。
11) A method of using a highly saponified oil having a saponification value of 170 or more as a rolling lubricant (Japanese Patent Application Laid-open No. 145849/1984).

(2)冷延素板の表面に酸化被膜を形成して冷間圧延す
る方法(@開開54−888fi8号)。
(2) A method of forming an oxide film on the surface of a cold-rolled blank sheet and cold rolling it (@Kokai No. 54-888fi8).

上記(1)、12)の方法を単独で或いは組合わせて賽
施することによシ、冷聞圧延時の焼付きを防止すること
ができる。ところが本発明者尋が別途研究したところに
よると、焼付きを可及的に防止した場合でも、チタン響
板の結晶粒径と圧延ローA/径の関係によっては冷間圧
延板の表面全域に無数のオイルビットが発生し1表面積
度が著しく低下することが明らかになった。
By applying the above methods (1) and 12) alone or in combination, seizure during cold rolling can be prevented. However, according to separate research conducted by the inventor, even when seizure is prevented as much as possible, depending on the relationship between the crystal grain size of the titanium soundboard and the rolling row A/diameter, the entire surface of the cold-rolled plate may be damaged. It was found that countless oil bits were generated and the surface area was significantly reduced.

そこでオイルビット発生の原因を追求すると共にその改
善策の研究を行なった結果、(A)オイルビット発生原
因としては、ローにバイト中に瀾清油が多量に導入され
る所謂流体#清状況が起こる為と考えられ1色)その#
**としては、チタン素板の平均結晶粒径をX(μm)
、冷間圧延ロールの直径なY (tm )としたとき1
両者が次式の関係を満たす条件で冷間圧延を行なう方法
が効果的であること、を!認し、先に特許出願を行なっ
た(特願昭R1S−69174号)。
Therefore, as a result of pursuing the cause of oil bit generation and researching its improvement measures, we found that (A) the cause of oil bit generation is a so-called fluid #cleaning situation where a large amount of dripping oil is introduced during the low bite. It is thought that there is one color) that #
** is the average crystal grain size of the titanium base plate in X (μm)
, when the diameter of the cold rolling roll is Y (tm), 1
It is effective to perform cold rolling under conditions where both satisfy the following relationship! Recognizing this, we filed a patent application (Japanese Patent Application No. Sho R1S-69174).

即ち本発明者等が先の研究で確認したところによると、
オイルピット深さくd:μm)と素板の結晶粒径(x:
μm)及び冷間圧延ロール径(Y:鰭)の間には d、、、0.287−X’−”’  0−”’  、(
n)・Y の相関々係があり、vI用上許容される最大オイルピッ
ト深さくd)が決、まれば、使用するチタン素板の平均
結晶粒径CX>と冷間圧延ローA/径(Y)の関係に整
理することができる。他方当業界においては「深さ10
μm以上の表面欠陥例あってはならない」という需要者
側の要請があるので、許容される最大オイルピッ)深さ
くcl)を10μmに定め、これを前記(IT)式に代
入すると下記(”III)式が成立し。
That is, as confirmed by the present inventors in previous research,
Oil pit depth d: μm) and crystal grain size of the base plate (x:
μm) and the cold rolling roll diameter (Y: fin) are d, , 0.287-X'-"'0-"', (
There is a correlation between n) and Y, and once the maximum allowable oil pit depth d) for vI is determined, the average grain size CX of the titanium blank to be used and the cold rolling row A/diameter are determined. It can be organized into the relationship (Y). On the other hand, in this industry, “depth 10
Since there is a demand from the customer side that there should be no surface defects larger than μm, the maximum allowable oil pit depth (cl) is set at 10 μm, and by substituting this into the above equation (IT), the following ("III ) formula is established.

10  Σ 0.287 −IO・”’ −Y  O”
 7−(III)これを髪形すると前記CI)式が導か
れる。
10 Σ 0.287 -IO・”' -Y O”
7-(III) When this is transformed into a hairstyle, the above formula CI) is derived.

即ち■使用する冷間圧延ローA/径(Y)が決まってい
る場合は、〔13式を満足する如くチタン素板の平均結
晶粒径(X)を調整し、また■平均結晶粒径(X)の決
まったチタン素板を冷間圧延する場合は、〔13式を満
足する如くロール径(Y)を調整することによ〕、最大
オイルピット深さを1075m以下に抑えることができ
る。
That is, ■ When the cold rolling roll A/diameter (Y) to be used is determined, adjust the average grain size (X) of the titanium blank so as to satisfy [Equation 13], and ■ Adjust the average grain size ( When cold rolling a titanium blank having a fixed value of X), the maximum oil pit depth can be suppressed to 1075 m or less [by adjusting the roll diameter (Y) so as to satisfy Equation 13].

ところがその後I!に研究を進めたところ、上記の技術
を駆使して冷間圧延を行なったときでも。
But then I! As a result of our research, we found that even when cold rolling was performed using the above technology.

深い割れ伏の表面欠陥を生じることがあった。Surface defects such as deep cracks may occur.

本発明は上記の様な間1MAについても改曽策を確立す
べ(鋭意研究の結果完成されたものであって。
The present invention also establishes a new method for the above-mentioned 1 MA (this was completed as a result of intensive research).

その構成は、前記CI)式の条件を満たす様々チタン素
板を準備し且つ0.4 wφ球に相当する体積以下の轍
軸なりロットプリスト材を用いて脱スケールし九後、冷
間圧延するところに要旨が存在する。
Its structure consists of preparing various titanium blanks that meet the conditions of the above CI) formula, descaling them using a rutted-axis or lot-presto material with a volume equivalent to a 0.4 wφ sphere, and then cold-rolling them. The gist is there.

前述の如く〔13式の要件を満たす条件で冷間圧延を行
なった場合でも、圧延板に深い割れ状の表面欠陥を生じ
ることがある(参考写真1)が、実験の結果では、従来
の一般的なチタン板冷間圧延法(潤滑が悪く焼付きぎみ
の圧延法)を採用した場合に#i、焼付きに起因すゐ表
面欠陥は生じるものの上記の様な深い割れ状の表面欠陥
は生じない(参考写真2)ことがMWgされた。このこ
とから。
As mentioned above, even when cold rolling is carried out under conditions that satisfy the requirements of formula 13, surface defects in the form of deep cracks may occur in the rolled sheet (reference photo 1). When a conventional titanium plate cold rolling method (a rolling method with poor lubrication and a risk of seizure) is used, surface defects due to seizure occur, but deep crack-like surface defects as described above occur. The MWg was that there was no (reference photo 2). From this.

深い割れ吠表面欠陥を1k<す為には別の角度からの検
討が必要と考えられる。
In order to reduce deep crack surface defects to <1k, consideration from another angle is considered necessary.

そこで上記割れ状欠陥の発生原因を追究したところ、冷
間圧延前のVIMツFプラスシ時にチタン素板表面に形
成される加工硬化層が原因であることが明らかになった
。jl!]ちチタン熱延板の表面はチタン特有の微密で
強固tk#化スケスケールわれているから1通常は冷間
圧延に先立って該スケールをVMIツFプラスト法によ
って破壊し1次いで表層部o*g拡散層(約80〜6G
、um)及び付着し九シ絃ットプラスト材を酸洗除去す
る。
When we investigated the cause of the above-mentioned crack-like defects, we found that the cause was a work-hardened layer formed on the surface of the titanium blank during VIM-F plasticization before cold rolling. jl! ] Since the surface of a hot-rolled titanium sheet is covered with finely dense and strong tk# scale, which is unique to titanium, the scale is usually destroyed by the VMI-F plasting method prior to cold rolling, and then the surface layer o *g diffusion layer (approximately 80~6G
.

上記シHットプラスト工程ではショク) C)li突エ
ネルギーによってチタン素板表面に加工硬化層が形成さ
れるが、この加工硬化層の厚さく酸洗後の厚さ)が前お
割れ状欠陥と奇警に関連していることが明らかになった
。即ち@1図は、加工硬化層の厚さ及び硬さくHv、1
00g)が劃れ状欠陥に及はす影響を示したグラフであ
る。尚チタン素板及び冷間圧延条件は下記の通〕とした
In the above-mentioned shit-plast process, a work-hardened layer is formed on the surface of the titanium blank due to impact energy, but the thickness of this work-hardened layer (the thickness after pickling) is different from the crack-like defect. It turned out that it was related to the police. In other words, Figure @1 shows the thickness and hardness of the work-hardened layer Hv, 1
00g) is a graph showing the influence that it has on the crack-like defects. The titanium blank and cold rolling conditions were as follows.

チタン素板;、純チタン熱延板(板厚8鰭1gl細M晶
粒材、V■ットプラストによ る加工硬化層を有するもの及び酸 洗によ)除去したもの) 冷間圧延条件:牛脂系圧延油、ロール直径150■φ、
圧延速度48m/分、全圧 下率50優 間をかけることによって、スケールを完全に除去した。
Titanium blank; pure titanium hot-rolled plate (thickness 8 fins, 1gl fine M crystal grain material, with work-hardened layer by V*tplast and removed by pickling) Cold rolling conditions: beef tallow rolling Oil, roll diameter 150■φ,
The scale was completely removed by applying a rolling speed of 48 m/min and a total rolling reduction of 50 m/min.

また第8表の冷間圧延条件は、焼付きを生じない良好な
潤滑条件である。
Further, the cold rolling conditions shown in Table 8 are good lubrication conditions that do not cause seizure.

上記で得た各チタン板表面の加工硬化厚さとVヨツト材
寸法の関係を第2図に示す。
FIG. 2 shows the relationship between the work-hardened thickness of the surface of each titanium plate obtained above and the dimensions of the V-yoat material.

第2図からも明らかな様に、加工硬化層の長さはSIN
ット材の寸tIKが小さくなる程、また結晶粒径が小さ
くなる程薄くなる傾向がみられる。同従来よ〕チタン板
のVMフットラストに用いられるVMット材は約0.5
 s1φ1層のスチールボール或いは長さ1〜2■程度
のカットワイヤであり、この様’fJVW1ット材では
加工深さが大きく′&bが。
As is clear from Figure 2, the length of the work-hardened layer is SIN
There is a tendency that the smaller the dimension tIK of the cut material and the smaller the crystal grain size, the thinner the material becomes. [Same conventional] The VMt material used for the VM footlast of titanium plate is approximately 0.5
It is a steel ball with 1 layer of s1φ or a cut wire with a length of about 1 to 2 cm, and the machining depth is large in this type of material.

微細1kg!ット材を使用すれば加工深さを大幅に減す
ることができる。
Fine 1kg! By using cut material, the machining depth can be significantly reduced.

また第8,4@は、微細結晶粒材及び粗大結晶粒材につ
いて、加工硬化層厚さと割れ状欠陥の関係を示し九もの
である。11■中の配量は夫々下記O意味を有する。
In addition, No. 8 and 4 @ show the relationship between work-hardened layer thickness and crack-like defects for fine-grained materials and coarse-grained materials. The amounts in 11.1 have the following meanings.

一二圧下率bO嗟で割れ状欠陥あ〕 0:圧下率50チで割れ状欠陥なし 閤:圧下率75優で割れ状欠陥あ) ロ;圧下″475係で割れ状欠陥なし 第8.4図から次の様に考えることができる。12 There was a crack-like defect at the rolling reduction rate of bO.] 0: No crack-like defects at rolling reduction of 50 inches Rolling: There are crack-like defects at a reduction rate of 75.) B; No crack-like defects at 475 degrees of rolling. From Figure 8.4, it can be considered as follows.

加工硬化層が存在しなh場合の最大欠陥深さは。What is the maximum defect depth when there is no work hardening layer?

前記(”I)式で説明した始〈チタン素板の結晶粒径と
圧延ロール径によって規!されるが、加工硬化層が存在
すると結晶粒の大きさにかかわり?<同様の傾向がみら
れ、加工硬化層深さが160μmまでは厚くなるにつれ
て最大欠陥深さは減少していす、これは、チタン板表面
の結晶粒かVBット材の衝突によって破壊され、見掛は
上の結晶粒径が微細[71つた為と考えられる。しかし
加工硬化層深さが150μmVr−なると割れ状欠陥が
認められる様にな)、その後はこ0層厚さが大きくなる
につれて割れ状欠陥が著しく1にゐと共I/c#大欠陥
深さも急激に増大する。
Although it is determined by the crystal grain size of the titanium blank and the diameter of the rolling roll, the presence of a work-hardened layer affects the grain size, and a similar tendency is observed. The maximum defect depth decreases as the work-hardened layer becomes thicker, up to 160 μm. This is because the defects are destroyed by collisions between crystal grains on the surface of the titanium plate or the VB material, and the appearance is that of the upper crystal grains. This is thought to be due to the diameter being fine [71 However, when the depth of the work-hardened layer is 150 μm, crack-like defects are observed), and after that, as the layer thickness increases, the crack-like defects decrease to 1. At the same time, the I/c# large defect depth also increases rapidly.

即ち冷間圧延板表面の割れ状欠陥を防止する為には、加
工硬化層の厚さが1!sOμm以下となる様にショツト
ブラスト条件をコントロールすることが有効であり、最
大欠陥深さとの関係を考慮すると50〜160μmの範
囲が最適である。そして最大硬化層厚さを小さくする手
段としては、第2図で説明した如(シ鱈ットプラスト工
程で使用するショツト材の寸法を小さくするのが最も効
果的であシ、#洗工程で除去される加工硬化層の厚さく
80〜FhO#m)を考慮すると、1[径が0.4日以
下(グリッドやカットワイヤではこれと同体積のもの)
のショツト材を使用することによって。
In other words, in order to prevent crack-like defects on the surface of a cold-rolled plate, the thickness of the work-hardened layer must be 1! It is effective to control the shot blasting conditions so that it is sOμm or less, and in consideration of the relationship with the maximum defect depth, a range of 50 to 160μm is optimal. The most effective way to reduce the maximum hardened layer thickness is to reduce the size of the shot material used in the shotplast process, as explained in Figure 2. Considering the thickness of the work-hardened layer (80~FhO#m), it is assumed that
By using short material.

酸洗後の加工硬化層の厚さを150μm以下にすること
ができる。
The thickness of the work-hardened layer after pickling can be 150 μm or less.

ちなみに参考写真6はvmットプラスト材の寸法を変え
た場合の圧延後の表面伏況を例示するものであり1寸法
の小さいショツト材を使用したものの割れ状欠陥は1寸
法の大きいV!ット材を使用したものに比べて極めて小
さい。
By the way, reference photo 6 shows an example of the surface condition after rolling when the dimensions of the vm-tplast material are changed.The crack-like defects of the shot material, which is one dimension smaller, are V! It is extremely small compared to those using wood.

紙に第6図は、t/Hットプラストによる加工硬化層厚
さと曲げ性能の関係を示したグラフ(板厚Ram、壷細
結晶粒材よ〕なゐ純チタン板使用)であ1.m1硬化層
厚さは曲げ性能とも密接な関連を有している。この図よ
〕、純チタン8W板の曲げ半径の規格である2、OT(
板厚の2倍)を満足する為には、加工硬化層厚さを18
0μm以下にする必要があるが、この要件も本発明で規
定する0、4■以下のVヨツト材による脱スケール処理
によって確実に満たされる。
Figure 6 is a graph showing the relationship between the work-hardened layer thickness and bending performance by t/Htplast (plate thickness Ram, using a pure titanium plate such as a fine-grained material).1. The m1 hardened layer thickness is also closely related to bending performance. This figure] is the standard for the bending radius of pure titanium 8W plate, 2, OT (
In order to satisfy the requirement (twice the plate thickness), the work hardening layer thickness must be 18
Although it is necessary to reduce the thickness to 0 μm or less, this requirement is certainly met by the descaling treatment using a V-yield material having a diameter of 0.4 μm or less as defined in the present invention.

この様に本発明では、vMット材として04txφ球に
相当する体積以下の微粒子を使用することによって加工
硬化層の厚さを150μm以下とするところに一つの特
徴があ夛、これらの効果はVロット材の材質の如何を問
わず有効に発揮されるが、加工硬化がショツト材の衝突
エネルギーによって生じる点を考慮すれば、比軟的軽量
のシーット材例えばM融アルミナの粉粒体醇を使用する
ことも極めて好ましい。
As described above, one of the features of the present invention is that the thickness of the work-hardened layer is set to 150 μm or less by using fine particles with a volume equal to or less than a 04txφ sphere as the vMt material, and these effects are It is effective regardless of the material of the V-lot material, but considering that work hardening is caused by the impact energy of the shot material, it is recommended to use a relatively soft and lightweight sheet material such as M-fused alumina powder. It is also highly preferred to use

本発明は概略以上の様に構成されており、チタン素板の
平均結晶粒径X(#m)と冷間圧延ロールの直径Y(鰭
)との関係が次式 %式% を満たす様に調整して冷間圧延するという先願発明の構
成に、冷開圧延前のチタン素板の脱スケール処理を0.
4■φ球に相当する体積以下の像細なV!iットプラス
ト材によって行ない、加工硬化層厚さを150μm以下
に抑えるという要件を付加することによシ、優れた表面
精度及び加工性を有するチタン冷延板を製造し得ること
になった。
The present invention is roughly constructed as described above, and the relationship between the average crystal grain size X (#m) of the titanium blank and the diameter Y (fin) of the cold rolling roll satisfies the following formula % formula % In addition to the configuration of the prior invention in which the titanium blank is adjusted and cold rolled, the descaling treatment of the titanium blank before cold opening is adjusted to 0.
4■ Fine V with a volume less than the volume equivalent to a φ sphere! By using an IT-plast material and adding the requirement of suppressing the thickness of the work-hardened layer to 150 μm or less, it became possible to produce a cold-rolled titanium sheet with excellent surface precision and workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱スケール処理後の表面からの距離と恢さの
関係を示すグラフ、第2図はvmツシ材寸法と加工硬化
層厚さの関係を示すグラフ、第8゜4図は加工硬化層厚
さと最大欠陥深さの関係を示すグラフ、第5図は加工硬
化層厚さと曲げ半径の関係を示すグラフであり。 出−人  株式会社神戸m鋼所 加工硬化層厚さくμm) 加工硬化層厚さくμm) 加工硬化層厚さくμ’m)
Figure 1 is a graph showing the relationship between the distance from the surface and strength after descaling treatment, Figure 2 is a graph showing the relationship between the dimensions of the VM beam material and the thickness of the work-hardened layer, and Figure 8.4 is the graph showing the relationship between the distance from the surface and the strength after descaling. A graph showing the relationship between the hardened layer thickness and the maximum defect depth, and FIG. 5 is a graph showing the relationship between the work hardened layer thickness and the bending radius. Work hardened layer thickness μm) Work hardened layer thickness μm) Work hardened layer thickness μ'm)

Claims (1)

【特許請求の範囲】[Claims] (1)チタン響板の平均結晶粒径をX (1m)、冷間
圧延ロールの直径をY (ms )としたとき1両者の
関係が次式 %式% を満たす様に調整し、且つ0.4■φ球に相当する体積
以下の徽細なVBットプラスト材を用いて脱スケール処
理を行なった後、冷間圧延を行・なうことを特徴とする
チタン板の製造方法。
(1) When the average crystal grain size of the titanium soundboard is X (1 m) and the diameter of the cold rolling roll is Y (ms), the relationship between the two should be adjusted so that it satisfies the following formula %, and 0 .4■ A method for producing a titanium plate, which comprises performing cold rolling after descaling using a thin VB-plated plastic material having a volume equal to or less than that of a φ sphere.
JP14216381A 1981-09-08 1981-09-08 Manufacture of titanium plate Granted JPS5842761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14216381A JPS5842761A (en) 1981-09-08 1981-09-08 Manufacture of titanium plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14216381A JPS5842761A (en) 1981-09-08 1981-09-08 Manufacture of titanium plate

Publications (2)

Publication Number Publication Date
JPS5842761A true JPS5842761A (en) 1983-03-12
JPS6257705B2 JPS6257705B2 (en) 1987-12-02

Family

ID=15308821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14216381A Granted JPS5842761A (en) 1981-09-08 1981-09-08 Manufacture of titanium plate

Country Status (1)

Country Link
JP (1) JPS5842761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544263A (en) * 1977-06-13 1979-01-12 Hitachi Ltd Method and apparatus for controlling rolling mill
JPS62267458A (en) * 1986-05-13 1987-11-20 Kobe Steel Ltd Manufacture of titanium plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544263A (en) * 1977-06-13 1979-01-12 Hitachi Ltd Method and apparatus for controlling rolling mill
JPS62267458A (en) * 1986-05-13 1987-11-20 Kobe Steel Ltd Manufacture of titanium plate

Also Published As

Publication number Publication date
JPS6257705B2 (en) 1987-12-02

Similar Documents

Publication Publication Date Title
US4715903A (en) Aluminum offset coil, and method for its production
JPH0839103A (en) Manufacture of cold rolled stainless steel strip
JP2018001249A (en) Method for producing titanium blank for hot rolling
WO2020003784A1 (en) Method for producing titanium material for hot rolling and method for producing hot-rolled material
JPS5842761A (en) Manufacture of titanium plate
JP7448859B2 (en) titanium material
US3489618A (en) Hot rolling explosion-bonded stainless steel/carbon steel clads
CN114945699B (en) Method for producing a surface-hardened and surface-finished steel sheet
JPH02185959A (en) Production of hot dip galvanized steel sheet having superior vividness
JPS61117291A (en) Manufacture of cr stainless steel plate
JPH04280953A (en) Galvannealed steel sheet and its production
JP2862949B2 (en) Manufacturing method of aluminum plate for fin
JPH0941123A (en) Nitriding method for die steel for aluminum extrusion
JPS62137106A (en) Manufacture of high luster stainless steel strip
JPH0237912A (en) Method of drawing titanium and titanium base alloy pipe
JPH04184711A (en) Titanium base for magnetic disk and manufacture thereof
JPH1071404A (en) Manufacture of stainless steel strip for spring with satisfactory gloss
JPS6123697A (en) Method for cold rolling dense hexagonal metal sheet
JPH08225964A (en) Aluminum material excellent in brilliance and its production
JPH1036985A (en) Aluminum material excellent in brightness and its production
SU856658A1 (en) Method of producing magnetic disc substrate
JPS626703A (en) Production of stainless steel sheet prevented of uneven gloss
JPS61249602A (en) Production of thin ferritic stainless steel sheet having excellent surface characteristic
SU947200A1 (en) Method for surface hardening of metal workpieces
JPH0871603A (en) Production of cold rolled stainless steel strip excellent in surface gloss