JPS5841783B2 - Static induction transistor logic semiconductor integrated circuit device - Google Patents
Static induction transistor logic semiconductor integrated circuit deviceInfo
- Publication number
- JPS5841783B2 JPS5841783B2 JP52037408A JP3740877A JPS5841783B2 JP S5841783 B2 JPS5841783 B2 JP S5841783B2 JP 52037408 A JP52037408 A JP 52037408A JP 3740877 A JP3740877 A JP 3740877A JP S5841783 B2 JPS5841783 B2 JP S5841783B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- integrated circuit
- semiconductor integrated
- main surface
- circuit device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 18
- 230000006698 induction Effects 0.000 title claims description 5
- 230000003068 static effect Effects 0.000 title claims description 5
- 239000002184 metal Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 238000005036 potential barrier Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002353 field-effect transistor method Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H01L27/0214—
Landscapes
- Junction Field-Effect Transistors (AREA)
- Logic Circuits (AREA)
Description
【発明の詳細な説明】
この発明は周波数特性を改良した静電誘導トランジスタ
ロジックC以下5ITLという)半導体集積回路装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a static induction transistor logic (hereinafter referred to as 5ITL) semiconductor integrated circuit device with improved frequency characteristics.
半導体集積回路の高密度化、高集積度化に対して素子間
の分離が不要、工程数が簡単であるなどの理由からMO
S 、FET方式が主に用いられてきた。Due to the high density and high integration of semiconductor integrated circuits, there is no need to separate elements, and the number of steps is simple.
The S, FET method has been mainly used.
バイポーラ方式、MO8方式の電気性能を総合的に比較
する上で重要な影響をもつバイポーラ方式のベース層と
MO8方式のチャンネル層形成を考えると、バイポーラ
方式のベース層の精密制御はMO8方式のチャンネル長
の制御よりも容易で、それだけ高速化の達成も容易であ
り、製造上派生する問題も少ないので、素子間の分離、
工程数の多さなどの問題が解決されればより床机に高速
、高周波でも使用可能な高密度、高集積度化半導体集積
回路の出現は必至である。Considering the formation of the base layer of the bipolar system and the channel layer of the MO8 system, which have an important influence on the comprehensive comparison of the electrical performance of the bipolar system and the MO8 system, precise control of the base layer of the bipolar system is important when comparing the electrical performance of the MO8 system. It is easier than controlling the length, it is easier to achieve higher speeds, and there are fewer problems in manufacturing, so it is easier to control the separation between elements.
If problems such as the large number of steps are solved, it is inevitable that high-density, highly integrated semiconductor integrated circuits that can be used on floor desks at higher speeds and higher frequencies will emerge.
バイポーラ方式における上記の問題を改善する方法とし
て、従来横形PNP)ランジスタと縦形NPN)ランジ
スタの複合構造を用い、小数キャリアの制御を利用した
I I L (I ntegrated J nj e
c−tion Logic )、あるいは横型PNP)
ランジスタと縦型静電誘導型トランジスタの複合構造を
用い、小数キャリアの制御を利用した5ITL(Sta
ticI nduction T ransitor
Logic )が提案されている。As a method to improve the above-mentioned problems in the bipolar system, a composite structure of a conventional horizontal PNP transistor and a vertical NPN transistor is used, and I
c-tion Logic) or horizontal PNP)
5ITL (Sta
ticI induction Transitor
Logic) has been proposed.
この発明は前述のように5ITL構成の半導体集積回路
装置に関するものであるが、第1図すに示す従来の5I
TLの理解を容易にするため、先ず第1図aに示す従来
から周知のIILの構造について説明し、これと対比し
ながら従来の5ITLについて説明することにする。As mentioned above, the present invention relates to a semiconductor integrated circuit device having a 5ITL configuration.
In order to facilitate understanding of the TL, the structure of the conventionally known IIL shown in FIG. 1a will be explained first, and the conventional 5ITL will be explained in comparison with this.
第1図aはIILの基本ゲート構造を示すもので、+
図において、1はn 型半導体基板、2はn千手導体基
板1上に気相成長法等で形成されたn型半導体層、3は
n型半導体層2内にその主面2aを含んで形成されたP
型ベース領域、4はP型ベース領域3内に前記主面2a
を含んで形成された複数のn生型コレクタ領域、5はn
型半導体層2内にその主面2aを含みかつP型ベース領
域3と離隔して形成されたP型インジェクタ領域、■□
はインジェクタ領域5に接続されたインジェクタ端子、
BはP型ベース領域3に接続された入力端子、C□、C
2は複数のn生型コレクタ領域に夫々接続されたマルチ
コレクタ出力端子である。Figure 1a shows the basic gate structure of IIL, in which 1 is an n-type semiconductor substrate, 2 is an n-type semiconductor layer formed on the n-senju conductor substrate 1 by vapor phase growth, etc. 3 is a P formed in the n-type semiconductor layer 2 including its main surface 2a.
A type base region 4 has the main surface 2a in the P type base region 3.
a plurality of n-type collector regions formed including n
A P-type injector region that includes the main surface 2a of the semiconductor layer 2 and is separated from the P-type base region 3;
is an injector terminal connected to the injector area 5,
B is an input terminal connected to the P-type base region 3, C□, C
2 is a multi-collector output terminal connected to a plurality of n-type collector regions, respectively.
100は前記5,2.3で形成される横型pnp)ラン
ジスタで、定電流源および負荷として働く。Reference numeral 100 denotes a horizontal pnp (pnp) transistor formed by the above-mentioned elements 5 and 2.3, which functions as a constant current source and a load.
110は前記1〜4で形成される縦形のnpn)ランジ
スタで、スイッチングトランジスタとして働く。Reference numeral 110 denotes a vertical NPN (npn) transistor formed by the above-mentioned elements 1 to 4, which functions as a switching transistor.
なか、図中イは正孔、口は電子を表わし、各々の振舞な
示す。In the figure, ``A'' represents a hole, and ``A'' represents an electron, and the behavior of each is shown.
第1図すはS ITLの基本ゲート構造を示すもので、
図において、11は第2領域となるn生型の半導体基板
、12は半導体基板11上に気相成長法等で形成された
不純物濃度が1013〜1014/cm”と低濃度のn
型の第1の領域、13は第1の領域12内にその主面1
2aを含んで形成された複数のn生型の第3の領域、1
4は第1の領域12内にその主面12aを含み、第3の
領域13を囲繞しかつ第3の領域13よりも深く形成さ
れたP型の1018/cm”の高不純物濃度の第4の領
域である。Figure 1 shows the basic gate structure of S ITL.
In the figure, reference numeral 11 denotes an n-type semiconductor substrate serving as a second region, and reference numeral 12 denotes an n-type semiconductor substrate formed on the semiconductor substrate 11 by a vapor phase growth method, etc., with an impurity concentration as low as 1013 to 1014/cm.
The first region, 13, of the mold has its major surface 1 within the first region 12.
A plurality of n-type third regions formed including 2a, 1
4 includes its principal surface 12a within the first region 12, surrounds the third region 13, and is formed deeper than the third region 13. This is the area of
このように第4の領域12と第4の領域14とに不純物
濃度の差を与えることにより、第4の領域12でのチャ
ンネル長の制御が容易でかつ広い制御可変範囲が与えら
れ、さらに第4の領域14に電圧が印加されない状態で
も第3の領域13下の第4の領域12には空乏層へがつ
ながって>J、チャンネルはピンチオフ状態にある。By providing a difference in impurity concentration between the fourth region 12 and the fourth region 14 in this way, the channel length in the fourth region 12 can be easily controlled and a wide control variable range can be provided. Even when no voltage is applied to the fourth region 14, the fourth region 12 below the third region 13 is connected to the depletion layer >J, and the channel is in a pinch-off state.
この時チャンネル内には高電位障壁を生じ、ドレイン電
圧が低い状態ではドレイン電流は流れない。At this time, a high potential barrier is generated within the channel, and no drain current flows when the drain voltage is low.
15は前記第4の領域12内にその主面12aを含み第
4の領域14と離隔して形成されたP型の第5領域、I
sは第5の領域15に接続されたインジェクタ端子、G
は第4領域14に接続された入力端子、Dl、D2は複
数の第3の領域13に夫夫接続されたマルチドレイン端
子である。Reference numeral 15 denotes a P-type fifth region I, which is formed within the fourth region 12 and separated from the fourth region 14, including its main surface 12a.
s is an injector terminal connected to the fifth region 15, G
is an input terminal connected to the fourth region 14, and Dl and D2 are multi-drain terminals connected to a plurality of third regions 13.
なおP型の第4の領域14は、n生型の第3の領域13
0部分を除いて平面的には電気的に接続されている。Note that the P-type fourth region 14 is the n-type third region 13.
They are electrically connected in plan view except for the 0 portion.
20は前記14.12.15で形成される横型PNP)
ランジスタで、定電流源および負荷として働く。20 is the horizontal PNP formed in 14.12.15)
A transistor that acts as a constant current source and load.
21は前記IILの縦型NPN)ランジスタに代わり、
前記11〜14で形成される逆動作の縦形静電誘導トラ
ンジスタC以下SITという)でスイッチングトランジ
スタとして働く。21 replaces the vertical NPN) transistor of the IIL,
The reverse-operating vertical static induction transistor C (hereinafter referred to as SIT) formed by the above-mentioned elements 11 to 14 functions as a switching transistor.
第2図ば5ITLの静特性を示す。Figure 2 shows the static characteristics of 5ITL.
図中Iはドレイン電圧vD、ttはドレイン電流ID、
IIIは5ITLインバータを構成するSITのゲート
−ソース間の順方向接合特性、IVはゲート電圧0.6
〜0.7ボルト時の電流特性、■は負荷曲線を示す。In the figure, I is the drain voltage vD, tt is the drain current ID,
III is the forward junction characteristic between the gate and source of SIT constituting the 5ITL inverter, and IV is the gate voltage 0.6
Current characteristics at ~0.7 volts, ■ indicates the load curve.
ドレイン電圧が低いうちはドレイン電流は流れず、■の
曲線に相当する。As long as the drain voltage is low, no drain current flows, which corresponds to the curve (■).
次にゲート電圧を正方向に増加させていくと電位障壁は
下ってくる。Next, when the gate voltage is increased in the positive direction, the potential barrier decreases.
このためにソースからドレインに向って電子が流れ始め
る。For this reason, electrons begin to flow from the source to the drain.
ゲートに0.6〜0.7ボルトを印加した時のVD−I
D特性が第2図左側の曲線■となる。VD-I when applying 0.6 to 0.7 volts to the gate
The D characteristic is the curve ■ on the left side of Figure 2.
この時はP+はゲート−n−チャンネル間の接合は順バ
イアス状態となり、ゲートからチャンネルへ正孔■が注
入される。At this time, the junction between the gate and n-channel of P+ is in a forward bias state, and holes 2 are injected from the gate to the channel.
5ITLは以上の2状態(A、B)を使い、スイッチン
グトランジスタの負荷はIIL同様PnP定電流源であ
り、負荷特性は第2図の曲線■のようになる。The 5ITL uses the above two states (A, B), the load of the switching transistor is a PnP constant current source like the IIL, and the load characteristics are as shown by the curve 2 in FIG.
Aがオフ状態、Bがオン状態である。A is in the off state and B is in the on state.
以上述べた如く、IIL、5ITL両者共pnpトラン
ジスタは定電流源と負荷の両投を果し、電源、負荷とも
に一切抵抗を使用しない。As described above, the pnp transistor in both IIL and 5ITL functions as both a constant current source and a load, and no resistance is used for either the power source or the load.
しかもqpn)ランジスタ、SITに対してはエミッタ
接地、ソース接地、pnp)ランジスタに対してはベー
ス接地構成をとるために共通領域n層が接地され、素子
間の分虹程が全く不要になり、構造的に複雑なものは一
切なくなり、集積密度が従来のバイポーラ方式、MOS
、FET方式にくらべ格段に上る。In addition, the common area n layer is grounded in order to have a common emitter and common source configuration for qpn) transistors and SIT, and a common base configuration for pnp) transistors, and there is no need for any separation distance between elements. There is no need for any structural complexity, and the integration density is similar to that of conventional bipolar and MOS
, much higher than the FET method.
一方性能面からIIL、!:5ITLを比較すると、い
ずれも容量が小さく、論理回路の性能指数である電力・
遅延時間積C以下PD積という)は極めて小さい。On the other hand, IIL from a performance standpoint! :5ITL, they all have a small capacity and a low power consumption, which is the figure of merit of a logic circuit.
The delay time product C (referred to as PD product) is extremely small.
性能に影響を与える容量は、第1図aのIILの場合、
エミッタ・ベース間容量Cebとコレクタ・ベース間容
量Ccbであり、5ITIC)場合はソース・ゲート間
容量Csgとドレイン・ゲート間容量Cdgである。The capacity that affects performance is, in the case of IIL in Figure 1a,
In the case of 5ITIC, the emitter-base capacitance Ceb and the collector-base capacitance Ccb are the source-gate capacitance Csg and the drain-gate capacitance Cdg.
第1図のa、bを比較すると、CebがM接合の容量で
あるのに対し、Csgは主にP+、n−接合である。Comparing a and b in FIG. 1, Ceb is the capacitance of an M junction, whereas Csg is mainly a P+, n- junction.
従って各領域の寸法を同程度とするとCsg < Ce
bとなる。Therefore, if the dimensions of each region are the same, Csg < Ce
It becomes b.
次にIILのコレクタ・べ←ス接合と5ITLのドレイ
ン・ゲート接合を比べると、後者の接合面積はずっと小
さい。Next, when comparing the collector-base junction of IIL and the drain-gate junction of 5ITL, the latter junction area is much smaller.
このためCdg<Ccbとなる。Therefore, Cdg<Ccb.
全体として同程度の寸法の基本ゲート構造で比べると、
5ITLの全容量はIILの全容量の1/10程度とな
り、低電流領域のPD積はこの容量比例し、0.01〜
0.001PJ(ビュジュール)が可能になる。Comparing basic gate structures with similar overall dimensions,
The total capacity of 5ITL is about 1/10 of the total capacity of IIL, and the PD product in the low current region is proportional to this capacity and is 0.01 to
0.001 PJ (Bujour) is possible.
このように5ITLはMO8FET方式の高密度高集積
化技術を凌駕するバイポーラ方式の新しい集積回路技術
であり、性能面では前述のIILを上廻ることが期待で
きる。In this way, 5ITL is a new bipolar type integrated circuit technology that surpasses the MO8FET type high-density and high-integration technology, and can be expected to exceed the above-mentioned IIL in terms of performance.
本発明は上記5ITL構造で作られた半導体集積回路装
置の改良、特に周波数特性の向上を目的としたもので、
具体的にはゲート領域となる第4の領域14とチャンネ
ルとなる第1の領域12との間を、ショットキバリアダ
イオードc以下SBDという)によってクランプするこ
とにより、ゲートの周波数応答を向上させ、上記目的を
達成させんとするものである。The present invention aims to improve a semiconductor integrated circuit device made with the above-mentioned 5ITL structure, particularly to improve frequency characteristics.
Specifically, the frequency response of the gate is improved by clamping the space between the fourth region 14, which becomes the gate region, and the first region 12, which becomes the channel, with a Schottky barrier diode (hereinafter referred to as SBD). It is an attempt to achieve a goal.
第3図aおよびbは本発明の一実施例を示す5ITL構
成の半導体集積回路装置の断面図および平面図である。FIGS. 3a and 3b are a sectional view and a plan view of a semiconductor integrated circuit device having a 5ITL configuration, showing an embodiment of the present invention.
図において、16は主面12a上の所定部分に形成され
たSiO2等の絶縁膜、17Dはドレイン金属電極、1
7Gはゲート金属電極、17Iはインジェクタ金属電極
で、各々の金属電極は対応する外部電極D # G s
I sに接続され、かつとくにゲート金属電極17G
は、第4の領域14と第1の領域12とにまたかり、第
4の領域14とはオーム性接触領域18bをなし、第1
の領域12とはショットキ障壁領域18aをなすよう形
成される。In the figure, 16 is an insulating film such as SiO2 formed on a predetermined portion of the main surface 12a, 17D is a drain metal electrode, and 1
7G is a gate metal electrode, 17I is an injector metal electrode, and each metal electrode is a corresponding external electrode D#Gs
Is, and especially the gate metal electrode 17G
straddles the fourth region 14 and the first region 12, the fourth region 14 forms an ohmic contact region 18b, and the first region
The region 12 is formed to form a Schottky barrier region 18a.
なおオーム性接触領域18bは、他の領域例えば第5の
領域15にも形成されるが、図示しない。Note that the ohmic contact region 18b is also formed in other regions, such as the fifth region 15, but is not shown.
またショットキ障壁領域18aは、特に本発明の詳細な
説明する都合上、拡大して図示しである。Further, the Schottky barrier region 18a is shown in an enlarged scale especially for the convenience of explaining the present invention in detail.
5ITLの基本ゲートを構成する常時オフタイプのNチ
ャンネルSITは、前述の如くゲート電圧がOでピンチ
オンされており、ゲートバイアスを順方向に印加してい
くにつれてチャンネルとなる第1の領域12の空乏層ハ
が減少し、同時に電位障壁が下が9、ソースとなる第2
の領域11からドレイン領域となる第3の領域13に電
流が流れる。The normally-off type N-channel SIT, which constitutes the basic gate of the 5ITL, is pinched on with the gate voltage O as described above, and as the gate bias is applied in the forward direction, the depletion of the first region 12, which becomes the channel, decreases. The layer C is reduced, and at the same time the potential barrier is lower than 9, and the second layer becomes the source.
A current flows from the region 11 to the third region 13 which becomes the drain region.
しかしゲート領域となる第4の領域14に正の電位を与
えると、第4の領域14と第1の領域12間は順方向に
バイアスされ、わずかではあるがチャンネルとなる第1
の領域12に正孔が注入される。However, when a positive potential is applied to the fourth region 14 which becomes the gate region, the space between the fourth region 14 and the first region 12 becomes forward biased, and the first region which becomes the channel becomes slightly biased.
Holes are injected into the region 12.
この状態から再度ピンチオンさせるために第4の領域1
4の正電位を取9除くと、第1の領域12内に空乏層が
拡がるが、前記第1の領域12に注入された正孔はとの
空乏層の拡がり速度を遅くシ、電位障壁の上昇を阻害す
る。In order to pinch-on again from this state, the fourth area 1
When the positive potential of 4 is removed, a depletion layer expands within the first region 12, but the holes injected into the first region 12 slow down the expansion speed of the depletion layer and reduce the potential barrier. inhibits the rise.
すなわち正孔が消滅することによう第1の領域12内で
空乏層が拡がって電位障壁が上昇し、チャンネルがピン
チオンされる。That is, as the holes disappear, the depletion layer expands within the first region 12, the potential barrier rises, and the channel is pinched on.
第1の領域12の電子濃度は低いので正孔の寿命は長い
。Since the electron concentration in the first region 12 is low, the lifetime of holes is long.
本発明は上述のような第1の領域12にわずかに注入さ
れる正孔の量を更に少なくすることによす、オンからオ
フへのスイッチングオフ時間を更に短縮することを目的
とするもので、第3図に示すように第4の領域14と第
1の領域12との間をSBDでクランプすることにある
。The present invention aims to further shorten the switching-off time from on to off by further reducing the amount of holes injected into the first region 12 as described above. , as shown in FIG. 3, is to clamp the space between the fourth region 14 and the first region 12 with an SBD.
5BDO順方向電圧降下は0.3〜0.51であシ、オ
ン状態の第4の領域14と第1の領域12とは5BDO
順方向電圧降下以上に電圧が印加されることはなく、第
4の領域14と第1の領域12との間の電圧がSBDで
クランプされるので、第1の領域12への正孔の注入も
前記従来の5ITLの如<PN接合を介して注入される
場合に比べ、SITをオンさせるための必要最小限にと
どめることができる。The 5BDO forward voltage drop is 0.3 to 0.51, and the fourth region 14 and the first region 12 in the on state are 5BDO
No voltage is applied higher than the forward voltage drop, and the voltage between the fourth region 14 and the first region 12 is clamped by the SBD, so holes are not injected into the first region 12. Compared to the conventional 5ITL in which the injection is performed through a PN junction, the amount can be kept to the minimum necessary to turn on the SIT.
したがってオン状態からオフ状態に遷移するオフ時、ス
イッチング時間が短縮され、5fTbの動作周波数を向
上させることができる。Therefore, the switching time is shortened during the off-state transition from the on-state to the off-state, and the operating frequency of 5fTb can be improved.
なお前記SBDの順方向電圧降下は、ゲート金属電極1
7GをSBD領域18aとなる第1の領域12上の主面
12aに取付る前に、この主面12aから所定深さの第
4領域12内にN型の原子をイオン注入することにより
ある範囲で調整することができる。Note that the forward voltage drop of the SBD is
Before attaching 7G to the main surface 12a on the first region 12 that becomes the SBD region 18a, N-type atoms are ion-implanted into the fourth region 12 at a predetermined depth from the main surface 12a to form a certain range. It can be adjusted with.
本発明は静電誘導トランジスタロジックのゲート領域と
なる第4領域と、これと隣接するチャンネル領域となる
第4の領域とに接合面が主面と交差する部分に、前記2
つの領域にまたがって形成され前記第1の領域12とは
ショットキ障壁を、また前記第4の領域とはオーム性接
触をなす金属層を備えた静電誘篤トランジスタロジック
半導体集積回路装置で、電力遅延時間積が極めて小さく
、しかも高周波応答が敏速であるという優れた効果を有
する。In the present invention, the above-mentioned 2.
The electrostatic dielectric transistor logic semiconductor integrated circuit device is formed over two regions, and has a Schottky barrier with the first region 12 and a metal layer making ohmic contact with the fourth region. It has excellent effects such as extremely small delay time product and rapid high frequency response.
第1図aはIIL、第1図すは従来の5ITLの動作原
理を示す半導体集積回路構成の断面図、第2図は5IT
L基本ゲートのオン、オン動作および閾値電圧を示す動
作原理図、第3図aおよびbは本発明の一実施例を示す
断面図および平面図である。
図中同一符号は夫々同一または相当部分を示す。
図に卦いて、11・・・・・・第2の領域、12・・・
°゛第1領域、13・・・・・・第3の領域、14・・
・・・・第4の領域%15・・・・・・第5の領域、1
8a・・・・・・SBD領域、17G・・・・・・金属
電極、18b・・・・・・オーム性接触領域。Figure 1a is an IIL, Figure 1 is a cross-sectional view of a semiconductor integrated circuit configuration showing the operating principle of a conventional 5ITL, and Figure 2 is a 5ITL.
FIGS. 3A and 3B are a diagram showing the principle of operation showing ON, ON operation, and threshold voltage of the L basic gate. FIGS. 3A and 3B are a sectional view and a plan view showing an embodiment of the present invention. The same reference numerals in the figures indicate the same or corresponding parts. In the figure, 11... second area, 12...
°゛First area, 13...Third area, 14...
...Fourth area %15...Fifth area, 1
8a...SBD area, 17G...metal electrode, 18b...ohmic contact area.
Claims (1)
し、この第4領域よりも高不純物濃度の第1導電型の第
2の領域とからなる半導体基板の前記第1の領域内に、
その主面を含んで形成され、前記第1の領域よりも高不
純物濃度の第4導電型の第3の領域、前記第1の領域内
にその主面を含みかつ前記第3の領域を囲繞し、前記第
3の領域よりも深く形成された第2導電型の第4の領域
、前記第1の領域内にその主面を含み前記第4の領域と
離隔して形成された第2導電型の第5の領域、前記第4
の領域に囲繞される前記第1の領域と前記第4の領域と
が隣接する部分上の前記主面にまたがって形成され、前
記第1の領域とはショットキ障壁を、前記第4の領域と
はオーム性接触をなす金属層とを備えた静電誘導型トラ
ンジスタロジック半導体集積回路装置。1. The first region of the semiconductor substrate is composed of a first region of the first conductivity type, and a second region of the first conductivity type that is adjacent to the first region and has a higher impurity concentration than the fourth region. within the area,
a third region of a fourth conductivity type formed including the main surface and having a higher impurity concentration than the first region, including the main surface within the first region and surrounding the third region; a fourth region of a second conductivity type formed deeper than the third region; and a second conductivity region including a main surface thereof within the first region and separated from the fourth region. a fifth region of the mold, said fourth region;
The first region and the fourth region are formed straddling the main surface on adjacent portions, and the first region and the fourth region form a Schottky barrier. is a static induction type transistor logic semiconductor integrated circuit device having a metal layer forming an ohmic contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52037408A JPS5841783B2 (en) | 1977-03-31 | 1977-03-31 | Static induction transistor logic semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52037408A JPS5841783B2 (en) | 1977-03-31 | 1977-03-31 | Static induction transistor logic semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53122386A JPS53122386A (en) | 1978-10-25 |
JPS5841783B2 true JPS5841783B2 (en) | 1983-09-14 |
Family
ID=12496690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52037408A Expired JPS5841783B2 (en) | 1977-03-31 | 1977-03-31 | Static induction transistor logic semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5841783B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4633282A (en) * | 1982-10-04 | 1986-12-30 | Rockwell International Corporation | Metal-semiconductor field-effect transistor with a partial p-type drain |
-
1977
- 1977-03-31 JP JP52037408A patent/JPS5841783B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53122386A (en) | 1978-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4199774A (en) | Monolithic semiconductor switching device | |
US6066863A (en) | Lateral semiconductor arrangement for power IGS | |
US4901132A (en) | Semiconductor integrated circuit with switching bipolar transistors having high withstand voltage capability | |
KR920005513B1 (en) | Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method | |
US5631483A (en) | Power device integrated structure with low saturation voltage | |
JPH0357614B2 (en) | ||
JPH0371773B2 (en) | ||
US4072868A (en) | FET inverter with isolated substrate load | |
JPH0732249B2 (en) | High Speed Switching Horizontal Insulated Gate Transistor | |
US4700213A (en) | Multi-drain enhancement JFET logic (SITL) with complementary MOSFET load | |
JP2001156294A (en) | Power mos device and its manufacturing method | |
KR0152345B1 (en) | Hybrid schottky injection field effect transistor | |
US7898029B2 (en) | Semiconductor device internally having insulated gate bipolar transistor | |
US4138782A (en) | Inverter with improved load line characteristic | |
JP2004207733A (en) | Bipolar transistor having majority carrier accumulation layers as sub-collector | |
JPH0560263B2 (en) | ||
US5497011A (en) | Semiconductor memory device and a method of using the same | |
US3855609A (en) | Space charge limited transistor having recessed dielectric isolation | |
EP0316988B1 (en) | Lateral high-voltage transistor | |
JPS5841783B2 (en) | Static induction transistor logic semiconductor integrated circuit device | |
JPS61281557A (en) | Insulated gate semiconductor device | |
JPH06232392A (en) | Dual gate semiconductor device | |
KR102141845B1 (en) | power semiconductor device and method of manufacturing the same | |
JPH04320377A (en) | Insulated gate bipolar transistor | |
JP2916158B2 (en) | Conduction modulation type MOSFET |