JPS5841752A - Manufacture of refractory heat-insulating material - Google Patents

Manufacture of refractory heat-insulating material

Info

Publication number
JPS5841752A
JPS5841752A JP56116874A JP11687481A JPS5841752A JP S5841752 A JPS5841752 A JP S5841752A JP 56116874 A JP56116874 A JP 56116874A JP 11687481 A JP11687481 A JP 11687481A JP S5841752 A JPS5841752 A JP S5841752A
Authority
JP
Japan
Prior art keywords
rice husk
raw material
lime
husk ash
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56116874A
Other languages
Japanese (ja)
Other versions
JPS5844627B2 (en
Inventor
井上憲弘
原尚道
山田英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56116874A priority Critical patent/JPS5844627B2/en
Priority to GB8206229A priority patent/GB2106087B/en
Publication of JPS5841752A publication Critical patent/JPS5841752A/en
Publication of JPS5844627B2 publication Critical patent/JPS5844627B2/en
Priority to SG25986A priority patent/SG25986G/en
Priority to MY8600232A priority patent/MY8600232A/en
Priority to HK29687A priority patent/HK29687A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、耐火断・熱材の製造方法に関するものであり
、さらに詳し゛くいえば、もみがら灰と石灰原料を用い
てケイ酸゛カルシウム水和物を主要構成物とする耐火断
熱材製造する方法及び該耐火断熱材の製造において、も
みがら灰を得る際に生じるもみがらの燃焼熱を利用する
耐火断熱材の製造方法に関するもので□ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fire-resistant insulation/thermal material, and more specifically, the present invention relates to a method for producing a fire-resistant insulation/thermal material. The present invention relates to a method for producing a fire-resistant heat insulating material, and a method for producing a fire-resistant heat insulating material that utilizes the combustion heat of rice husk generated when obtaining rice husk ash in the production of the fire-resistant heat insulating material.

ケイ酸カルシウム水和物には多くの種類があるが、一般
に耐火断熱材として利用さnているものは、主にゾノト
ライト及びトバモライト族であり、こnらはいずれもケ
イ酸原料と石灰原料とを水の存在下において、通常加圧
下で水熱反応させることによって得らnる。
There are many types of calcium silicate hydrates, but those that are generally used as fireproof insulation materials are mainly xonotrite and tobermorite, which are both made from silicic acid raw materials and lime raw materials. is obtained by hydrothermal reaction in the presence of water, usually under pressure.

ところで、耐火断熱材の耐火性能は、主要な構成物であ
るケイ酸カルシウム水和物の種類によって異なり、例え
ば加熱によるケイ酸カルシウム水和物の脱水及び続いて
起る無水ケイ酸カルシウム鉱物への転移に際し収縮率の
小さなゾノトライトが、トバモライト族に比べるとはる
かに優nた耐熱性能を示す。このことは市販さnている
耐火断熱材の耐熱性を比較しても分るように、トバモラ
イト系の650℃に対してゾノトライト系はa50℃で
あり優nた耐熱性を示している。
By the way, the fire resistance performance of fire-resistant insulation materials varies depending on the type of calcium silicate hydrate, which is the main constituent. Zonotlite, which has a small shrinkage rate during transition, exhibits far superior heat resistance performance compared to the tobermorite group. This can be seen by comparing the heat resistance of commercially available refractory heat insulating materials, showing superior heat resistance of 650° C. for tobermorite-based materials and 50° C. for xonotrite-based materials.

この種の耐火断熱材のケイ酸原料として、例えば石英、
ケイ砂、白土、ケイソウ土、シリカダストなどが広く用
いらnるが、特に耐火性に優rtたゾノトライト系耐火
断熱材の製造には、二酸化ケイ素(Sin、)含有率が
高くかつ比表面積の大きなケイ酸原料を用いることが必
要であり、このようなものとしては、例えば石英の微粉
砕物、火山性無定形ケイ酸の微粉砕物、シリカダスト、
ホワイトカーボンなどが挙げられる。しかしながらこn
らの原料資源は、局在することにより企業化に際して立
地条件が制約され、また高価格であるなどの欠点を有し
ている。
Examples of silicic acid raw materials for this type of fireproof insulation include quartz,
Silica sand, white clay, diatomaceous earth, silica dust, etc. are widely used, but in particular, for the production of xonotlite-based fire-resistant insulation materials with excellent fire resistance, materials with a high silicon dioxide (Sin) content and a large specific surface area are used. It is necessary to use large silicic acid raw materials, such as finely ground quartz, finely ground volcanic amorphous silicic acid, silica dust,
Examples include white carbon. However, this
These raw material resources have drawbacks such as localization, which limits the location requirements for commercialization, and high prices.

本発明者らは、このような欠点を克服すべく、安価であ
りかつ容易に入手しうるケイ酸資源を原料とするゾノト
ライト系耐火断熱材の製造方法について鋭意研究を重ね
た結果、農産廃棄物であるもみがらを燃焼して得られる
灰が本目的に最適なケイ酸資源であること及びもみがら
を燃焼する際の発熱量がもみがらIKy当りほぼ33Q
QKca’lに達することから、この熱量を耐火断熱材
製造時の熱源として有効に利用しうろことを見出し、こ
の知見に基づいて本発明を完成するに至った。
In order to overcome these drawbacks, the present inventors have conducted intensive research into a method for producing xonotrite-based fireproof insulation materials that are made from inexpensive and easily available silicic acid resources. The ash obtained by burning rice husk is the best silicic acid resource for this purpose, and the calorific value when burning rice husk is approximately 33Q per IKy of rice husk.
Since the amount of heat reaches QKca'l, it was discovered that this amount of heat could be effectively used as a heat source during the production of fireproof insulation materials, and based on this knowledge, the present invention was completed.

すなわち、本発明は、もみがら灰と石灰原料とを水に懸
濁して水熱反応させ、得らnたケイ酸カルシウム水和物
結晶ヲ底形し、乾燥することを特徴とする耐火断熱材の
製造方法、もみがら灰と石灰原料とを水に懸濁させて型
枠に流し込み、そのま1又は脱型したのちオートクレー
ブに入れ、飽和水蒸気圧下にて加熱硬化させることを特
徴とする耐火断熱材の製造方法、及びこnらの製造方法
によシ耐火断熱材を製造するに当り、該耐火断熱材製造
に必要な熱源として、もみがら灰を得る際に生じるもみ
がらの燃焼熱を利用することを特徴とする耐火断熱材の
製造方法を提供するものである。
That is, the present invention provides a fire-resistant insulation material characterized in that rice husk ash and lime raw material are suspended in water and subjected to a hydrothermal reaction, and the resulting calcium silicate hydrate crystals are shaped and dried. A method for producing fire-resistant heat insulation, characterized by suspending rice husk and lime raw materials in water, pouring into a mold, putting it in an autoclave as it is or after demolding, and curing by heating under saturated steam pressure. In manufacturing the refractory insulation material using these manufacturing methods, the combustion heat of rice husk generated when obtaining rice husk ash is used as a heat source necessary for manufacturing the refractory insulation material. The present invention provides a method for manufacturing a fireproof heat insulating material.

本発明において原料として用いるもみがら灰は、もみが
らを酸化雰囲気中で燃焼させることによって、その重量
の約20%の歩留りで得らnる。このもみがらは、いか
なる産地のものでもすべて利用可能であり、二酸化ケイ
素含有率を高めるために酸化雰囲気下において、燃焼カ
ーボンが残らず、得らnた灰が白色を呈するように焼成
することが望ましい。このようにして得らnた灰中の二
酸化ケイ素含有率は一90数チに達する。
The rice husk ash used as a raw material in the present invention is obtained by burning rice husk in an oxidizing atmosphere at a yield of about 20% of its weight. This rice husk can be used regardless of its origin, and in order to increase the silicon dioxide content, it can be calcined in an oxidizing atmosphere so that no combustion carbon remains and the resulting ash becomes white. desirable. The silicon dioxide content in the ash thus obtained reaches 190-odd units.

もみがらの焼成において、焼成時間を2時間と一定にし
焼成温度を400℃から1000℃まで変えて得られた
シリカの種類をX線回折で調べたところ、400〜60
0℃の焼成温度では非晶質シリカが得られ、800℃で
れこの非晶質シリカの一部がクリストバライトに結晶化
したものがさらに1000℃ではクリストバライトとト
リジマイトの混合物が生成していた。また温度を800
℃と一定にして焼成時間を1時間から16時間まで変え
たところ、2時間までは非晶質シリカであったが、4時
間でクリストバライトへの結晶化が始まり、8〜16時
間でクリストバライトとトリジマイトノ混合物に結晶化
した。
When burning rice husk, the type of silica obtained by keeping the baking time constant at 2 hours and changing the baking temperature from 400℃ to 1000℃ was investigated by X-ray diffraction, and it was found that 400-60
At a firing temperature of 0°C, amorphous silica was obtained, at 800°C a part of this amorphous silica crystallized into cristobalite, and at 1000°C, a mixture of cristobalite and tridymite was formed. Also increase the temperature to 800
When the firing time was varied from 1 hour to 16 hours while keeping the temperature constant at °C, it was amorphous silica up to 2 hours, but crystallization to cristobalite started after 4 hours, and cristobalite and tridymite were formed within 8 to 16 hours. It crystallized into a mixture of

すなわち、もみがら灰中の二酸化ケイ素は、焼成温度が
低いか又は焼成時間が短いと非晶質シリカとなり、焼成
温度が高くかつ焼成時間が長くなるとトリジマイト、ク
リストバライトに結晶化する傾向にあるが、結晶構造と
してよ゛す安定な石英に結晶化しにくいという特徴を有
している。この非晶質シリカ、トリジマイト、クリスト
バライトは、いずnも石英に比較すると水熱反応性は格
段に高く、ケイ酸カルシウム水和物合成用に通常用いら
扛る石英質原料に比較して、極めて優れた原料であると
いえる。
In other words, silicon dioxide in rice husk ash tends to become amorphous silica when the firing temperature is low or the firing time is short, and when the firing temperature is high and the firing time is long, it tends to crystallize into tridymite and cristobalite. It has a characteristic that it is difficult to crystallize into quartz, which has a stable crystal structure. These amorphous silica, tridymite, and cristobalite all have much higher hydrothermal reactivity than quartz, and compared to quartz raw materials normally used for the synthesis of calcium silicate hydrate. It can be said that it is an extremely excellent raw material.

また、もみがらの焼成によって得られた灰は、焼成前の
もみがらの形態を保持して多孔質かつ高い比表面積を有
するため、被粉砕性が極めて高いのが特徴である。
Furthermore, the ash obtained by burning rice husks retains the form of the rice husks before burning and is porous and has a high specific surface area, so it is characterized by extremely high pulverizability.

ところで、耐火断熱材に用いるケイ酸原料はすべて微粉
末の形で用いる必要があシ、従来用いらnているケイ酸
原料は被粉砕性が低いので、粉砕コストがかなり高くつ
く欠点を有しているが、ケイ酸原料としてもみがら灰を
用いnば、その高い被粉砕性によって粉砕コストヲ大幅
に低減しうる。
By the way, all silicic acid raw materials used for fireproof insulation materials must be used in the form of fine powder, and the conventionally used silicic acid raw materials have a low pulverizability, so they have the disadvantage that the pulverization cost is quite high. However, if rice husk ash is used as the silicic acid raw material, the grinding cost can be significantly reduced due to its high pulverizability.

本発明方法における他方の原料である石灰原料は、水酸
化カルシウム0a(OH)、として反応に寄与する必要
があシ、このようなものとしては、例えば消石灰、生石
灰、カーバイド滓などが挙げられる。
The lime raw material, which is the other raw material in the method of the present invention, must contribute to the reaction as calcium hydroxide Oa (OH), and examples of such materials include slaked lime, quicklime, and carbide slag.

本発明方法における水熱反応には、体)微粉砕したもみ
がら灰と石灰原料を水中に均一に分散させて行う方法と
、CB)水に分散したこnらの原料の配合スラリーを型
枠に流し込み、そのままか又は脱型したのち行う方法が
ある。
The hydrothermal reaction in the method of the present invention includes two methods: (1) a method in which finely ground rice husk ash and lime raw materials are uniformly dispersed in water, and (CB) a method in which a mixed slurry of these raw materials dispersed in water is used in a mold. There are two methods: pour it into a mold and do it as is or after removing it from the mold.

こnらの方法において、もみがら灰と石灰原料の配合割
合は目的とするケイ酸カルシウム水和物の種類によって
異なるが、ゾノトライトを目的とする場合はCa/Si
モル比として0.8〜1.2、トバモライト系を目的と
する場合は0.5〜1.0の範囲が望ましい、なお、も
みがら灰と石灰原料との最適配合割合は、もみがら灰の
粒度及び結晶化度によって異なり、粒度が非常に小さい
場合はCa/Siモル比は若干大きく、また結晶化度が
高い場合も若干大きくするのがよい。
In these methods, the blending ratio of rice husk ash and lime raw materials varies depending on the type of calcium silicate hydrate that is desired, but when the purpose is to produce xonotlite, Ca/Si
The molar ratio is preferably in the range of 0.8 to 1.2, and 0.5 to 1.0 if tobermorite type is desired.The optimum blending ratio of rice husk ash and lime raw material is determined by the ratio of rice husk ash and lime raw material. The Ca/Si molar ratio varies depending on the grain size and crystallinity; if the grain size is very small, the Ca/Si molar ratio should be slightly larger, and if the crystallinity is high, the Ca/Si molar ratio should be slightly larger.

また、目的とする製品性能を得るためには、必要に応じ
てもみがら灰と石灰原料混合物に石英、ケイ砂−粘土な
どの慣用のケイ酸原料、アルミノケイ酸原料、補強繊維
及びシラスバルーンやパーライトなどの軽量フィラーを
添加してもよい。
In addition, in order to obtain the desired product performance, it is necessary to add conventional silicic acid raw materials such as quartz, silica sand-clay, aluminosilicate raw materials, reinforcing fibers, shirasu balloons and perlite to the rice husk and lime raw material mixture. You may add lightweight fillers such as.

補強繊維としては、例えば石綿、岩綿Jラス繊維、セラ
ミックファイバー、炭素繊維、金属繊維、パルプ、綿、
各種合成繊維などが挙げらnlこnらは単独又は混合し
て用いることができる。
Examples of reinforcing fibers include asbestos, rock wool J-lass fiber, ceramic fiber, carbon fiber, metal fiber, pulp, cotton,
Various synthetic fibers can be used alone or in combination.

水熱反応における(A)(7)方法においては、生成ケ
イ酸カルシウム水和物の結晶成長を促進するために、ス
ラリー濃度を低目にとることが好ましく、cのスラリー
液tかきまぜ機構付オー)クレーブなどの反応容器に入
れ、通常140C以上に加熱して数時間保持すればケイ
酸カルシウム水和物が生成する。この場合、ゾノトライ
ト系結晶を得るためには、反応温度を18o〜260’
Cの範囲に設定するのが望ましい。この反応におけるか
きまぜの目的は、反応系を均一に保って結晶の成長を促
進させることにあるので常時かきまぜることが望ましい
が、所望に応じて反応初期のみがきまぜて均一スラリ一
層を形成させたのち、かきまぜ全停止して静置下で結晶
の成長を図るという方法を用いてもよい。
In method (A) (7) in the hydrothermal reaction, in order to promote crystal growth of the produced calcium silicate hydrate, it is preferable to keep the slurry concentration low. ) Calcium silicate hydrate is produced by placing the mixture in a reaction vessel such as aclave, heating it to a temperature of usually 140C or higher, and holding it for several hours. In this case, in order to obtain xonotrite crystals, the reaction temperature must be set at 18o~260'
It is desirable to set it within the range of C. The purpose of stirring in this reaction is to keep the reaction system homogeneous and promote crystal growth, so it is desirable to stir constantly, but if desired, stir only at the beginning of the reaction to form a single layer of uniform slurry. Alternatively, a method may be used in which the stirring is completely stopped and the crystal growth is allowed to occur while the mixture is left standing.

この水熱反応後のスラリーに、必要に応じてさらに前記
の補強繊維や軽量フィラーなどを添加混合して所望の形
状に成形したのち、乾燥すnば目的とする耐火断熱材が
得られる。成形方法として通常用いられている方法、例
えば流し込成形、加圧成形、抄造成形、押出成形などの
方法を使用しうる。また、成形性をよくするために粘土
類、ポルトランドセメント、石灰などの無機質や、樹脂
エマルジョン、メチルセルロースなどのN機M添加して
もよい。
After this hydrothermal reaction, the slurry is further mixed with the above-mentioned reinforcing fibers, lightweight fillers, etc. as needed, molded into a desired shape, and then dried to obtain the desired fireproof heat insulating material. As a molding method, commonly used methods such as casting molding, pressure molding, paper molding, extrusion molding, etc. can be used. Further, in order to improve moldability, inorganic materials such as clays, Portland cement, and lime, and N/M such as resin emulsions and methylcellulose may be added.

また、水熱反応における(B)の方法では、原料配合ス
ラリーを型枠に流し込み、そのままか又は脱型したのち
、オートクレーブに入れ、飽和水蒸気圧下に・て加熱硬
化させたのち、乾燥して目的とする耐火断熱材を得る。
In addition, in method (B) for hydrothermal reaction, the raw material blend slurry is poured into a mold, either as it is or after being demolded, placed in an autoclave, heated and cured under saturated steam pressure, and then dried to achieve the desired purpose. Obtain a fire-resistant insulation material.

この方法では型枠中におけるスラリーの沈降を防止する
ために、もみがら灰は特に細かく粉砕し、ある種の粘土
や樹脂エマルジョンなどの粘性付与剤を添加することが
望ましい。
In this method, in order to prevent settling of the slurry in the mold, it is desirable that the rice husk ash be particularly finely pulverized and a viscosity imparting agent such as a certain type of clay or resin emulsion be added.

さらに、不発明の製造方法においては、多量の熱量を必
要とする水熱反応と成形体乾燥用の熱源として、もみが
ら灰を得る際に生じるもみがらの燃焼熱(もみがらI 
Ky当クシ約3300Keal)を有効利用することが
できる。したがって製造コストの大幅な引下げが可能と
なる。
Furthermore, in the uninvented manufacturing method, the combustion heat of rice hus generated when obtaining rice husk ash (rice husk I
You can make effective use of the amount (approximately 3,300 keels). Therefore, manufacturing costs can be significantly reduced.

本発明に用いるもみがら灰は安価で容易に入手すること
ができ、かつ粉砕し易い上に、水熱反応性の高い優几た
ケイ酸資源でちゃ、これを用いることによって軽量かつ
熱伝導率の低い耐火断熱材が得られる。さらに不発明の
製造方法においては、もみがら灰を得る際に生じるもみ
がらの燃焼熱を有効利用しうる。したがって本発明方法
は、農産廃棄物であるもみがらの燃焼熱及び灰の両方を
有効利用する極めて経済的価値の高い方法といえる。
The rice husk ash used in the present invention is inexpensive, easily available, easy to crush, and is an excellent silicic acid resource with high hydrothermal reactivity. A fire-resistant insulation material with low heat resistance can be obtained. Furthermore, in the uninvented manufacturing method, the heat of combustion of rice husk generated when obtaining rice husk ash can be effectively utilized. Therefore, the method of the present invention can be said to be an extremely economically valuable method that effectively utilizes both the combustion heat of rice husk and ash, which are agricultural wastes.

次に実施例によって不発明をさらに詳細に説明する。Next, the invention will be explained in more detail with reference to Examples.

実施例1 もみがらを酸化雰囲気中で600℃で焼いたところ白色
で非晶質のもみがら灰が得らnた。そのSiO□含M率
は93.0チであった。こrtを粒径20μm以下に粉
砕し、Oa/81モル比が1.0になるように生石灰を
混合し、重量基準で24倍量の水を加え、電磁かきまぜ
式オートクレーブに入n1かきまぜ速度300rpm 
、 190℃で8時間反応させたところ針状によく発達
したゾノトライト結晶が得られた。補強のためにスラリ
ー中の固形分に対して重量基準で10%の石綿を加え均
一に分散させたのち、−枠に流し込んで5Kp/dで加
圧成形し60℃で乾燥したところ、かさ比重0.25の
軽量硬化体が得られた。同硬化体の加熱下における線収
縮率を測定したところ、加熱温度700℃では0.5%
、850℃で0.7東 1000℃でも0.7矛と小さ
く、この硬化体は寸法安定性に丁ぐれた耐火断熱材であ
った。
Example 1 When rice husk was baked at 600° C. in an oxidizing atmosphere, white amorphous rice husk ash was obtained. Its SiO□ content M ratio was 93.0ch. Grind this to a particle size of 20 μm or less, mix quicklime so that the Oa/81 molar ratio is 1.0, add 24 times the amount of water on a weight basis, and place it in an electromagnetic stirring autoclave at n1 stirring speed of 300 rpm.
When the reaction was carried out at 190°C for 8 hours, well-developed needle-shaped xonotrite crystals were obtained. For reinforcement, asbestos was added to the slurry in an amount of 10% by weight based on the solid content in the slurry, and after uniformly dispersing the slurry, it was poured into a frame, pressure molded at 5 Kp/d, and dried at 60°C. A lightweight cured product of 0.25 was obtained. When the linear shrinkage rate of the cured product was measured under heating, it was 0.5% at a heating temperature of 700°C.
, 0.7 East at 850°C and 0.7 East at 1000°C, and this cured product was a fireproof heat insulating material with excellent dimensional stability.

実施例2 実施例1における成形加圧に20に9/aAとする以外
はまった〈実施例1と同様にして硬化体を得た。
Example 2 A cured product was obtained in the same manner as in Example 1 except that the molding pressure in Example 1 was changed to 20 to 9/aA.

得らnた硬化体はかさ比重が0,43でおり、この硬化
体の加熱下における線収縮率は加熱温度700℃で0,
6%、850℃で0.6%、1000℃で0.7%と小
さく優nた耐火断熱材であつ友。
The obtained cured product has a bulk specific gravity of 0.43, and the linear shrinkage rate of this cured product under heating is 0.43 at a heating temperature of 700°C.
6%, 0.6% at 850°C, and 0.7% at 1000°C, making it an excellent fireproof and insulating material.

実施例3 実施例1において用いたもみがら灰をさらに800℃で
1〜16時間加熱したところ、もみがら灰を構成する非
晶質シリカは加熱時間が長くなるにつnてクリストバラ
イト及びトリジマイトに結晶化した。得らnたもみがら
灰を同一条件で粉砕したところ、加熱時間が長くなって
結晶化したもみがら灰はど被粉砕能は低下し平均粒径は
大きくなった。微粉砕もみがら灰の各々について実施例
1と同様の条件で軽量硬化体を成形、乾燥し、かさ比重
、加熱下における線収縮率を測定したところ、@1表に
示すような性能含有する耐火断熱材が得ら扛た。
Example 3 When the rice husk ash used in Example 1 was further heated at 800°C for 1 to 16 hours, the amorphous silica constituting the rice husk ash crystallized into cristobalite and tridymite as the heating time became longer. It became. When the obtained rice husk ash was pulverized under the same conditions, the heating time became longer and the crystallized rice husk ash had a lower pulverizing ability and a larger average particle size. For each of the finely pulverized rice husk ash, a lightweight cured product was molded and dried under the same conditions as in Example 1, and the bulk specific gravity and linear shrinkage rate under heating were measured. The insulation was removed.

なお、水熱反応生成物の同定はX@粉末回析法により行
った。狭巾の記号で結晶形態に関するA。
Note that the hydrothermal reaction product was identified by X@ powder diffraction method. A regarding crystal morphology with narrow symbols.

C2Tはそれぞn非晶質シリカ、クリストノくそライト
、トリジマイトの生HX、t−,また反応生成物に関す
るX、Toはそnぞれゾノトライト及びトノ(モライト
の生成を表わす。
C2T represents the raw HX and t- of amorphous silica, cristonolite, and tridymite, respectively;

実施例4 クリストバモライト及びトリジマイトに結晶化したもみ
がら灰を微粉砕して、原料配合Oa/’Eliモル比を
0685〜1.0と変え、それ以外は実施例1と同様に
して硬化体を得た。得らnた硬化体の性能を第2表、に
示す。
Example 4 Rice husk ash crystallized into cristobamorite and tridymite was finely pulverized, and a cured product was produced in the same manner as in Example 1 except that the raw material blend Oa/'Eli molar ratio was changed from 0685 to 1.0. Obtained. The performance of the obtained cured product is shown in Table 2.

なお、表中の記号は実施例3と同様の意味を弄わす。Note that the symbols in the table have the same meanings as in Example 3.

特許出願人工業技術院長 石板誠− (官 庁 手 続) 手  続  補  正  書 昭和57年1月 3日 特許庁長官島田春樹殿 一事件の表示  昭和56年特許願第1f6Fl’1、
発明の名称  耐火断熱材の製造方法 補正をする者 事件との関係   特許出願人 東京都千代田区霞が関1丁目3番1号 (114)  工業技術院長 石板誠−−補正により増
加する発明の数   0、補正の対象  発明の詳細な
説明の欄8、補正の内容 (1)明細書第3ページ第14行の「−ゾノトライト系
は850」を「−−ゾノトライト系は1000」に訂正
します。
Patent Applicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology (Government Office Procedures) Proceedings Amendment Document January 3, 1981 Indication of the Case of Tonoichi Haruki Shimada, Commissioner of the Patent Office 1981 Patent Application No. 1f6Fl'1,
Name of the invention Relationship to the case of a person amending the manufacturing method of fireproof insulation materials Patent applicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology, 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) -- Number of inventions increased by the amendment 0, Subject of amendment Column 8 of Detailed Description of the Invention, Contents of amendment (1) In the 3rd page, line 14 of the specification, "-850 for the xonotrite series" is corrected to "--1000 for the xonotrite series."

(2)同第9ページ第5行の「−一、スラリー濃度ヲ低
目に一−一」を[−、スラリー濃度を高目に一刊に訂正
します。
(2) On page 9, line 5, "-1, slurry concentration is low, 1-1" is corrected to [-, slurry concentration is high, 1-1].

昭和57年10月12日 特許庁長官 若 杉 和 夫  殿 1、事件の表示 昭和56年特許願第116874号 2、発明の名称 耐火断熱材の製造方法 3、補正をする者 事件との関係 特許出願人 東京都千代田区霞が関1丁目3番1号 (114)工業技術院長 石 坂 誠 −4、指定代理
人 自    発 6、補正により増加する発明の数 0 8補正の内容 (1)明細書第6ページ第9行の「2時間までは」を「
1時間までは」に、また同ページ第9〜10行の「4時
間で」を「2時間で」にそれぞれ訂正します。
October 12, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 116874, filed in 1982,2, Name of the invention, Method for manufacturing fireproof insulation material3, Person making the amendment, Relationship to the case Patent Applicant Makoto Ishizaka, 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) Director-General of the Agency of Industrial Science and Technology -4, Designated Agent Voluntary 6 Number of inventions increased by amendment 0 8 Contents of amendment (1) Description No. On page 6, line 9, change “up to 2 hours” to “
"Up to 1 hour" and "4 hours" in lines 9-10 of the same page should be changed to "2 hours."

(2)同第12ページ第11行の「・・・であった。」
の次に改行して以下の文章を加入し−t’t−0[実施
例2      ′ 補強のための石綿を添加しない点を除き、他は全〈実施
例1と同様の条件で硬化体の製造を行った。
(2) "It was..." on page 12, line 11.
Next to ``Example 2'', insert a new line and add the following sentence. Manufactured.

このようにして得られた硬化体は、かさ比重が0.29
であり、また異なる温度での加熱下における線収縮率は
、650℃で0チ、850℃で0.8%、1000℃で
0.8%と小さく、優れた耐火断熱材であることが分っ
た。」 (3)同第12ページ第12行の「実施例2」を「実施
例3」に訂正します (4)同第13ページ第1行の「実施例3」を「実施例
4」に訂正します。
The cured product thus obtained has a bulk specific gravity of 0.29.
Moreover, the linear shrinkage rate under heating at different temperatures is as low as 0 at 650°C, 0.8% at 850°C, and 0.8% at 1000°C, indicating that it is an excellent fire-resistant heat insulating material. It was. (3) "Example 2" in the 12th line of the same page 12 is corrected to "Example 3" (4) "Example 3" in the 1st line of the same page 13 is changed to "Example 4" Correct.

(5)同第13ページ下よシロ行の「X線粉末回折法」
を「X線粉末回折法」に訂正します。
(5) "X-ray powder diffraction method" at the bottom of page 13
will be corrected to "X-ray powder diffraction method".

(6)同第15ページ第1行の「実施例4」“を「実施
例5」に、また同ページ第7行の「実施例3」を「実施
例4」にそれぞれ訂正します。
(6) "Example 4" in the first line of page 15 will be corrected to "Example 5," and "Example 3" in line 7 of the same page will be corrected to "Example 4."

(7)同第16ページ第2表の次に以下の文章を加入し
ます。
(7) Add the following sentence next to Table 2 on page 16.

1実施例6 クリストバライト及びトリジマイトに結晶化したもみが
ら灰を微粉砕したものに、Ca/siモル比が1.0に
なるように生石灰を混合し、固体重量の4〜6倍の水を
加えて十分にかきまぜ均質なスラリーとなし、型枠に流
し込み、オートクレーブ中190℃の飽和水蒸気圧下で
24時間養生したものを、60℃で乾燥したところかさ
比重0.5の硬化体が得られた。この硬化体は耐熱性の
高いゾノトライトを基材とするものであった。」(8)
  同第15ページ第2行の「クリストバライト」ヲ「
クリストバライト」に訂正します。
1 Example 6 Quicklime was mixed with finely ground rice husk ash crystallized into cristobalite and tridymite so that the Ca/si molar ratio was 1.0, and 4 to 6 times the solid weight of water was added. The slurry was thoroughly stirred to form a homogeneous slurry, poured into a mold, and cured in an autoclave at 190°C under saturated steam pressure for 24 hours. When dried at 60°C, a cured product with a bulk specific gravity of 0.5 was obtained. This cured product was based on xonotlite, which has high heat resistance. ” (8)
“Cristobalite” in the second line of page 15 is “
Cristobalite” has been corrected.

Claims (1)

【特許請求の範囲】 1 もみがら灰と石灰原料とを水に懸濁し、水熱反応さ
せ、得られ念ケイ酸カルシウム水和物結晶f、成形し、
乾燥することを特徴とする耐火断熱材の製造方法。 2 もみがら灰及び石灰原料混合物に、ケイ酸原料、ア
ルミノケイ酸原料、補強繊維及び軽量充て特許請求の範
囲WJ1項記載の方法。 3 もみがら灰と石灰原料とを水に懸濁して型枠に流し
込み、そのままか又は脱型したのちオートクレーブに入
n1飽和水蒸気圧下において加熱硬化させることを特徴
とする耐火−熱材の製造方法。 4 もみがら灰及び石灰原料混合物に、ケイ酸原料、ア
ルミノケイ酸原料、補強繊維及び軽量充てん材の中から
選ばれた少なくとも1種を混合する特許請求の範囲@3
項記載の方法。 5 もみがら灰と石灰原料jとを水に懸濁し、水熱反最
させ、得られたケイ−カルシウム水和物結晶’!1−J
iJE形し、乾燥して耐火断熱材を製造するか、あるい
はもみがら灰と石灰原料とを水に懸濁させて型枠に流し
込み、そのままか又は脱型したのちオートクレーブに入
れ′、飽和水蒸気圧下において加熱硬化させて耐火断熱
材を製造するに当シ、該耐火断熱材製造に必要な熱源と
して、もみがら灰を得る際に生じるも呪からの燃焼熱を
利用することを特徴とする耐火断熱材の製造方法。
[Claims] 1. Rice husk ash and lime raw material are suspended in water and subjected to a hydrothermal reaction, and the obtained calcium silicate hydrate crystal f is formed,
A method for producing a fireproof insulation material characterized by drying. 2. The method according to claim WJ1, in which a mixture of rice husk and lime raw materials is added with a silicic acid raw material, an aluminosilicate raw material, reinforcing fibers, and a lightweight filler. 3. A method for producing a refractory/thermal material, which comprises suspending rice husk and lime raw material in water, pouring the suspension into a mold, and heating and curing it in an autoclave either as it is or after demolding, under n1 saturated steam pressure. 4 Claims @3 in which at least one selected from silicic acid raw materials, aluminosilicate raw materials, reinforcing fibers, and lightweight fillers are mixed into the rice husk and lime raw material mixture.
The method described in section. 5. Rice husk ash and lime raw material J are suspended in water and subjected to hydrothermal reaction to obtain silica-calcium hydrate crystals'! 1-J
Either the rice husk ash and lime raw material are suspended in water and poured into a mold, either as is or after being demolded, placed in an autoclave and then dried under saturated steam pressure. A fire-resistant insulation material characterized in that the heat of combustion from rice husks generated when obtaining rice husk ash is used as a heat source necessary for manufacturing the fire-resistant insulation material by heating and curing it in the process. Method of manufacturing wood.
JP56116874A 1981-07-23 1981-07-23 Manufacturing method of fireproof insulation material Expired JPS5844627B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56116874A JPS5844627B2 (en) 1981-07-23 1981-07-23 Manufacturing method of fireproof insulation material
GB8206229A GB2106087B (en) 1981-07-23 1982-03-03 Method for the preparation of calcium silicate hydrates by hydrothermal reaction and refactory materials for thermal insulation thereof
SG25986A SG25986G (en) 1981-07-23 1986-03-18 Method for the preparation of calcium silicate hydrates by hydrothermal reaction and refractory materials for thermal insulation
MY8600232A MY8600232A (en) 1981-07-23 1986-12-30 Method for the preparation of calcium silicate hydrates by hydrothermal reaction and refractory materials for thermal insulation
HK29687A HK29687A (en) 1981-07-23 1987-04-15 Method for the preparation of calcium silicate hydrates by hydrothermal reaction and refractory materials for thermal insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116874A JPS5844627B2 (en) 1981-07-23 1981-07-23 Manufacturing method of fireproof insulation material

Publications (2)

Publication Number Publication Date
JPS5841752A true JPS5841752A (en) 1983-03-11
JPS5844627B2 JPS5844627B2 (en) 1983-10-04

Family

ID=14697764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116874A Expired JPS5844627B2 (en) 1981-07-23 1981-07-23 Manufacturing method of fireproof insulation material

Country Status (5)

Country Link
JP (1) JPS5844627B2 (en)
GB (1) GB2106087B (en)
HK (1) HK29687A (en)
MY (1) MY8600232A (en)
SG (1) SG25986G (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145947A (en) * 1983-09-30 1985-08-01 ユニサ−チ リミテツド Construction material and manufacture
CN102259876A (en) * 2010-05-28 2011-11-30 延增国 Preparation method of calcium silicate friction material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270015A (en) * 1986-11-07 1993-12-14 Board Of Regents, The University Of Texas System Apparatus for removing sulfur from sulfur containing gases
US5401481A (en) * 1986-11-10 1995-03-28 Board Of Regents, The University Of Texas System Processes for removing acid components from gas streams
EP0943590A1 (en) * 1998-03-10 1999-09-22 Redco S.A. Material based on gypsum, process for its production and fire break construction element comprising said material
US6444186B1 (en) * 2000-01-28 2002-09-03 Chk Group, Inc. Composition and method of forming low-carbon, amorphous siliceous ash from siliceous waste material
CN103880028A (en) * 2012-12-19 2014-06-25 辽宁法库陶瓷工程技术研究中心 Method for synthesizing xonotlite powder by utilizing rice hull ash or straw ash crop wastes
ES2480841B1 (en) * 2012-12-26 2015-05-20 Universidad Se Sevilla Optimized procedure for the preparation of calcium silicates with the capacity to capture CO2, silicates thus obtained and their use
EP3904309A1 (en) * 2020-04-28 2021-11-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing autoclaved aerated concrete using silica raw materials having higher solubility than quartz
GB2623583A (en) * 2022-10-21 2024-04-24 Adaptavate Ltd Construction product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145947A (en) * 1983-09-30 1985-08-01 ユニサ−チ リミテツド Construction material and manufacture
CN102259876A (en) * 2010-05-28 2011-11-30 延增国 Preparation method of calcium silicate friction material

Also Published As

Publication number Publication date
GB2106087B (en) 1985-04-24
MY8600232A (en) 1986-12-31
JPS5844627B2 (en) 1983-10-04
SG25986G (en) 1988-05-20
GB2106087A (en) 1983-04-07
HK29687A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
US2665996A (en) Hydrous calcium silicates and method of preparation
JPS6283386A (en) Heat insulator for organism generating silica
JPS5841752A (en) Manufacture of refractory heat-insulating material
CN108467217A (en) A kind of Novel wall body heat insulation material and preparation method thereof
CN106082884B (en) A kind of insulating light wall slab and preparation process containing solid waste cinder
CN111592289A (en) Mesoporous material composite calcium silicate fireproof plate and preparation method thereof
US2922719A (en) Structural clay products and method of making the same
CN115259823B (en) Lightweight high-strength low-thermal-conductivity aerated concrete and preparation method thereof
JPS61232256A (en) Structural material for low melting point metal casting appliance and manufacture
JP2993359B2 (en) Method for producing recycled calcium silicate insulation
CN1307083A (en) Method for mfg. thermal insulation and fireproof calcium silicate material
JPH06305854A (en) Lightweight molded article of calcium silicate
JPH0524102B2 (en)
JPH0627022B2 (en) Method for producing calcium silicate-based compact
JP2782198B2 (en) Calcium silicate compact
JPS6183667A (en) Manufacture of heat resistant molded body
JPS6013991B2 (en) Manufacturing method of fireproof insulation material
JPS6036360A (en) Amorphous chaff ash and manufacture of hydraulic cement andforming material from chaff ash as raw material
JPS5824393B2 (en) High heat-resistant insulation material and its manufacturing method
JPS61141656A (en) Manufacture of calcium silicate formed body
JPS59141452A (en) Manufacture of calcium silicate molded body
JPS62235274A (en) Manufacture of calcium silicate formed body
JPS6310110B2 (en)
JPS61186256A (en) Manufacture of calcium silicate molded body
JPS6213299B2 (en)