JPS5841642A - Plastic working method - Google Patents

Plastic working method

Info

Publication number
JPS5841642A
JPS5841642A JP14064381A JP14064381A JPS5841642A JP S5841642 A JPS5841642 A JP S5841642A JP 14064381 A JP14064381 A JP 14064381A JP 14064381 A JP14064381 A JP 14064381A JP S5841642 A JPS5841642 A JP S5841642A
Authority
JP
Japan
Prior art keywords
temperature
workpiece
working
metallic material
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14064381A
Other languages
Japanese (ja)
Inventor
Masashi Mizuno
正志 水野
Katsuhiro Kojima
小島 勝洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP14064381A priority Critical patent/JPS5841642A/en
Publication of JPS5841642A publication Critical patent/JPS5841642A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To execute plastic working of a metallic material with extremely high working efficiency, by detecting a phase transformation temperature by which the metallic material causes the largest plastic deformation, and executing the plastic working at said temperature, when heating and working the metallic material. CONSTITUTION:A metallic material to be worked 6 is supported by a fixed chuck 8 and a moving chuck 5, is heated electrically by electricity conductive chucks 8, 9, and its temperature is raised. To the material 6, slight tensile force is put by a cylinder 3, and its size varied as a temperature rises is detected by a length detector 7 connected to the moving chuck 5. It is inputted to a servo- unit 13 together with a signal of a tension length setting device 12, it is inputted to a working temperature controller 14 together with a detecting temperature by a detector 17 of the material 6 in that case, electrification is controlled so that the material 6 reaches a phase transformation temperature at which a degree of plasticity is highest, by a heating device 15, and after that, the material is worked by operating a moving lever 4 by the cylinder 3.

Description

【発明の詳細な説明】 この発明は金属材料を温間あるいは熱間において塑性加
工する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for plastically working metal materials in warm or hot conditions.

金属材料が相変態を起こすとき、超塑性現象を呈し著し
く大きな塑性変形が可能となることはよく知られてお)
、新しい塑性加工法として工業的な利用が始ま〕つつあ
る。
It is well known that when a metal material undergoes a phase transformation, it exhibits a superplastic phenomenon and is capable of significantly large plastic deformation.)
is beginning to be used industrially as a new plastic working method.

いっぽう金属材料の相変態開始温度は構成元素の変動に
よって微妙に異なるとと本に、熱処理履歴中加工履歴に
よっても変動し、さらに相変態温度へ到達するまでの加
熱あるいは冷却速度の大小によっても左右される。tた
金属材料を工業的規模で比較的短詩曲内に加熱又は冷却
制御しようとすると通常の測温方法では測温上の遅れや
測定誤差を生じ易く、安定した条件を再現することが困
難である。例えば放射温度計では材料の表面状態による
放射率の変動があル、熱電対方式では被測温体と熱電対
との結合□の仕方による変動が伴なう。
On the other hand, the phase transformation start temperature of metal materials is said to vary slightly depending on variations in the constituent elements, but it also varies depending on the heat treatment history and processing history, and it also varies depending on the heating or cooling rate until the phase transformation temperature is reached. be done. When attempting to control the heating or cooling of metal materials on an industrial scale within a relatively short range, conventional temperature measurement methods tend to cause temperature measurement delays and measurement errors, making it difficult to reproduce stable conditions. be. For example, in a radiation thermometer, the emissivity fluctuates depending on the surface condition of the material, and in a thermocouple method, it fluctuates depending on the way the temperature-measuring object and the thermocouple are connected.

これにたいし超塑性が現出される湿度範囲は比較的狭く
、したがって、被加工材がそのような温度となった時点
とその被加工材に塑性加工手段を施す時点とのタイミン
グを合致させることには困難を伴ない、工業的規模で大
量生産される□製品には応用が困難であった。
On the other hand, the humidity range in which superplasticity appears is relatively narrow, so the timing at which the workpiece reaches such a temperature and the time at which the plastic processing method is applied to the workpiece must be matched. This method is particularly difficult to apply to products that are mass-produced on an industrial scale.

本発明はこのような技術上の困難にだいし被加工材の化
学組成や材料履歴などによる内的要因や測定上の外的−
因に左右されることなく、きわめて容易かつ高精度に被
加工材が上記のような温度になった時点と塑性加工手段
を施す時点とを合致させることができて、その加工能率
を極めて向上させることができるようにしたff+、!
IF:、加工方法を提供しようとするものである。
The present invention has been developed to overcome these technical difficulties, including internal factors such as the chemical composition of the workpiece and material history, as well as external factors in measurement.
It is possible to match the point at which the workpiece reaches the above-mentioned temperature and the point at which the plastic working method is applied extremely easily and with high precision, regardless of any factors, and the processing efficiency is greatly improved. ff+ has made it possible to do this!
IF:, which attempts to provide a processing method.

以下本願の実施例を示す図面について説明する。The drawings showing the embodiments of the present application will be described below.

第11図は被加工材の塑性加工の一例として棒状の被加
工材を引張加工する為の機構を略示する図面である。こ
の図において、1は基台、2はノ、(台1に固定された
固定チャック、3け加工装置として例示するシリンダー
、4はその進退杆、5けイ(追打4の先端に増刊けた可
動チャックである。6は被加工材で、非オーステナイト
系の鋼材その他の種々の金属材料であシ、その一端及び
曲端は固定チャック2、可動チャック5に夫々掴1れて
いる。
FIG. 11 is a drawing schematically showing a mechanism for tensile working a rod-shaped workpiece as an example of plastic working of the workpiece. In this figure, 1 is the base, 2 is the (fixed chuck fixed to the base 1, the cylinder is exemplified as a 3-piece machining device, 4 is its advancing/retracting lever, and 5 is the extra edition at the tip of the additional punch 4. A movable chuck is a workpiece 6, which is made of non-austenitic steel or other various metal materials, and one end and a curved end of the workpiece are gripped by a fixed chuck 2 and a movable chuck 5, respectively.

7は寸法検出器の一例として示す長さ検出器で基台1に
取付けてあり、°その検出端であるところの可動部7a
は可動チャック5に連結しである。8゜9は通電チャッ
クで、被加工側6において前記チャック2.5によシ掴
まれた部分に近接した部分を掴むようになっている。次
に、11はrIW度検出器で、被加工材6の温度検出を
行なうようにしだものであシ、例えば放射温度針が用い
られる。νは□ 引張長さ設定器で、被加工材6の引張
加工すべき長さを予め設定しておくようにした装置であ
る。
Reference numeral 7 denotes a length detector shown as an example of a dimension detector, which is attached to the base 1, and its detection end is a movable part 7a.
is connected to the movable chuck 5. Reference numeral 8.9 denotes an energized chuck, which grips a portion of the workpiece side 6 that is close to the portion gripped by the chuck 2.5. Next, reference numeral 11 denotes an rIW temperature detector, which is designed to detect the temperature of the workpiece 6, and uses, for example, a radiation temperature needle. ν is a tensile length setting device, which is a device for setting the length of the workpiece 6 to be tensile processed in advance.

13はサーボユニット、14は加工温度制御装置、巧は
加熱用)ば源を夫々示す。
Reference numeral 13 indicates a servo unit, 14 indicates a processing temperature control device, and Takumi indicates a heating source.

次に上記構成のものによる被加工材6の加工について説
明する。先ず被加工材6の昇流制御を行なう。即ち加熱
用電源和から通電チャック8.9を介して被加工側6に
通電して被加工材6を加熱する。すると被加工材6の温
度は次第に上昇すると共K、その長さも変化(伸長)す
る。上記温度の変化は/II漬度検出器11で検出する
。また長さの変化は、その変化によって可動チャック5
が想像線で示されるように移動し、その移動を長さ検出
器7で検出することによって行なう。尚この長さの計測
は連続計測でも随時計測でもよい。
Next, processing of the workpiece 6 using the above-described structure will be explained. First, the flow up of the workpiece 6 is controlled. That is, the workpiece 6 is heated by applying electricity from the heating power source to the workpiece side 6 via the current-carrying chuck 8.9. Then, as the temperature of the workpiece 6 gradually increases, its length also changes (elongates). The change in temperature is detected by the /II soakage detector 11. In addition, the change in length is determined by the change in the movable chuck 5.
is moved as shown by an imaginary line, and this movement is detected by the length detector 7. Note that this length measurement may be performed continuously or at any time.

」:記のようにして液加]二材6の温度が上昇する過程
において被加工材6の長さく伸び、)は例えば第2図に
示されるように変化する。この変化の過程において、被
加工材6の組織状態が急変するとそれが長さの変化の急
変となって図示されるように現われる。この急変を検出
したならば、次に列−温制御から最適加工温度制御に移
る。尚上記急変点の検出は、第8図(イ)(第2図にお
ける伸びの急変部分の拡大図)に示されるような長さく
伸び)の計測信号を微分して第8図(0)K示されるよ
うな変イヒ率の波形を得、それが負となる点(又は急激
に変化する点)を検出することによって行なう。これら
の操作は検出器7の検出信号をサーボユニット13を通
して制御装置14に与え、その装置1V14で行なう。
In the process of increasing the temperature of the second material 6, the length of the workpiece 6 is elongated, and the length of the workpiece 6 changes as shown in FIG. 2, for example. During this process of change, if the structure of the workpiece 6 suddenly changes, this appears as a sudden change in length, as shown in the figure. Once this sudden change is detected, the process moves from row-temperature control to optimum processing temperature control. The above sudden change point can be detected by differentiating the measurement signal of the long elongation as shown in Fig. 8 (A) (an enlarged view of the sudden change in elongation in Fig. 2). This is done by obtaining a waveform of the change rate as shown and detecting the point where it becomes negative (or the point where it changes rapidly). These operations are performed by applying the detection signal of the detector 7 to the control device 14 through the servo unit 13, and by the device 1V14.

次に最適温度加工制御は以下のように行なう。上記被加
工材6の長さの急変を検出したならばその時点での温度
検出器ticよる検出温度を^(準温度T1とし、その
温度から所定の?M度ΔTだけ被加工側6の温度を上昇
すべく電源15から被加工#A6への通電を継続して被
加工材6に所定の熱エネルギーを与える。上記所定の温
度ΔTは被加工側6の材質、寸法、加工条件等に応じて
設定されるものであ〕、上記所定の熱エネルギーはその
温度ΔTに応じて定まるものである。このように所定の
熱エネルギーを被加工材6に付加的に加えることによっ
て、被加工材6は最適加工温度T2となる。
Next, optimal temperature processing control is performed as follows. If a sudden change in the length of the workpiece 6 is detected, the temperature detected by the temperature detector tic at that point is defined as quasi-temperature T1, and the temperature of the workpiece side 6 is increased by a predetermined ?M degree ΔT from that temperature. In order to increase the temperature, the power source 15 continues to energize the workpiece #A6 to give a predetermined thermal energy to the workpiece 6. The above-mentioned predetermined temperature ΔT depends on the material, dimensions, processing conditions, etc. of the workpiece side 6. ], and the predetermined thermal energy is determined according to the temperature ΔT.In this way, by additionally applying the predetermined thermal energy to the workpiece 6, the workpiece 6 becomes the optimum processing temperature T2.

即ち最も塑性度の高い組織状態となる。そしてそのよう
な状態となったならば、電源15から被加工材6への通
電を停止する。以上のような制御は例えば予め制御装[
14に設定しておかれる。尚上記昇温制御及び最適加工
温度制御の過程においてはシリンダー3によシ被加工材
6に軽い引張力を加えておくことによシ、被加工材6の
塑性度が高くなっても即ち柔かくなっても、その重さに
よる撓みを防止することができる。
In other words, the structure has the highest degree of plasticity. When such a state occurs, the power supply from the power source 15 to the workpiece 6 is stopped. For example, the above-mentioned control may be performed using a control device [
It is set to 14. In addition, in the process of temperature increase control and optimum processing temperature control, by applying a light tensile force to the workpiece 6 through the cylinder 3, even if the workpiece 6 has a high degree of plasticity, it remains soft. Even if it is, it is possible to prevent bending due to the weight.

」二記のようにして被加工材6が最も塑性度の高い組織
状態となったならば、次に加工を行なう。即ちシリンダ
ー3における進退杆4を後退させて被加工材6を引張シ
、その引伸加工を行なう。この場合、長さ検出、器7で
検出される信号と引張長さ設定器12から出力される信
号とをサーボユニット氏に入力し、そのサーボユニット
Bの制御によってシリンダー3を作動させることにより
、被加工材6を設定器】2に予め設定した寸法まで引き
伸ばすととができる。また上記引伸し加工は、被加工材
6が最も塑性度の高い組織状態となっている為、小さい
引伸力を要するのみで行なうことができる。
2. Once the workpiece 6 has reached the structural state with the highest degree of plasticity, processing is carried out next. That is, the advancing/retracting rod 4 in the cylinder 3 is moved back to pull the workpiece 6, thereby enlarging it. In this case, by inputting the signal detected by the length detection device 7 and the signal output from the tension length setting device 12 to the servo unit B, and operating the cylinder 3 under the control of the servo unit B, The workpiece 6 can be stretched to a dimension preset on the setting device 2. Moreover, since the workpiece 6 has a structure with the highest degree of plasticity, the above-mentioned stretching process can be carried out by only requiring a small stretching force.

尚以上の各工程における被加工材6の長さ検出は長さ検
出器7で行なったが、その検出はシリンダー3における
進退杆4の動きを直接に検出、ないしはシリンダー3に
流入、流出する流体の量を検出することによって行なっ
ても良い。
The length of the workpiece 6 in each of the above steps was detected by the length detector 7, but the detection can be done by directly detecting the movement of the advancing/retracting rod 4 in the cylinder 3, or by directly detecting the movement of the advancing/retracting rod 4 in the cylinder 3. This may be done by detecting the amount of

次に、上記のような加工に際しての種々の態様を示せば
次のようなものがある。
Next, various aspects of the above-mentioned processing are as follows.

(a)被加工材に前述の如き操作を適用する温度変化の
過程としては、前述の如き加熱による昇温過程の他に加
熱された被加工材の冷却による降温過程があり、被加工
材の寸法変化は正負いずれの過程であってもよい。
(a) The process of temperature change in which the above operations are applied to the workpiece includes, in addition to the temperature raising process due to heating as described above, a temperature decreasing process due to cooling of the heated workpiece. The dimensional change may be a positive or negative process.

(b)被加工材を加熱する場合、その方法としては前記
直接通電加熱の他に炉による加熱(ffjI)F気加熱
、誘導加熱など)など周知の方法の適用が可能である。
(b) In the case of heating the workpiece, in addition to the above-mentioned direct current heating, well-known methods such as furnace heating (FFJI) F-air heating, induction heating, etc.) can be applied.

(e)被加工材の寸法変化の急変を検出した後、その被
加工材に足にわずかの所定のエネルギーを加えて被加工
材を最も塑性度の高い組織状態に至らしめる方法として
は次のような方法がある。
(e) After detecting a sudden change in the dimensions of a workpiece, the following method is used to bring the workpiece into the most plastic structural state by applying a small amount of predetermined energy to the workpiece. There is a method like this.

(1)寸法変化の急変点を検出後、材質、寸法、加工条
件により定1つた電力を所定の適切な時間だけ供給する
(1) After detecting a sudden turning point of dimensional change, a constant electric power is supplied for a predetermined appropriate time depending on the material, dimensions, and processing conditions.

(2)被加工材の昇温速度を一定に制御してそのような
昇温を所定時間だけ継続させる1、 (8)基準速度T1で温度検出器を補正すると共に目標
値をセットし、温度検出器の検出値で制御する。
(2) Control the temperature increase rate of the workpiece at a constant rate and continue such temperature increase for a predetermined time 1. (8) Correct the temperature detector at the reference rate T1 and set the target value to adjust Controlled by the detection value of the detector.

(基準温度T1を基準としての相対的な温度制御であり
、また昇lll′11温度ΔTも0〜50℃と小さい値
である為その制御は精度よく行なえる。)(4)前記r
ll、を度変化の過程が降温過程である場合には、上記
エネルギーは負の値(冷却)であシ、その制御の方法は
前記(2)、(8)と同様の方法その他任意の方法が可
能である。
(This is a relative temperature control based on the reference temperature T1, and the temperature increase ΔT is a small value of 0 to 50°C, so the control can be performed with high precision.) (4) The above-mentioned r
When the process of temperature change is a temperature-lowering process, the above energy is a negative value (cooling), and the control method is the same as (2) and (8) above or any other arbitrary method. is possible.

(5)前記エネルギーはその値が00場合(一定温度の
状態で一定時間保持する場合)もある。
(5) The value of the energy may be 00 (the case where the temperature is maintained for a certain period of time).

(d)被加工材の加工は必ずしも最も塑性度の高い組織
状態で行なわなくてもよく、前記寸法変化の急変を検出
した時点では既に被加工材は非常に塑性度の高い組織状
態となっている為、その時点で加工を行なってもよい。
(d) Processing of the workpiece does not necessarily have to be carried out in the most plastic structural state; by the time the sudden change in dimension is detected, the workpiece has already reached a very plastic structural state. Therefore, processing may be performed at that point.

(fl)被加工材を加工することによってテーパーロッ
ドを製造しようとする場合には、前記引張加工に先だっ
て被加工材に対しその軸方向にわたって11性度に勾配
をもたせればよい。!P!性度に勾配をもたせる手段と
しては、例えば被加工材の一部を冷却する方法その他を
用いることができる1、またその付与する塑性度の勾配
は、引張加工後に所要の形状のテーパーロッドが得られ
るよう適宜に定めるとよい。
(fl) When manufacturing a tapered rod by processing a workpiece, the workpiece may be given an 11-degree gradient in its axial direction prior to the tension processing. ! P! As a means for creating a gradient in plasticity, for example, a method such as cooling a part of the workpiece can be used1.The gradient in plasticity that is imparted can be used to create a tapered rod with a desired shape after tensile processing. It is advisable to set appropriate conditions to ensure that

以上のようにこの・発明にあっては、被加工材6を塑性
加工する場合、その被加工材60寸法変化の急変を捕え
、その時点と、被加工材6に塑性加工手段を施す時点と
のタイミングを合致させるものであるから、上記被加工
材6を非常に塑性加工され易くなった状態で塑性加工す
ることができ、加工能率を極めて向上させる上に大きな
効果がある。
As described above, in this invention, when plastically working the workpiece 6, a sudden change in the dimensions of the workpiece 60 is detected, and the time point and the time when the plastic working means are applied to the workpiece 6 are determined. Since the timings of the above are matched, it is possible to plastically work the workpiece 6 in a state in which it is very easy to be plastically worked, which has a great effect on extremely improving the working efficiency.

しかも本発明にあっては、上記のように被加工材6が非
常に塑性加工され易い状態となった時点を捕える場合、
上記の如く被加工材60寸法変化という被加工材6の内
部の状態に起因する性質を捕えるものであるから、被加
工材6が上記の如く非常に塑性加工され易い状態となっ
たことを極めて正確に捕えることができる。即ち、被加
工材の外見だけでなくその内部の組織状態が確実にその
ような状態となったことを捕えることができる特長があ
る。このこと、は”上記加工能率の向上を確実ならしめ
る上に効果がある。
Moreover, in the present invention, when detecting the point in time when the workpiece 6 is in a state where it is highly susceptible to plastic working as described above,
As described above, since it captures the property caused by the internal state of the workpiece 6, which is the dimensional change of the workpiece 60, it is extremely clear that the workpiece 6 is in a state where it is extremely susceptible to plastic working as described above. can be captured accurately. In other words, it has the advantage of being able to reliably detect not only the external appearance of the workpiece but also the internal structural state of the workpiece. This is effective in ensuring the above-mentioned improvement in processing efficiency.

しかも」−記のように被加工材6の内部の状態に起因す
る性質を捕えるものであっても、本発明においてはその
VI:質として寸法変化を捕えるものであるから、被加
工材6がどのような材料のものであっても上記急変点の
検出を可能にでき、本発明の方法は夫々材質の異なる種
々の被加工材にわたって広い適応性のある特長がある。
In addition, even if the property determined by the internal state of the workpiece 6 is captured as shown in "-", in the present invention, the dimensional change is captured as the VI: quality, so the workpiece 6 is It is possible to detect the above-mentioned sudden change point regardless of the material, and the method of the present invention has the advantage of being widely applicable to various workpieces made of different materials.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は被加工材の
加工機構の一例を示す図、第2図は時間と温度及び伸び
との関係を示すグラフ、第8図は伸びの拡大図及び伸び
率の変化を示すグラフ。 6・・・被加工材、7・・・長さ検出器。 (11) 220− 第2図 第3図
The drawings show an example of the present application, and Fig. 1 is a diagram showing an example of a processing mechanism for a workpiece, Fig. 2 is a graph showing the relationship between time, temperature, and elongation, and Fig. 8 is an enlargement of elongation. Figures and graphs showing changes in elongation rate. 6...Work material, 7...Length detector. (11) 220- Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 被加工材に温度変化を与えて温間あるいは熱間で塑性加
工するに当たシ、上記温度変化を与えられている被加工
材の寸法の変化を計測し、その計測値の急激な変化点を
検出し、その検出された時点の温度またはその時点の湿
度を越えた高度において上記被加工材を塑性加工するこ
とを特徴とする□塑性加工方法。
When performing warm or hot plastic working by applying a temperature change to the workpiece, measure the change in the dimensions of the workpiece that has been subjected to the temperature change, and find the point at which the measured value suddenly changes. □ A plastic working method, characterized in that the above-mentioned workpiece is plastically worked at an altitude exceeding the temperature or humidity at the time of detection.
JP14064381A 1981-09-07 1981-09-07 Plastic working method Pending JPS5841642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14064381A JPS5841642A (en) 1981-09-07 1981-09-07 Plastic working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14064381A JPS5841642A (en) 1981-09-07 1981-09-07 Plastic working method

Publications (1)

Publication Number Publication Date
JPS5841642A true JPS5841642A (en) 1983-03-10

Family

ID=15273435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14064381A Pending JPS5841642A (en) 1981-09-07 1981-09-07 Plastic working method

Country Status (1)

Country Link
JP (1) JPS5841642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236226A1 (en) * 2007-12-13 2010-10-06 Aisin Takaoka Co., Ltd. Energization heating device and hot press forming device having it and conduction heating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236226A1 (en) * 2007-12-13 2010-10-06 Aisin Takaoka Co., Ltd. Energization heating device and hot press forming device having it and conduction heating method
EP2236226A4 (en) * 2007-12-13 2012-09-19 Aisin Takaoka Ltd Energization heating device and hot press forming device having it and conduction heating method

Similar Documents

Publication Publication Date Title
JP5934226B2 (en) Formation of metallic glass by rapid capacitor discharge forging
JP2947362B2 (en) Tube bending equipment
US4012616A (en) Method for metal bonding
RU2010120725A (en) METHOD OF INDUCTIVE HEATING OF METAL PREPARATION
JP2011501366A5 (en)
US8741079B2 (en) Electrical-assisted double side incremental forming and processes thereof
US9951397B2 (en) Apparatus for electrical-assisted incremental forming and process thereof
Hwang et al. Dieless drawing of stainless steel tubes
JPS5841642A (en) Plastic working method
ES2081532T3 (en) PROCEDURE FOR THE COOLING OF A LOAD OF PARTS IN A HEAT TREATMENT PROCESS.
GB2098901A (en) Roll forming a workpiece
EP0062317B1 (en) Method of plastic working of metal materials
US3435182A (en) Welding method
ES291037A1 (en) Method and apparatus for controlling temperature of the workpiece during rolling
JPS6032529B2 (en) Tapered material manufacturing method and device
Okamoto et al. Deformation characteristics of plastics in YAG laser forming
JPS5853340A (en) Plastic working method
CN216226790U (en) Hot rotary swaging device for metal shaft parts
JP2006351477A (en) High-frequency heating device, high-frequency heating method, and surface temperature sensor
JPH1183713A (en) Hot working representation test device
KR100789005B1 (en) Single crystal conversion control
JPS6343727A (en) Twisting method
RU2720289C1 (en) Electrophysical method of increasing strength and mechanical resistance of sheet workpieces from aluminum-magnesium alloys
RU2709067C1 (en) Method of heat-power processing of long axisymmetric parts and device for implementation thereof
Patel et al. Experimental Analysis and Measurement of Chip-Tool Interface Temperature in Turning of Aluminium Alloy