JPS5841617A - Residual stress improving method of pipe or tubular vessel - Google Patents

Residual stress improving method of pipe or tubular vessel

Info

Publication number
JPS5841617A
JPS5841617A JP13864281A JP13864281A JPS5841617A JP S5841617 A JPS5841617 A JP S5841617A JP 13864281 A JP13864281 A JP 13864281A JP 13864281 A JP13864281 A JP 13864281A JP S5841617 A JPS5841617 A JP S5841617A
Authority
JP
Japan
Prior art keywords
external pressure
residual stress
circumferential surface
vessel
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13864281A
Other languages
Japanese (ja)
Inventor
Makoto Takenaka
誠 竹中
Risuke Nayama
理介 名山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13864281A priority Critical patent/JPS5841617A/en
Publication of JPS5841617A publication Critical patent/JPS5841617A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts

Abstract

PURPOSE:To reduce tension residual stress, and to prevent stress corrosion cracking, by applying local external pressure onto several place of the outside circumferential surface of a tubular vessel, moving it in order along the outside circumferential surface, and causing plastic deformation by low pressure. CONSTITUTION:In several places of a tubular vessel 1, an external pressure 2 is applied toward the inside from the outside. Subsequently, the external pressure 2 is removed, the vessel is rotated by some angle, and the external pressure 2 is applied again. This operation is repeated in order, and to the whole outside circumferential surface of the vessel 1, the external pressure 2 is applied. In this way, plastic deformation is generated under the low pressure, tension residual stress is reduced, and stress corrosion cracking is prevented.

Description

【発明の詳細な説明】 本発明は、管又は管状容器の内面の引張残留応力を外圧
負荷により軽減ないしけ圧縮状態にまで改善す乏方法に
関し、特に小さな圧力で、しかも安定して改善すること
のできる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing the tensile residual stress on the inner surface of a pipe or a tubular container by applying an external pressure load or improving it to a compressed state, and in particular, to stably improve the stress at a small pressure. This is related to the method by which this can be done.

プラント配管や管状容器の溶接継手近傍における内面の
残留応力は、通常、引張状態となっている。このため5
CC(応力腐食割れ)が生ずるなどの不都合があった。
Residual stress on the inner surface of plant piping or tubular containers near welded joints is usually in a tensile state. For this reason 5
There were disadvantages such as the occurrence of CC (stress corrosion cracking).

従来、これを改善して管内面の引張残留応力を軽減さら
には圧縮状態とするために、これま(1) でいくつかの方法が提案されている。しかし、これらの
多くハ、板厚方向に温度勾配を生ぜしめるなどの熱的方
法であり、温度分布を制御することが鍾しく、安定した
効果を得にくいという欠点があった。
Conventionally, several methods (1) have been proposed to improve this problem and reduce the tensile residual stress on the inner surface of the tube, and even bring it into a compressed state. However, most of these methods involve thermal methods such as creating a temperature gradient in the thickness direction of the plate, making it difficult to control the temperature distribution and having the disadvantage that it is difficult to obtain a stable effect.

そこで、より安定した効果を得るために、機械的に管の
外面周方向から均一に圧力を加え塑性変形を生ぜ七め、
その効果によって管内面の残留応力を圧縮状態にする方
法が提案されている(特願昭56−’ 29970号参
照)。しかし、この方法のように周方向に均一な外圧を
与えるためには、かなり大きな装置を必要とする欠点が
ある。
Therefore, in order to obtain a more stable effect, we mechanically applied pressure uniformly from the circumferential direction of the outer surface of the tube to cause plastic deformation.
A method has been proposed in which the residual stress on the inner surface of the tube is brought into a compressed state by this effect (see Japanese Patent Application No. 56-29970). However, this method has the drawback of requiring a fairly large device in order to apply a uniform external pressure in the circumferential direction.

本発明は、残留応力改善法として上記の安定した効果の
得られる機械的な方法であって、しかもそれほど大きな
圧力発生を必要としない方法を提供するものである。
The present invention provides a mechanical method for improving residual stress that provides the above-mentioned stable effects and does not require generation of a large pressure.

すなわち本発明は、管又は管状容器の外面の周方向に均
一に外圧を負荷するのではなく、周上の何点かにおいて
局部的に外圧を与え、それ(2) を順次周方向に移動させて行くことによって、管又は管
状容器に塑性変形を生ぜしめ、残留応力を改善する方法
に関するものである。本発明方法によると、均一に加圧
するのではないため、塑性変形を生せしめるに必要な圧
力が比較的小さくてすみ、装置を小さくすることができ
る。
In other words, the present invention does not apply external pressure uniformly in the circumferential direction of the outer surface of a pipe or tubular container, but locally applies external pressure at several points on the circumference and (2) sequentially moves the external pressure in the circumferential direction. The present invention relates to a method for producing plastic deformation in a pipe or a tubular container to improve residual stress. According to the method of the present invention, since pressure is not applied uniformly, the pressure required to cause plastic deformation is relatively small, and the apparatus can be made smaller.

また、後に詳しく説明するように、局所的加圧でよいた
め、ローラーを用いた処理を行うことができ、作業能率
を向上させることができる。
Further, as will be explained in detail later, since local pressure is sufficient, processing can be performed using a roller, and work efficiency can be improved.

以下、添付図面を参照して本発明方法を詳細に説明する
Hereinafter, the method of the present invention will be explained in detail with reference to the accompanying drawings.

第1図(A+(a)〜(d)、(B)は本発明方法の一
実施態様例を示す図である。
FIG. 1 (A+) (a) to (d) and (B) are diagrams showing an embodiment of the method of the present invention.

第1図(AI(al、(b)、(C)・(d)は操作順
序を示すもので、先ず、管又は管状容器(以下、管と略
す)1を図中2で示す2個所において外側から内側に向
けて力(外圧)を加え〔第1図(A)(a) ’]、次
いで外圧をぬき、成る角度だけ回転させて再び外圧を加
える〔第1図(AHb))という操作を1111!次繰
返し〔第1図(AHCJ−(d) ) 、管1の外(5
) 周面全面に外圧2を加えるものである。
Figure 1 (AI (al, (b), (C), (d) shows the operation order. First, the tube or tubular container (hereinafter abbreviated as tube) 1 is placed at two locations indicated by 2 in the figure. The operation of applying force (external pressure) from the outside to the inside [Fig. 1 (A) (a) '], then removing the external pressure, rotating it by the specified angle, and applying external pressure again [Fig. 1 (AHb)) Repeat 1111! times [Figure 1 (AHCJ-(d)), outside tube 1 (5
) External pressure 2 is applied to the entire circumferential surface.

第1図(Blは第1図(AH21)、(b)、(C1−
(dlの縦断面図を示すものである。
Figure 1 (Bl is Figure 1 (AH21), (b), (C1-
(This shows a vertical cross-sectional view of dl.

第2図は本発明方法の他の実施態様例を示す図で、外圧
を加える個所を5個所(第2図中5で示す部分)とし、
外圧は第1図のように一度加えた外圧を一旦抜いて成る
角度だけ回転させて再び加える方式とは異なり、ローラ
5で加えながら回転させる方式としたものである。なお
該図中6はローラ2を保持するケーシングである。
FIG. 2 is a diagram showing another embodiment of the method of the present invention, in which external pressure is applied to five locations (portions indicated by 5 in FIG. 2),
The external pressure is applied by a roller 5 and rotated while being applied, unlike the method shown in FIG. Note that 6 in the figure is a casing that holds the roller 2.

第5図および第4図(A)、(Blけ不発明方法を実機
により実施する際の例を示す概略図である。
FIG. 5 and FIG. 4(A) are schematic diagrams showing an example of implementing the uninvented method using an actual machine.

第5図は油圧ラム5により実施するもの、第4図(A)
、(B)はローラ5により実施するものである。
Fig. 5 shows what is carried out using the hydraulic ram 5, Fig. 4 (A)
, (B) are carried out by the roller 5.

第4図(A)、(B)の場合、ローラ5およびその外側
の管4にテーパをつけておくと、回転するクサビのよう
になり、小さな回転力で大きな(4) 外圧を得ることができる。更に、ローラ6の中心軸と、
管1およびテーパ管4との中心軸を平行にしないで、角
度αを持たせておくと、テーパ管4を片方へ回転させた
時にテーパ管4が軸方向にスライドして押す力が大きく
なるという自己送り作用が得られる。図中6けローラ5
を保持するケーシングであり、第4図(A)は第4図(
Blのn−n線断面矢視図、第4図(Bl I″i第4
図(A)の1−1線断面矢視図である。
In the case of Figures 4 (A) and (B), if the roller 5 and the tube 4 outside it are tapered, they will look like a rotating wedge, and a large (4) external pressure can be obtained with a small rotational force. can. Furthermore, the central axis of the roller 6,
If the center axes of the tube 1 and the tapered tube 4 are not parallel but are made at an angle α, when the tapered tube 4 is rotated in one direction, the tapered tube 4 will slide in the axial direction and the pushing force will increase. A self-feeding effect is obtained. 6 rollers 5 in the diagram
Fig. 4 (A) is a casing that holds the
Bl I″i No. 4
It is a cross-sectional view taken along the line 1-1 in Figure (A).

次に本発明方法の作用、効果について説明する。Next, the functions and effects of the method of the present invention will be explained.

管のn個所に外側から内側に向けて力(外圧)を加えた
時の管の内面および外面の応力分布の変化状況を第5図
(A)〜(D)に示す。
Figures 5(A) to 5(D) show how the stress distribution changes on the inner and outer surfaces of the tube when force (external pressure) is applied to n points on the tube from the outside to the inside.

第5図(Ai〜(D)中、(a)は内面の、tb+は外
面の応力分布を示す図表であり、縦軸は応力σ又はひず
みεp1横軸は角度βである。角度βは第5図(E)に
示すように外圧荷重点■からの角度である。
In Fig. 5 (Ai to (D)), (a) is a chart showing the stress distribution on the inner surface and tb+ is the stress distribution on the outer surface, where the vertical axis is the stress σ or strain εp1, and the horizontal axis is the angle β. As shown in Figure 5 (E), this is the angle from the external pressure load point ■.

第5図(A)の(a)、(b)に示すように外圧荷重(
5) 初期においては、内面(a)では荷重点は近で+(引張
)、荷重点の中間位置で−(圧縮)であり、外面(bl
ではその逆の応力分布となる。
As shown in (a) and (b) of Figure 5 (A), external pressure load (
5) Initially, on the inner surface (a), the load point is + (tension) near the load point, - (compression) at the intermediate position of the load point, and on the outer surface (bl
Then, the stress distribution will be the opposite.

外圧荷重を成る程度以上大きくすると応力の高い所で降
伏がはじまり、初期塑性ひずみ分布は、内面が第5図(
B)の(a)、外面が第5図(B)の(b)のようにな
る。
If the external pressure load is increased beyond a certain level, yielding will begin at places with high stress, and the initial plastic strain distribution will be as shown in Figure 5 (
The outer surface of (a) in B) becomes as shown in (b) of FIG. 5(B).

前記した第1.2図のように外圧荷重個所を移動させな
がら外圧を適度に制御していくと、最終塑性ひずみ分布
は、内面が第5図(C1の(a)、外面が第5図(C)
の(b)のようになる。すなわち、内面(a)では塑性
ひずみが+(伸び)、外面(b)では−(縮み)となる
。従って、内面、外面の最終応力分布(残留応力分布)
は、第5図tD)の(a)、(b)に示すように、内面
(a)で−(圧縮)、外面(1))で+(引張)となる
As shown in Figure 1.2 above, if the external pressure is controlled appropriately while moving the external pressure load location, the final plastic strain distribution will be as shown in Figure 5 (C1 (a) for the inner surface and Figure 5 for the outer surface). (C)
(b). That is, the plastic strain is + (elongation) on the inner surface (a) and - (shrinkage) on the outer surface (b). Therefore, the final stress distribution (residual stress distribution) on the inner and outer surfaces
As shown in (a) and (b) of Fig. 5 tD), the inner surface (a) is - (compression), and the outer surface (1)) is + (tension).

以上説明したように、本発明方法は大きな外圧を必要と
せず、しかも安定して引張残留応力を軽減ないし圧縮状
態にまで改善することができる。
As explained above, the method of the present invention does not require a large external pressure and can stably reduce tensile residual stress or improve it to a compressed state.

(6)(6)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A+(a)〜(d)け本発明方法の一実m態様
例の操作順序を示す図、第1図(B)はその縦断面図、
第2図は本発明方法の他の実施態様例を示す図、第6図
および第4図(A)、(B)け実機による本発明方法の
実施態様例を示す図、第5図(A)〜(DJは本発明方
法により得られる応力分布の変化状況を示す図で、第5
図(A)が外圧荷重初期の応力分布、第5図(Blが初
期塑性ひずみ分布、第5図((lが最終塑性ひずみ分布
、第5図(D)が最終応力分布(残留応力分布)であり
、第5図(A1−(Dlの(alは内面の、(blは外
面の」二記応力分布を示し、第5図(E)は外圧荷重個
所の説明図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − (7) 第1図 第3図
FIG. 1 (A+(a) to (d) is a diagram showing the operation sequence of one embodiment of the method of the present invention, FIG. 1(B) is a longitudinal sectional view thereof,
FIG. 2 is a diagram showing another embodiment of the method of the present invention, FIG. 6 and FIGS. ) to (DJ are diagrams showing changes in stress distribution obtained by the method of the present invention, and the fifth
Figure (A) is the stress distribution at the initial stage of external pressure loading, Figure 5 (Bl is the initial plastic strain distribution, Figure 5 ((l is the final plastic strain distribution, Figure 5 (D) is the final stress distribution (residual stress distribution) , and FIG. 5 (A1-(Dl) (al is the inner surface, (bl is the outer surface)) shows the stress distribution in the two notations, and FIG. 5 (E) is an explanatory diagram of the external pressure load location. 1) Meifuku agent Ryo Hagiwara - (7) Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 管又は管状容器の外周面の数個所に局所的に外圧を加え
、該外圧荷重個所を外周面に沿って順次移動させること
を特徴とする管又は管状容器の残留応力改善方法。
1. A method for improving residual stress in a pipe or tubular container, comprising locally applying external pressure to several locations on the outer circumferential surface of the pipe or tubular container, and sequentially moving the locations loaded with external pressure along the outer circumferential surface.
JP13864281A 1981-09-04 1981-09-04 Residual stress improving method of pipe or tubular vessel Pending JPS5841617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13864281A JPS5841617A (en) 1981-09-04 1981-09-04 Residual stress improving method of pipe or tubular vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13864281A JPS5841617A (en) 1981-09-04 1981-09-04 Residual stress improving method of pipe or tubular vessel

Publications (1)

Publication Number Publication Date
JPS5841617A true JPS5841617A (en) 1983-03-10

Family

ID=15226777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13864281A Pending JPS5841617A (en) 1981-09-04 1981-09-04 Residual stress improving method of pipe or tubular vessel

Country Status (1)

Country Link
JP (1) JPS5841617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121657A (en) * 1983-11-11 1985-06-29 Anelva Corp Secondary electron multiplier
US5180943A (en) * 1989-11-10 1993-01-19 Hamamatsu Photonics K.K. Photomultiplier tube with dynode array having venetian-blind structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121657A (en) * 1983-11-11 1985-06-29 Anelva Corp Secondary electron multiplier
JPH0251211B2 (en) * 1983-11-11 1990-11-06 Anelva Corp
US5180943A (en) * 1989-11-10 1993-01-19 Hamamatsu Photonics K.K. Photomultiplier tube with dynode array having venetian-blind structure

Similar Documents

Publication Publication Date Title
Tennyson The effects of unreinforced circular cutouts on the buckling of circular cylindrical shells under axial compression
Pollock et al. Creep resistance of CMSX-3 nickel base superalloy single crystals
US4730474A (en) Method of relieving residual stress in metal pipe
Toth et al. High pressure tube twisting for producing ultra fine grained materials: a review
Yuan et al. Hydraulic expansion of lined pipe for offshore pipeline applications
JPS5841617A (en) Residual stress improving method of pipe or tubular vessel
Zhao et al. Prediction and control of springback in setting round process for pipe-end of large pipe
Chan et al. The stability of a uniformly compressed ring surrounded by a rigid circular surface
Pépin et al. Prediction of Liner Wrinkling during high strain bending of mechanically lined pipe
Zhang et al. Evolution of Lüders banding under axial loading and reverse loading
FR2417710A1 (en) PROCESS FOR CONSOLIDATION OF AN OBJECT SUBJECT TO DEFORMATION
Yuan et al. On the buckling of mechanically lined pipes under combined tension and bending
Pépin et al. Low cycle fatigue of subsea mechanically lined pipeline with liner imperfections
Mehta et al. Finite element analysis and experimental investigation of sheet metal stretching
Galletly Internal pressure buckling of very thin torispherical shells-a comparison of experiment and theory
JPS61262430A (en) Small r bending bender for aluminum pipe
JPS59169629A (en) Method and apparatus for bending shape
JPS591026A (en) Preventing device of pipe flattening
US3140535A (en) Autofrettage method and apparatus
JP2000002638A (en) Method for water pressure testing of steel pipe
RU1780521C (en) Method for making welded ribbed structures
Martin Roller Burnishing—A Cold Working Tool to Reduce Weld Induced Residual Stress
Sherman et al. Volume minimization of thin plates subject to constraints
ODonnell et al. Stress intensity values in conventional SN fatigue specimens
JPS58120722A (en) Improving method for residual stress of pipe or pipe-like vessel