JPS5840816B2 - Gas insulated X-ray tube equipment - Google Patents

Gas insulated X-ray tube equipment

Info

Publication number
JPS5840816B2
JPS5840816B2 JP4035976A JP4035976A JPS5840816B2 JP S5840816 B2 JPS5840816 B2 JP S5840816B2 JP 4035976 A JP4035976 A JP 4035976A JP 4035976 A JP4035976 A JP 4035976A JP S5840816 B2 JPS5840816 B2 JP S5840816B2
Authority
JP
Japan
Prior art keywords
anode
ray tube
gas
envelope
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4035976A
Other languages
Japanese (ja)
Other versions
JPS52123886A (en
Inventor
敬 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4035976A priority Critical patent/JPS5840816B2/en
Publication of JPS52123886A publication Critical patent/JPS52123886A/en
Publication of JPS5840816B2 publication Critical patent/JPS5840816B2/en
Expired legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Description

【発明の詳細な説明】 本発明はX線管装置に係り、特にガス絶縁X線管装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to x-ray tube devices, and more particularly to gas-insulated x-ray tube devices.

X線管は基本的には陽極及び陽極を有する二極管であっ
て、陽極から放出された電子を陽極−陽極間電位差で加
速し、陽極に衝突させてX線を発生させるが、その際エ
ネルギーの大部分は熱と化すため、この熱の処理が実用
上極めて重要であった。
An X-ray tube is basically a diode tube with an anode and an anode, and electrons emitted from the anode are accelerated by the potential difference between the anodes and collide with the anode to generate X-rays. Since most of the heat is converted into heat, treatment of this heat is extremely important in practical terms.

本発明は、この熱の処理に関するものである。X線管は
高電圧で使用されるため防電型容器(ハウベと称されて
いる)内に収納し、絶縁するのが普通である。
The present invention relates to this heat treatment. Since X-ray tubes are used at high voltages, they are usually housed in an electrically shielded container (called a Haube) and insulated.

X線管を容器内で保持するには固体の支持体を用いるが
、保持される部分以外は冷却を良くするため液体又は気
体の絶縁物で包囲する。
A solid support is used to hold the X-ray tube in the container, but the parts other than the supported parts are surrounded by liquid or gas insulators to improve cooling.

一般には絶縁油や六フッ化イオウ(以下化学式SF6で
表わす。
Insulating oil and sulfur hexafluoride (hereinafter represented by the chemical formula SF6) are generally used.

)を用いる。絶縁を主にガスで行なうものをガス絶縁X
線管装置と呼ぶが、軽量化できる事がその特徴であり、
封じ切りX線管と組み合わせて主に可搬型として用いら
れている。
) is used. Gas insulation
Although it is called a wire tube device, its feature is that it can be lightweight.
It is mainly used as a portable type in combination with a sealed X-ray tube.

絶縁をガスで行なう場合、ガスは比熱及び熱伝導率が小
きいことから一般には十分な冷却を行なうことができな
いのが欠点であり、このため負荷能力の大きいガス絶縁
X線管装置を得るため陽極内に冷却液体の通る通路を設
は水又は油で液冷することが行なわれていた。
When insulation is performed with gas, the disadvantage is that gas has a low specific heat and thermal conductivity, so it is generally not possible to provide sufficient cooling. A passage through which a cooling liquid passes is provided in the anode and liquid cooling is performed using water or oil.

しかしながらこの場合、陽極の構造が複雑となるたけて
なく、十分な量の冷却液体を循環させる強力なポンプ系
が必要であった。
However, in this case, the structure of the anode is extremely complicated, and a powerful pump system is required to circulate a sufficient amount of cooling liquid.

本発明は簡単な構造で高い負荷能力を有するガス絶縁X
線管装置を得ることのできるものであり、その特徴とす
るところは、陽極部材に液体状態でも気体状態でも絶縁
体である冷媒を吹きつけ、この冷媒が気化するときの気
化熱によって陽極を冷却させることにある。
The present invention has a simple structure and high load capacity.
It is possible to obtain a wire tube device, and its feature is that a refrigerant, which is an insulator in both liquid and gas states, is sprayed onto the anode member, and the anode is cooled by the heat of vaporization when this refrigerant vaporizes. It's about letting people know.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

なお、同一部分は同一符号であられす6、第1図は真空
排気系を持たない封じ切り型の回転陽極X線管に本発明
を適用した例である。
Note that the same parts are denoted by the same reference numerals 6. FIG. 1 shows an example in which the present invention is applied to a sealed rotary anode X-ray tube that does not have an evacuation system.

X線管はガラス製真空外囲器11に耐熱合金製陽極12
と陽極13を真空気密に封着して作成されている。
The X-ray tube has a glass vacuum envelope 11 and a heat-resistant alloy anode 12.
and an anode 13 are vacuum-tightly sealed.

陽極の表面にはタングステン合金製ターゲット14が張
りつけられており、陽極の先端には電子銃15が設けら
れている。
A tungsten alloy target 14 is attached to the surface of the anode, and an electron gun 15 is provided at the tip of the anode.

X線管はアルミ合金で作られ鉛張りされたX線管収納容
器16内に絶縁支持具17と玉軸受18により回転自在
、かつ高い電気絶縁性を保って保持される。
The X-ray tube is rotatably held in an X-ray tube storage container 16 made of aluminum alloy and lined with lead by an insulating support 17 and a ball bearing 18 while maintaining high electrical insulation.

X線管には陽極側高電圧受電具19及び陽極側高電圧受
電具20から玉軸受やすべり電極を通じて電力が供給さ
れる。
Power is supplied to the X-ray tube from an anode-side high-voltage power receiving device 19 and an anode-side high-voltage power receiving device 20 through ball bearings and sliding electrodes.

X線管は回転磁界発生コイル21で発生した磁界を陽極
が受けて回転する。
The X-ray tube rotates as its anode receives a magnetic field generated by a rotating magnetic field generating coil 21.

X線管内では蔭惚から放出された電子流22が偏向コイ
ル23で偏向させられ、ターゲット上の外部よりみて同
一となる位置に衝突する。
Inside the X-ray tube, the electron stream 22 emitted from the trance is deflected by a deflection coil 23 and impinges on the target at the same position as seen from the outside.

ターゲット上で発生したX線は放射口24から外部へ取
り出される。
X-rays generated on the target are taken out from the radiation port 24.

X線管収納容器内には、’S F6とトリフルオロ−1
,1,2−トリクロロ−エタン(以下化学式CCl2F
−CClF2であられす)とが封入されている。
Inside the X-ray tube storage container are 'SF6 and trifluoro-1.
, 1,2-trichloro-ethane (hereinafter chemical formula CCl2F
-CClF2) is enclosed.

SF6の分圧は約2気圧とされており、0℃以上で気体
であって、CCl2F−CClF2の分圧の高低にかか
わらずX線管の絶縁を保つ。
The partial pressure of SF6 is about 2 atmospheres, and it is a gas at temperatures above 0° C., and maintains the insulation of the X-ray tube regardless of the level of the partial pressure of CCl2F-CClF2.

方CCl2F −CC1F2G−j1気圧での沸点が4
7.6°Cであって、約2気圧では沸点はより上昇する
ので温度により一部気体・一部液体となって平衡を保っ
ている。
CCl2F -CC1F2G-jThe boiling point at 1 atm is 4
At 7.6°C and about 2 atmospheres, the boiling point rises further, so depending on the temperature, it becomes partly gas and partly liquid, maintaining equilibrium.

液化器25やX線管容器壁で液化した冷却媒体26であ
るCCl2F−CClF2はポンプ27で吹付は管28
から陽極裏面の凹み部にに送り込まれ、遠心力で壁面に
つきながら、陽極の熱により気化する。
CCl2F-CClF2, which is a cooling medium 26 liquefied on the liquefier 25 and the wall of the X-ray tube container, is sprayed by a pump 27 through a pipe 28.
It is sent into the recess on the back of the anode, and while it touches the wall due to centrifugal force, it is vaporized by the heat of the anode.

なお、液化器25、ポンプ27、および吹付は管28等
により本装置の冷却器が構成されている。
Note that the liquefier 25, pump 27, spray pipe 28, etc. constitute a cooler of the present device.

封じ切り形の回転陽極X線管は、取り扱いが便利で短時
間負荷特性の高いのが特徴であるが、長時間の負荷に対
しては陽極が回転しているため冷却が難しかった。
Sealed rotary anode X-ray tubes are convenient to handle and have high short-term load characteristics, but they are difficult to cool for long-term loads because the anode rotates.

この点の改善のためには本実施例のように陽極とX線管
外囲器を一体となし、外囲器ごと陽極を回転させ陽極裏
面を直接冷却すれば良いが、回転する外囲器と絶縁冷媒
との間の摩擦抵抗を小さくするため絶縁はガスで行なわ
ねばならず、従来は十分な冷却が行なえなかった。
In order to improve this point, it is possible to integrate the anode and the X-ray tube envelope as in this embodiment, and rotate the anode together with the envelope to directly cool the back surface of the anode. In order to reduce the frictional resistance between the insulating refrigerant and the insulating refrigerant, insulation must be done with gas, and in the past, sufficient cooling could not be achieved.

しかしながら、本実施例においては、以上に述べたよう
に、絶縁媒体が気体であるので、高速でX線管を回転さ
せることが可能であり、又液体の気化熱を冷却に用いる
ため、高能率の冷却が可能であり、連続使用に適した回
転陽極X線管を得ることができる。
However, in this embodiment, as mentioned above, since the insulating medium is a gas, it is possible to rotate the X-ray tube at high speed, and the heat of vaporization of the liquid is used for cooling, resulting in high efficiency. It is possible to obtain a rotating anode X-ray tube suitable for continuous use.

又、全体が一つの密封された系となっている上に、陽極
の構造が簡単であるので、取扱いが容易で小型化できる
Furthermore, since the entire system is a single sealed system and the structure of the anode is simple, it is easy to handle and can be miniaturized.

本実施例においては、絶縁と冷却とを、行なう媒体とし
て低沸点のSF6と高沸点のCCl2F・CC4F2の
混合体を用いることにより、低温で気体圧力が下がりす
ぎて絶縁能力が低下することを防止しているが、温度と
圧力を制御することによりCC12F−CC4F2のみ
を媒質とすることもできる。
In this example, by using a mixture of SF6 with a low boiling point and CCl2F/CC4F2 with a high boiling point as a medium for insulation and cooling, it is possible to prevent the gas pressure from decreasing too much at low temperatures and reducing the insulation ability. However, by controlling the temperature and pressure, only CC12F-CC4F2 can be used as the medium.

さらに化学式CCl3F、C5F、2゜(CClF2)
2.(CC12F)2等の1気圧の沸点0°C以上のハ
ロゲン化炭化水素を上記冷却媒体として使うこともでき
る。
Furthermore, the chemical formula CCl3F, C5F, 2゜(CClF2)
2. A halogenated hydrocarbon having a boiling point of 0° C. or higher at 1 atmosphere, such as (CC12F)2, can also be used as the cooling medium.

なを、低沸点絶縁気体としてはSF6の他に窒素等も使
うこともできる。
In addition to SF6, nitrogen or the like can also be used as the low boiling point insulating gas.

第2図は、中性点接地式の固定陽極X線管装置に本発明
を適用した例である。
FIG. 2 shows an example in which the present invention is applied to a fixed anode X-ray tube device of a neutral point grounding type.

第3図は、第2図の実施例の電気回路図である。FIG. 3 is an electrical circuit diagram of the embodiment of FIG. 2.

X線管は外囲器11に陽極12と陽極13を真空気密に
封着して作られている。
The X-ray tube is made by vacuum-tightly sealing an anode 12 and an anode 13 to an envelope 11.

陽極の一部にはターゲット14が、陽極の先端には電子
銃15が夫々設けられている。
A target 14 is provided on a part of the anode, and an electron gun 15 is provided on the tip of the anode.

X線管はX線管容器16内に図示されていない絶縁支持
具で保持されている。
The X-ray tube is held within the X-ray tube container 16 by an insulating support (not shown).

X線管容器の一部はX線放射口24となっている。A part of the X-ray tube container serves as an X-ray emission port 24.

X線管への電力の供給は、外部の電源29から陽極側ト
ランス30、陽tfJU l−ランス31.フォラメン
1ヘトランス32を介して行なわれる。
Power is supplied to the X-ray tube from an external power source 29 to an anode side transformer 30 and a positive tfJU lance 31. This is done via the foramen 1 to trans 32.

陽極側トランスとフィラメントトランスは一体になって
いる。
The anode side transformer and filament transformer are integrated.

使用にあたっては陽極、陽極は交流の半波ごとに正負の
高電圧が印加されるが、管電流が流れ、動作状態となる
のは、陽極に負、陽極に正の高電圧が印加される半波分
のみである。
During use, positive and negative high voltages are applied to the anode and anode every half wave of alternating current, but the tube current flows and is in operation only during the half period in which a negative high voltage is applied to the anode and a positive high voltage is applied to the anode. It is only the wave component.

X線管容器内にはSF6とCCl2F−CClF2の混
合媒体が満たされていて液化した冷却媒体26CC12
F−CClF2は陽極で気化してX線管容器内を満たし
、容器壁で冷却され液化してポンプ27により陽極にも
どされる。
The X-ray tube container is filled with a mixed medium of SF6 and CCl2F-CClF2, and the liquefied cooling medium 26CC12
F-CClF2 is vaporized at the anode, filling the X-ray tube container, cooled on the container wall, liquefied, and returned to the anode by the pump 27.

本実施例では図のように陽極が上向けに設置される。In this embodiment, the anode is installed facing upward as shown in the figure.

上記の説明から明白な様に、本実施例では管容器壁総て
を放熱体として利用しているため極めて高い冷却能率を
有し、又陽極を高電圧に印加できるため、中性点接地の
トランスを使用して表両かつ小型な装置とすることがで
きる6、さらにX線管容器及びX線管陽極の構造は簡単
であるうえ、内部の大部分は気体であるので、ガス絶縁
装置の軽量可搬という性質を何等損わない。
As is clear from the above explanation, in this embodiment, the entire wall of the tube vessel is used as a heat radiator, so it has extremely high cooling efficiency, and since the anode can be applied with a high voltage, the neutral point can be grounded. By using a transformer, it can be made into an open and compact device6.Furthermore, the structure of the X-ray tube container and the It does not impair its lightweight and portable properties in any way.

以上、述べたように、本発明によりガス絶縁X線管装置
は、その冷却性能を大きく向上させることができ、より
広範囲な使用に用いることができる。
As described above, the gas-insulated X-ray tube device according to the present invention can greatly improve its cooling performance and can be used in a wider range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は本発明
の他の実施例の縦断面図、第3図は第2図の実施例い電
気回路図である。 11・・・・・・X線管外囲器、12・・・・・・陽極
、13・・・・・・陽極、16・・・・・・X線管容器
、25・・・・・・液化器、26・・・・・・液化した
冷却媒体、 27・・・・・・ポンプ。
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, FIG. 2 is a longitudinal sectional view of another embodiment of the invention, and FIG. 3 is an electrical circuit diagram of the embodiment of FIG. 11...X-ray tube envelope, 12...Anode, 13...Anode, 16...X-ray tube container, 25... - Liquefier, 26...Liquified cooling medium, 27...Pump.

Claims (1)

【特許請求の範囲】 1 内部を気密に保持した真空外囲器と、この外囲器内
に相対向して配置した陽極及び外囲器外に一部が露出す
るように設けられた陽極と、この外囲器を気密に収納す
る管球収納容器と、この容器内に連結し、内部に冷媒を
循環する冷却器とを具備し、この冷却器により液状の冷
媒を前記外囲器外に露出した陽極部材に接触させるよう
に構成したことを特徴とするガス絶縁X線管装置。 2 冷媒はその沸点がO′C以上のハロゲン化炭化水素
を特徴とする特許請求の範囲第1項記載のガス絶縁X線
管装置。
[Scope of Claims] 1. A vacuum envelope whose interior is kept airtight, an anode disposed opposite to each other within the envelope, and an anode provided so that a portion thereof is exposed outside the envelope. , a tube storage container that airtightly stores the envelope, and a cooler that is connected to the container and circulates a refrigerant therein. A gas-insulated X-ray tube device characterized in that it is configured to be brought into contact with an exposed anode member. 2. The gas-insulated X-ray tube device according to claim 1, wherein the refrigerant is a halogenated hydrocarbon having a boiling point of O'C or higher.
JP4035976A 1976-04-12 1976-04-12 Gas insulated X-ray tube equipment Expired JPS5840816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035976A JPS5840816B2 (en) 1976-04-12 1976-04-12 Gas insulated X-ray tube equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035976A JPS5840816B2 (en) 1976-04-12 1976-04-12 Gas insulated X-ray tube equipment

Publications (2)

Publication Number Publication Date
JPS52123886A JPS52123886A (en) 1977-10-18
JPS5840816B2 true JPS5840816B2 (en) 1983-09-08

Family

ID=12578433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035976A Expired JPS5840816B2 (en) 1976-04-12 1976-04-12 Gas insulated X-ray tube equipment

Country Status (1)

Country Link
JP (1) JPS5840816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493466B1 (en) * 2003-06-30 2012-06-20 Nucletron Operations B.V. Miniature X-ray source with cryogenic cooling

Also Published As

Publication number Publication date
JPS52123886A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
US3609992A (en) Hermetically sealed box for maintaining a semiconductor radiation detector at a very low temperature
US4674109A (en) Rotating anode x-ray tube device
Ovsyannikov et al. First investigations of a warm electron beam ion trap for the production of highly charged ions
US3714486A (en) Field emission x-ray tube
CA2268137A1 (en) Air-cooled end-window metal-ceramic x-ray tube for lower power xrf applications
US3138729A (en) Ultra-soft X-ray source
JP2002334675A (en) X-ray tube having temperature gradient device and x-ray system
US3835239A (en) Current feeding arrangement for electrical apparatus having low temperature cooled conductors
US2168780A (en) X-ray tube
JPS5840816B2 (en) Gas insulated X-ray tube equipment
US2345723A (en) X-ray tube
US2232831A (en) X-ray tube
JP2018006219A (en) Ion beam device
JP4357094B2 (en) Rotating anode type X-ray tube and X-ray tube apparatus incorporating the same
Thiel et al. Simple, efficient UHV manipulator
US2229152A (en) Rotary anode X-ray tube
US2348184A (en) Electron flow device
US7197114B2 (en) X-rays emitter and X-ray apparatus and method of manufacturing an X-ray emitter
JPS61151956A (en) Rotary anode type x-ray tube
US2164997A (en) X-ray apparatus
JP5725827B2 (en) Radiation generator and radiation imaging system
Behling Cathodes of medical X-ray tubes
US5091929A (en) Integrated x-ray tube and power supply
US2283639A (en) Electric discharge device
US2122285A (en) Electrical discharge device