JPS5840803A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS5840803A
JPS5840803A JP13846381A JP13846381A JPS5840803A JP S5840803 A JPS5840803 A JP S5840803A JP 13846381 A JP13846381 A JP 13846381A JP 13846381 A JP13846381 A JP 13846381A JP S5840803 A JPS5840803 A JP S5840803A
Authority
JP
Japan
Prior art keywords
superconductive
superconducting
grooves
spools
superconductive wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13846381A
Other languages
Japanese (ja)
Inventor
Fumio Iida
文雄 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13846381A priority Critical patent/JPS5840803A/en
Publication of JPS5840803A publication Critical patent/JPS5840803A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain a superconductive device firmly supporting superconductive wires in spool grooves and sufficiently enduring powerful electromagnetic force by a method wherein continuous grooves are provided in the circumference direction of round spools and superconductive wires surrounded by refrigerant paths through a plurality of spacers are wound in the circumference direction. CONSTITUTION:A plurality of continuous endless-shaped grooves 1a having predetermined intervals in the diameter direction are provided in the circumference direction of each spool 1 and a plurality of superconductive wires 2 are wound in the grooves 1a while supporting the superconductive wires 2 by penetrating spacers 4 provided with predetermined intervals in the circumference direction. Refrigerant paths 7 surrounding the superconductive wires 2 and flowing superconductive heliun are provided at the outside circumference of the superconductive wires 2 and stack bolts 6 are provided at the outside circumference end sections of the spools 1. In this composition, covers 3 are arranged on the upper and lower plane sections of the spools 1 and the covers 3 are fixed by welding sections 5 by an electron beam. This transfers electromagnetic force generated on the superconductive wires 2 to the spools 1 through spacers 4 and prevents the deformation of the superconductive wires 2 with the aid of the spools 1.

Description

【発明の詳細な説明】 本発明は超電導装置に係り、特に大型で大電磁力を受け
る、例えば核融合装置等に採用される超電導コイルに好
適な超電導装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting device, and particularly to a superconducting device that is large in size and receives a large electromagnetic force, and is suitable for use as a superconducting coil employed in, for example, a nuclear fusion device.

石炭1石油、原子力に代るエネルギー源は核融合エネル
ギーといわれているが、近年核融合炉として実現する可
能性の高い、I・カマク型核融合炉においては、環状の
プラズマを磁場により閉じ込める真空容器に巻回したト
ロイダルコイルと、真空容器中のプラズマに予備加熱を
行うと共に、プラズマの位置制御を行うための複数個の
ポロイダルコイルとプラズマに中性粒子を打込み加熱す
る加熱装置とにより概略成立っている。
Nuclear fusion energy is said to be an alternative energy source to coal, oil, and nuclear power, but in the I-Kamak type fusion reactor, which has a high possibility of being realized as a fusion reactor in recent years, a vacuum that confines annular plasma using a magnetic field is used. It is roughly constructed by a toroidal coil wound around a container, multiple poloidal coils that preheat the plasma in the vacuum container and control the position of the plasma, and a heating device that implants neutral particles into the plasma and heats it. ing.

核融合反応を起させるためには、プラズマの温度、及び
密度を高く保つ必要がある。高温、高密度のプラズマを
閉じ込めるトロイダルコイルは、高磁場、大型化が要求
され電気的損失の面から超電導化は不可避である。
In order to cause a nuclear fusion reaction, it is necessary to keep the temperature and density of plasma high. Toroidal coils that confine high-temperature, high-density plasma require a high magnetic field and large size, and superconductivity is inevitable in terms of electrical loss.

ところが、従来の超電導コイルは、一般にはコイル全体
を液体ヘリウム中に漬ける浸漬冷却方式が用いられてい
るが、最近コイルの大型化に伴い超臨界ヘリウムや超流
動ヘリウムを強制循環させることにより、コイル熱負荷
を有効に除去する強制循環方式が有望となっている。こ
の場合超電導体は、一般にSUS製のコンジットの中に
、超電導素線のハンドルや撚線を配着して形成され、コ
ンジット中の超電導素線間の空間に超臨界ヘリウノ、全
流し冷却しているが、大電流、高磁界超電導コイルに用
いる場合には導体断面の大型化に伴い、巻線時における
コンジットの斤屈や超電導線の歪劣化の問題があり、強
大な電磁力が加わる大型の超電導コイルに採用するには
不向きな嫌いがあった。
However, conventional superconducting coils generally use an immersion cooling method in which the entire coil is immersed in liquid helium, but as coils have recently become larger, forced circulation of supercritical helium or superfluid helium has been developed to cool the coil. Forced circulation methods that effectively remove heat loads are showing promise. In this case, the superconductor is generally formed by arranging handles and stranded wires of superconducting wires in a conduit made of SUS, and supercritical heliuno is completely flowed and cooled in the space between the superconducting wires in the conduit. However, when used in high-current, high-field superconducting coils, as the cross-section of the conductor becomes larger, there are problems such as bending of the conduit during winding and deterioration of distortion of the superconducting wire. There were some disadvantages that made it unsuitable for use in superconducting coils.

本発明は上述の点に鑑み成されたもので、その目的とす
るところは、強制循環冷却方式を採用したものであって
も、超電導線を強固に支持することが可能で、かつ、強
大な電磁力にも耐えることができることは勿論、安定し
た超電導コイルを得ることのできる超電導装置を提供す
るにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to be able to firmly support superconducting wires even when using a forced circulation cooling method, and to provide a powerful It is an object of the present invention to provide a superconducting device that can not only withstand electromagnetic force but also provide a stable superconducting coil.

本発明は周方向に連続して設けられた溝を有するほぼ円
形の巻枠と、該巻枠の溝内に巻回される超電導線と、該
超電導線を前記?St内において周方向に所定間隔をも
って支持する複数のスペーサと該スペーサを前記巻枠に
支持固定するために前記溝の開放側を覆うように設けら
れた蓋とを備え、前記溝内には超電導線冷却用の冷媒が
通る冷媒通路が形成されるよう構成することにより、所
間の目的を達成するように成したものである。
The present invention provides a substantially circular winding frame having a groove continuously provided in the circumferential direction, a superconducting wire wound in the groove of the winding frame, and the superconducting wire as described above. A plurality of spacers are supported at predetermined intervals in the circumferential direction in St, and a lid is provided to cover the open side of the groove in order to support and fix the spacers to the winding frame. By forming a refrigerant passage through which a refrigerant for line cooling passes, the object is achieved.

以下、図面の実施例に基づいて本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on embodiments of the drawings.

第1図に本発明の一実施例を示す。該図(dダブルパン
ケーキと呼ばれる超電導装置の概略である。
FIG. 1 shows an embodiment of the present invention. This figure (d) is a schematic diagram of a superconducting device called a double pancake.

該図において、1は周方向に連続して無端状に、かつ、
径方向に所定間隔をもって複数個設けられると共に、こ
れらが平行して形成される溝1aを有する巻枠で、この
各巻枠1内には各々超電導線2が巻回されている。超電
導線2は各溝la内において、周方向に所定間隔をもっ
て複数個配IWされているスペーサ4により支持されて
いる。その後、合溝1aの開口側を覆うように蓋3を設
け、この蓋3は周方向に連続的に施される溶接5により
巻枠1に固定され、各溝1a6気密に保っている。そし
て、溝la内には超電導線2を冷却する超電導ヘリウム
が流れる冷媒流路7が形成されている。巻枠1に蓋3を
溶接する場合は、合溝1aが気密を保つべく電子ビーム
溶接(EBW)で行い、スペーサ4は溶接時の熱的影響
と電磁力等を考慮してセラミック等が好しい。また、ス
ペーサ4の間隔は、超電導線2の電磁力の変位、及び超
電導線2の安定性の検討より決定されるものである。尚
、6はスタックボルト穴である。
In the figure, 1 is continuous in the circumferential direction and is endless, and
A plurality of winding frames are provided at predetermined intervals in the radial direction and have grooves 1a formed in parallel with each other, and a superconducting wire 2 is wound inside each winding frame 1. The superconducting wire 2 is supported in each groove la by a plurality of spacers IW arranged at predetermined intervals in the circumferential direction. Thereafter, a lid 3 is provided to cover the open side of the matching groove 1a, and this lid 3 is fixed to the winding frame 1 by welding 5 continuously applied in the circumferential direction, thereby keeping each groove 1a6 airtight. A coolant flow path 7 through which superconducting helium for cooling the superconducting wire 2 flows is formed in the groove la. When welding the lid 3 to the winding frame 1, electron beam welding (EBW) is used to keep the joint groove 1a airtight, and the spacer 4 is preferably made of ceramic or the like in consideration of thermal effects and electromagnetic force during welding. Yes. Further, the distance between the spacers 4 is determined by considering the displacement of the electromagnetic force of the superconducting wire 2 and the stability of the superconducting wire 2. Note that 6 is a stack bolt hole.

このような本実施例の超電導装置とすることにより、巻
枠1の溝中に超電導線2が巻回、埋込まれるので導体に
発生する電磁力はスペーサ4を介して巻枠1に伝達され
、巻枠1に十分な強度を与えるよう設計すれば、励磁に
よるコイルの変形を従来のコイルに比べ大きく押えるこ
とができる。
By constructing the superconducting device of this embodiment as described above, the superconducting wire 2 is wound and embedded in the groove of the winding frame 1, so that the electromagnetic force generated in the conductor is transmitted to the winding frame 1 via the spacer 4. If the winding frame 1 is designed to have sufficient strength, deformation of the coil due to excitation can be suppressed to a greater extent than in conventional coils.

まだ、クエンチの原因として、導体の動きによる摩擦熱
の発生が上げられているが、本実施例の超電導コイルは
、レジン等の接着材を使用しないため、導体の動きによ
る摩擦熱の発生は少なく熱的に安定である。更に、10
テスラ以上の経験磁界を有する超電導コイルは、超電導
線2として高磁界特性の良い化合物系超電導材料Nb3
Snが用いられているが、Nb3Sn純利は歪特性が悪
く、曲げ歪は1%以下に押える必要があり、導体が大形
化するに従ってこの制限が厳しくなり、コイルの寸法、
形状によって制作不可能となる場合があるが、本実施例
によれば超電導線2を巻枠1に巻回。
The generation of frictional heat due to the movement of the conductor is still cited as a cause of quenching, but since the superconducting coil of this example does not use adhesives such as resin, the generation of frictional heat due to the movement of the conductor is small. It is thermally stable. Furthermore, 10
The superconducting coil, which has an empirical magnetic field greater than Tesla, is made of a compound-based superconducting material Nb3 with good high magnetic field characteristics as the superconducting wire 2.
Sn is used, but Nb3Sn pure yield has poor strain characteristics, and the bending strain must be kept below 1%.As the conductor becomes larger, this restriction becomes stricter, and the size of the coil,
Although manufacturing may not be possible depending on the shape, according to this embodiment, the superconducting wire 2 can be wound around the winding frame 1.

埋込み後、熱処理を行えば全ての形状のコイルが製作可
能である。また、強制循環冷凍超電導4体を用いたコイ
ルでは、磁場の強度分布に応じて、超電導線材の大きさ
を変え、即ち、グレーテングを行うことにより経済的コ
イルを作るのが非常に困難であったが、本実施例によれ
ば、超電導線2を巻枠1に巻回、埋込時に、・・ンダ付
等により簡早にグレーディングを実施することが可能で
、従来の強制循環冷凍超電導コイルに比べより経済的コ
イルが製作可能である。
After embedding, if heat treatment is performed, coils of all shapes can be manufactured. In addition, in a coil using four forced circulation frozen superconductors, it is extremely difficult to create an economical coil by changing the size of the superconducting wire according to the strength distribution of the magnetic field, that is, by grating. However, according to this embodiment, when the superconducting wire 2 is wound around the winding frame 1 and embedded, it is possible to easily perform grading by attaching... It is possible to produce a more economical coil compared to the conventional method.

第2図に示すものは、上述した第1図のダブルパンケー
キの超電導装置を複数個積層し、スタツトボルi・8で
締付は強制循環冷凍超電導コイルを形成し/こものであ
る。
In the device shown in FIG. 2, a plurality of double pancake superconducting devices as shown in FIG.

第3図に本発明の他の実施例を示す。該図に示すイ)の
し1:、超電導装置として一層のソレノイドコイルにつ
いてで、巻枠1の周方向に連続して設けられた溝1aを
軸方向に所定間隔をもって設け、この溝la内に超電導
線2を巻回したものである。
FIG. 3 shows another embodiment of the invention. A) Noshi 1 shown in the figure: Regarding a solenoid coil as a superconducting device, grooves 1a continuously provided in the circumferential direction of the winding frame 1 are provided at predetermined intervals in the axial direction. The superconducting wire 2 is wound.

他の構成は第1図のものと全く同様である。The rest of the structure is exactly the same as that in FIG.

このように構成しても、その効果は上述した第1図のも
のと全く同様である。
Even with this configuration, the effect is exactly the same as that shown in FIG. 1 described above.

第4図に示すものは、上述した第3図の一層のt1i位
ルノイドコイルを同心円状に複数個配置し、ソレノイド
巻の強制循環冷凍超電導コイルを形成したものである。
What is shown in FIG. 4 is a solenoid-wound forced circulation refrigeration superconducting coil by arranging a plurality of the single-layer t1i lunoid coils shown in FIG. 3 in a concentric manner.

以−1−説明した本発明の超電導装置によれば、周方向
に連続して設けられた溝を有するほぼ円形の巻枠と、該
巻枠の溝内に巻回される超電導線と、該超電導線分前配
溝内において周方向に所定1田隔をもって支持する複数
のスペーサと、該スペーサを前記巻枠に支持固定するた
めに前記溝の開放側を覆うように設けられた蓋とを備え
、前記溝内には超電導線冷却用の冷媒が通る冷媒通路が
形成されているものであるから、超電導線を巻枠の溝内
で強固に支持することが可能となり、強大な電磁力にも
十分に耐えることができるため、大型の超電導コイルに
採用する場合には非常に有効である。
According to the superconducting device of the present invention described below-1-, a substantially circular winding frame having a groove continuously provided in the circumferential direction, a superconducting wire wound in the groove of the winding frame, and A plurality of spacers supported at a predetermined interval of one space in the circumferential direction in the superconducting wire front groove, and a lid provided to cover the open side of the groove in order to support and fix the spacers to the winding frame. In addition, a refrigerant passage is formed in the groove through which a refrigerant for cooling the superconducting wire passes. Therefore, the superconducting wire can be firmly supported within the groove of the winding frame, and it can withstand strong electromagnetic force. It is extremely effective when used in large-sized superconducting coils because it can withstand high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導装置の一実施例としてダブルパ
ンケーキを一部断面して示す斜視図、第2図はそれを複
数積層して形成する超電導コイルを一部断面して示す斜
視図、第3図は本発明の他の実施例で、一層ソレノイド
コイルを一部断面して示す斜視図、第4図はそれを同心
円状に複数積層して形成するソレノイド巻の超電導コイ
ルを一部断面して示す斜視図である。
FIG. 1 is a partially cross-sectional perspective view of a double pancake as an embodiment of the superconducting device of the present invention, and FIG. 2 is a partially cross-sectional perspective view of a superconducting coil formed by laminating a plurality of double pancakes. , Fig. 3 is a perspective view showing another embodiment of the present invention, with a part of the solenoid coil cut away, and Fig. 4 shows a part of a solenoid-wound superconducting coil formed by laminating a plurality of solenoid coils concentrically. It is a perspective view cut away and shown.

Claims (1)

【特許請求の範囲】 1、周方向に連続して設けられた溝を有するほぼ円形の
巻枠と、該巻枠の溝内に巻回される超電導線と、該超電
導線を前記溝内において周方向に所定間隔をもって支持
する複数のスペーサと、該スペーサを前記巻枠に支持固
定するために前記溝の開放側を覆うように設けられた蓋
とを備え、前記溝内には超電導線冷却用の冷媒が通る冷
媒通路が形成されていることを特徴とする超電導装置。 2、前記巻枠の周方向の溝を径方向に所定間隔をもって
複数個設け、これら各溝内に超電導線が巻回された巻枠
を1軸方向に複数積層したことを特徴とする特許請求の
範囲第1項記載の超電導装置。 3、前記巻枠の周方向の溝を軸方向に所定間隔をもって
複数個設け、これら各溝内に超電導線が巻回されだ巻枠
を同心固状に複数配置したことを特徴とする特許請求の
範囲第1項記載の超電導装置。
[Claims] 1. A substantially circular winding frame having a groove continuously provided in the circumferential direction, a superconducting wire wound within the groove of the winding frame, and a superconducting wire wound within the groove. A plurality of spacers are supported at predetermined intervals in the circumferential direction, and a lid is provided to cover the open side of the groove in order to support and fix the spacers to the winding frame. A superconducting device characterized in that a refrigerant passage is formed through which a refrigerant for use passes. 2. A patent claim characterized in that a plurality of grooves in the circumferential direction of the winding frame are provided at predetermined intervals in the radial direction, and a plurality of winding frames each having a superconducting wire wound in each of these grooves are laminated in the uniaxial direction. The superconducting device according to item 1. 3. A patent claim characterized in that a plurality of grooves in the circumferential direction of the winding frame are provided at predetermined intervals in the axial direction, and a superconducting wire is wound in each of these grooves, and a plurality of winding frames are arranged concentrically and rigidly. The superconducting device according to item 1.
JP13846381A 1981-09-04 1981-09-04 Superconductive device Pending JPS5840803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13846381A JPS5840803A (en) 1981-09-04 1981-09-04 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13846381A JPS5840803A (en) 1981-09-04 1981-09-04 Superconductive device

Publications (1)

Publication Number Publication Date
JPS5840803A true JPS5840803A (en) 1983-03-09

Family

ID=15222611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13846381A Pending JPS5840803A (en) 1981-09-04 1981-09-04 Superconductive device

Country Status (1)

Country Link
JP (1) JPS5840803A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143336U (en) * 1986-03-06 1987-09-10
EP3113365A2 (en) 2015-07-01 2017-01-04 Toto Ltd. Touch detection device used in water handling equipment, and faucet apparatus including the same
TWI627364B (en) * 2015-07-01 2018-06-21 Toto Ltd Touch detection device used in water appliance, and water supply switch device provided therewith
JP6854988B1 (en) * 2020-04-20 2021-04-07 三菱電機株式会社 Superconducting electromagnet device
JP2022517726A (en) * 2018-12-27 2022-03-10 マサチューセッツ インスティテュート オブ テクノロジー Superconducting magnets in stacked stacked plates with grooves, and conductive terminal blocks, and associated construction techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413293A (en) * 1977-06-30 1979-01-31 Mitsubishi Electric Corp Superconduction coil
JPS54125466A (en) * 1978-03-22 1979-09-28 Mitsubishi Electric Corp Coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413293A (en) * 1977-06-30 1979-01-31 Mitsubishi Electric Corp Superconduction coil
JPS54125466A (en) * 1978-03-22 1979-09-28 Mitsubishi Electric Corp Coil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143336U (en) * 1986-03-06 1987-09-10
JPH0513065Y2 (en) * 1986-03-06 1993-04-06
EP3113365A2 (en) 2015-07-01 2017-01-04 Toto Ltd. Touch detection device used in water handling equipment, and faucet apparatus including the same
EP3297165A1 (en) 2015-07-01 2018-03-21 Toto Ltd. Touch detection device used in water handling equipment, and faucet apparatus including the same
EP3312995A1 (en) 2015-07-01 2018-04-25 Toto Ltd. Touch detection device used in water handling equipment, and faucet apparatus including the same
TWI627364B (en) * 2015-07-01 2018-06-21 Toto Ltd Touch detection device used in water appliance, and water supply switch device provided therewith
JP2022517726A (en) * 2018-12-27 2022-03-10 マサチューセッツ インスティテュート オブ テクノロジー Superconducting magnets in stacked stacked plates with grooves, and conductive terminal blocks, and associated construction techniques
JP6854988B1 (en) * 2020-04-20 2021-04-07 三菱電機株式会社 Superconducting electromagnet device
WO2021214837A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Superconducting electromagnet device
US12027309B2 (en) 2020-04-20 2024-07-02 Canon Medical Systems Corporation Superconducting electromagnet device

Similar Documents

Publication Publication Date Title
US10332640B2 (en) Toroidal field coil for use in a fusion reactor
US11646138B2 (en) Superconducting magnet
JPH0418853B2 (en)
AU2021240133B2 (en) High temperature superconductor magnet
CN106098290A (en) Superconducting magnet
US5812042A (en) Superconducting magnet formed by laminating hollow conductor plates
Takahata et al. Conceptual design of an indirect-cooled superconducting magnet for the LHD-type fusion reactor FFHR
GB2562385A (en) Superconducting magnet for producing part of a substantially toroidal field
JPS5840803A (en) Superconductive device
Montgomery et al. A high field magnet combining superconductors with water-cooled conductors
Leupold et al. Hybrid III system
Tommasini Nb3Sn accelerator dipole magnet needs for a future circular collider
Haubenreich et al. Superconducting magnets for fusion
Choi et al. Progress on the development of superconducting magnet system for cyclotron K120
Sharma et al. Building Laboratory Superconducting Magnets and Present Status of High-Field Magnets
JP2739159B2 (en) Toroidal magnet
Part Future Needs and Requirements
JPH0570921B2 (en)
KR20240018614A (en) Central column for toroidal magnetic field coil in tokamak plasma chamber
KR20230011341A (en) Techniques for Distributing Forces in High Field Magnets and Related Systems and Methods
Wessel et al. A conduction-cooled, 680-mm-long warm bore, 3-T Nb/sub 3/Sn solenoid for a Cerenkov free electron laser
US11937519B1 (en) Permanent magnets using high temperature superconductor tapes and methods of charging same
CN114360846A (en) Multi-coil combined high-field superconducting magnet and manufacturing method thereof
Montgomery et al. R. Weggel, and MJ Leupold Francis Bitter National Magnet Laboratory,† Massachusetts Institute of Technology Cambridge, Massachusetts
Lang et al. The superconducting magnet system for the Tokamak Physics Experiment