JPS5840802A - Composite permanent magnet material - Google Patents

Composite permanent magnet material

Info

Publication number
JPS5840802A
JPS5840802A JP56139279A JP13927981A JPS5840802A JP S5840802 A JPS5840802 A JP S5840802A JP 56139279 A JP56139279 A JP 56139279A JP 13927981 A JP13927981 A JP 13927981A JP S5840802 A JPS5840802 A JP S5840802A
Authority
JP
Japan
Prior art keywords
powder
ferrite powder
general formula
composite
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56139279A
Other languages
Japanese (ja)
Inventor
Kunio Okumura
奥村 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamauchi Rubber Industry Co Ltd
Original Assignee
Yamauchi Rubber Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamauchi Rubber Industry Co Ltd filed Critical Yamauchi Rubber Industry Co Ltd
Priority to JP56139279A priority Critical patent/JPS5840802A/en
Publication of JPS5840802A publication Critical patent/JPS5840802A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE:To obtain a composite permanent magnet material having high residual magnetisum and low coercive force and permitting to increase the number of magnetized magnetic poles per unit length by a method wherein at least either one kind of hard ferrite powder or rare earth cobalt powder is mixed with at least one kind of ferromagnetic metal powder or soft ferrite powder. CONSTITUTION:At least one kind of hard ferrite powder represented by general formula MOm (Fe2O3)n (where, M is one kind of two kinds or more of Ba, Pb, Sr, Ca, Co, m and n are positive integers) or rare earth cobalt powder represented by general formula RCo5 or R2Co17 (where, R is one kind or two kinds or more of Sm, Y, Ld, Ce) is used. At least one kind of soft ferrite powder represented by general formula MOm (Fe2O3)n (where M is one kind or two kinds or more of Mn, Zn, Cu, Ni, Mg or the like, m and n are positive integers) and at least one kind of ferromagnetic metal powder such as Fe, Ni, Co or the like is used and these are united by synthetic resin or the like.

Description

【発明の詳細な説明】 この発明+1、複合磁石材料、とく1こ高密度の磁極を
着磁しうる複合磁石材料に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention +1 relates to a composite magnet material, and particularly to a composite magnet material capable of magnetizing high-density magnetic poles.

多極磁石は、−・般1こ、硬質フェライト粉末などの永
久磁イ目A 141粉本を合成樹脂またはゴム等の1γ
合(]で/M練し、成”1「、 したのち、着磁するこ
と番こよりつくられる。しかしながら、硬質フェライト
なとは、保磁力が大きいので、より太きな残留磁気(残
留磁束密度)をもつものをつくろうとすると、着磁のた
めの磁界も強力にする必要がある。そのためlこは、着
磁ヘッドIコロ Qする導線を太くして大?U流を流す
か、または導線の巻回数を増大させなければならない。
Multipolar magnets are made of permanent magnetic A 141 powder such as general 1, hard ferrite powder, etc., and 1γ of synthetic resin or rubber, etc.
It is made by kneading /M in [ ] and then magnetizing it.However, hard ferrite has a large coercive force, so it has a thicker residual magnetism (residual magnetic flux density). ), it is necessary to make the magnetic field for magnetization strong.Therefore, it is necessary to make the conductor wire for the magnetizing head I roller thicker so that a larger current flows through it, or to make the conductor wire The number of turns must be increased.

いずれにしても、着磁ヘッドを大型化せざるを11↑ず
、磁極間隔が広くなるという問題が夕Qる。磁極間隔を
狭くして単位しさ当り≦こ多数の磁極を着磁するため1
こ、永久磁石材料粉末の混合量を小さくして、保持力を
小さく設定することもある。
In any case, the size of the magnetizing head has to be increased, and the problem arises that the distance between the magnetic poles becomes wider. In order to narrow the magnetic pole spacing and magnetize ≦ this many magnetic poles per unit distance,
Here, the holding force may be set to be small by reducing the amount of the permanent magnet material powder mixed.

そうすると、残留磁気も小さくなってしまうので−好ま
しくない。
If this happens, the residual magnetism will also become small, which is not preferable.

この発明の目的は、残留磁気を比軟的大きな値に保ち、
かつ保磁力を小さくすることができ、単位長さ当りの着
磁磁極数をきわめて多くすることのできる。複合磁石材
料を提供することにある。
The purpose of this invention is to maintain the residual magnetism at a relatively large value,
Moreover, the coercive force can be reduced, and the number of magnetized magnetic poles per unit length can be extremely increased. The object of the present invention is to provide a composite magnetic material.

そして、この発明による複合磁石材料は、硬質フェライ
ト粉末および希土類コバルト粉末の少なくともいずれか
一種、強磁性金属粉末および軟質フェライト粉末の少な
くともいずれか一種、ならび薔こ接合材の混合物よりな
ることを特徴とする。
The composite magnet material according to the present invention is characterized by comprising a mixture of at least one of a hard ferrite powder and a rare earth cobalt powder, at least one of a ferromagnetic metal powder and a soft ferrite powder, and a rose bonding material. do.

硬質フェライト粉末もしくは希土類コバルト粉末のいず
れか1種、または両方を使用することができる。硬質フ
ェライトは、一般式M Om(Fe203)”(ただし
、MはBa、Pb。
Either one or both of hard ferrite powder and rare earth cobalt powder can be used. Hard ferrite has the general formula M Om(Fe203)'' (where M is Ba or Pb.

Sr%CaおよびCOのうちの1種または2種以」−1
mおよび11は正の整数)て表わされる。
One or more of Sr%Ca and CO"-1
m and 11 are positive integers).

希土類コバルトは、一般式RCo 5またはR2cot
7 (ただし、RはSm、Y、LdおよびCoのうち1
種または2種以上)で表わされる。
Rare earth cobalt has the general formula RCo 5 or R2cot
7 (However, R is one of Sm, Y, Ld and Co
species or two or more species).

軟質フェライトの主なものに(1、一般式M Om(F
e203)n  (ただしMは、Mn%Zt+、Cu%
Ni%Mgなどのうち1種または2種以上、mおよび0
は正の整数)で表わされるものがあり、Mには上記の他
【こも数多く存在する。
The main types of soft ferrite are (1, general formula M Om (F
e203)n (where M is Mn%Zt+, Cu%
One or more of Ni%Mg, etc., m and 0
is a positive integer), and there are many other M in addition to the above.

強磁性金属には、Fe、Ni、Coなどがある。Ferromagnetic metals include Fe, Ni, Co, and the like.

接合材としては、合成樹脂、または天然ゴムもしくは合
成ゴムを使用することができる。接合材としてゴムを用
いた場合【こは−ゴム磁石材料となる。この場合、加硫
してもしなくてもいずれでもよい。熱可塑性および熱硬
化性の両合成樹脂の使用が可能である。熱可塑性合成樹
脂Eこは、ポリアミド樹脂、ポリエチレン樹脂、ポリエ
チレンテレフタレート樹脂、ポリアセタール樹脂、AB
 S 樹脂、エチレン−酢酸ビニル共重合体、エチレン
−アルキルアクリレート共重合体、ポリ酢酸ビニル樹脂
、およびエチレン−α、β−不飽和モノまたはジカルボ
ン酸共重合体の金匡架橋体樹脂などがある。このうちで
ポリアミド樹脂は、加工安定性および物理特性Eこずぐ
れ、かつ安価であるので好適である。熱硬化性樹脂には
、フェノール−ホルムアルデヒド樹脂、メラミン−ホル
ムアルデヒド膨脂、エポキシ樹脂、および不飽和ポリエ
ステル樹脂などがある。これらのうちで、フェノール−
ホルムアルデヒド樹脂が、加工安定性および物理特性に
ずぐれ、かつ安価であるので好適に使用される。合成ゴ
ムとしては、EPDM、CR,CPE、C8M、BR,
I IR−NBRなどを使用することができる。
As the bonding material, synthetic resin, natural rubber, or synthetic rubber can be used. When rubber is used as the bonding material, it becomes a rubber magnet material. In this case, it may be vulcanized or not. It is possible to use both thermoplastic and thermosetting synthetic resins. Thermoplastic synthetic resin E, polyamide resin, polyethylene resin, polyethylene terephthalate resin, polyacetal resin, AB
S resins, ethylene-vinyl acetate copolymers, ethylene-alkyl acrylate copolymers, polyvinyl acetate resins, and metal-crosslinked resins of ethylene-α, β-unsaturated mono- or dicarboxylic acid copolymers. Among these, polyamide resin is preferred because it has poor processing stability and physical properties, and is inexpensive. Thermosetting resins include phenol-formaldehyde resins, melamine-formaldehyde swellings, epoxy resins, and unsaturated polyester resins. Among these, phenol-
Formaldehyde resins are preferably used because they have superior processing stability and physical properties and are inexpensive. Synthetic rubbers include EPDM, CR, CPE, C8M, BR,
I IR-NBR etc. can be used.

第1図に、磁界の強さI(を横軸に、磁気分極I (磁
束密度B)を縦軸fことった磁化曲線の例が示されてい
る。このグラフから分るように、フェライトは、残留磁
気11rおよび保磁力I((1がともに大きい。これf
こ対して、鉄粉は、残留磁気Br、保磁力Heとも番こ
小さな値を示すが、飽和磁気(飽和磁束密度)Bsは非
常に大きい。
Figure 1 shows an example of a magnetization curve where the horizontal axis is the magnetic field strength I and the vertical axis is the magnetic polarization I (magnetic flux density B).As can be seen from this graph, ferrite is the residual magnetism 11r and the coercive force I ((1 are both large. This f
On the other hand, iron powder exhibits the smallest residual magnetism Br and coercive force He, but has a very large saturation magnetism (saturation magnetic flux density) Bs.

保磁力には、B=Qの場合の保磁力BHcと、■=0の
場合の保磁力1■cとがあるが、ここではHeで両方を
代表する。フェライト粉末と鉄粉とを適当な割合で混合
して複合材料をつくることにより、実線で示すように、
残留磁気Drを比較的大きな値に保ちつつ保持力rf 
cを小さくすることができる。鉄粉の飽和磁気B8が上
述のよう1こ非常fこ大きいので、フェライト粉末と鉄
粉との混合物である複合材料の飽和磁気B8も大きくな
り、その結果複合材料の残留磁気11rも大きな値に保
たれるものと考えられる。希土類コバルト粉末もフェラ
イト粉末と同じような頻回の磁化曲線を示す。また、鉄
粉以外の強磁性金属粉末および軟質フェライト粉末も鉄
粉と同じような磁化曲線を示す。したがって、これらを
混合して得られる複合材料もまた、残留磁気Brが比較
的大きくかつ保磁力が小さくなる。
The coercive force includes a coercive force BHc when B=Q and a coercive force 1■c when ■=0, and here, He represents both. By mixing ferrite powder and iron powder in an appropriate ratio to create a composite material, as shown by the solid line,
Holding force rf while keeping residual magnetism Dr at a relatively large value
c can be made small. As mentioned above, the saturation magnetism B8 of the iron powder is very large by 1 f, so the saturation magnetism B8 of the composite material, which is a mixture of ferrite powder and iron powder, also becomes large, and as a result, the residual magnetism 11r of the composite material also becomes a large value. considered to be preserved. Rare earth cobalt powder also shows frequent magnetization curves similar to ferrite powder. Furthermore, ferromagnetic metal powders and soft ferrite powders other than iron powder also exhibit magnetization curves similar to those of iron powder. Therefore, the composite material obtained by mixing these materials also has a relatively large residual magnetism Br and a small coercive force.

第2図Iこ、2種類の複合磁石材料IA) tBlの、
混合比]こ対する、残留磁気Br、保持力BHc 、 
IHcおよび比重の変化の様子か示さ■てG)る。複合
磁石材料IA)l;i、 B fl−フェライト粉末と
鉄粉とナイロン(接合材)とを混練してつくられたもの
であり、複合磁石材料(Blは、Ba−フェライト粉末
と、M n・7.n−フェライト粉末とナイロンとをi
Jl:練してつくられたものであり、ナイロンの割合は
、いずれの複合材料]こおいても、複合14料の全体)
こηしてl Q wt% である。そして、Ba−フェ
ライト粉末と鉄粉との混合比、およびBa−フェライト
粉末とM n * Z n−フェライト粉末との混合比
が変えらnでいる。フェライト粉末は0.5〜10μm
、鉄粉は1〜]0μm程度の大きさである。第2図のグ
ラフから明らかなように、鉄粉またはM n @Z n
−フェライト粉末の割合の増加に対して、残留磁気13
rはゆるやかに減少し、保磁力BI(C、ITicは急
激fこ減少している。換言すれば、残留磁気Drは大き
な値5こ保たれ、かつ保磁力Bl(C1I)(Cは小さ
な値1こ抑えられている。使用可能な鉄粉およびM n
 −Z n−フェライト粉末の範囲は、鉄粉とBa−フ
ェライト粉末との混合比およびMn・Zn−フェライト
粉末とBa−フェライト粉末との混合比で、およそ1〜
99 wL  %である。
Figure 2: Two types of composite magnet materials IA) tBl,
Mixing ratio] In contrast, residual magnetism Br, coercive force BHc,
The changes in IHc and specific gravity are shown in G). Composite magnet material IA) l;i, B It is made by kneading fl-ferrite powder, iron powder, and nylon (bonding material), and the composite magnet material (Bl is made by kneading Ba-ferrite powder and M n・7.N-ferrite powder and nylon
Jl: It is made by kneading, and the proportion of nylon is the same as that of all 14 composite materials)
Therefore, η is l Q wt%. The mixing ratio of Ba-ferrite powder and iron powder and the mixing ratio of Ba-ferrite powder and Mn*Zn-ferrite powder are varied n. Ferrite powder is 0.5-10μm
, the iron powder has a size of about 1 to ]0 μm. As is clear from the graph in Figure 2, iron powder or M n @Z n
- remanence 13 for increasing proportion of ferrite powder
r decreases slowly, and coercive force BI (C, ITic) rapidly decreases by f. In other words, remanence Dr remains at a large value of 5, and coercive force Bl (C1I) (C is a small value). 1. Usable iron powder and M n
-Zn-ferrite powder ranges from approximately 1 to
99 wL%.

鉄粉またはM n −Z n−フェライト粉末の混合比
が80〜99チ程度の範囲の複合磁石材料は、保磁力H
cが小さく、半硬質磁性材料として好y]Nである。ま
た、ナイロンは、複合材料の全体1こ刈して5〜4 Q
 wt%程度が好ましい。複合iJ Fl、 +AI 
Iこおいては、鉄粉の増加Iこともなって、複合相オこ
1の比重が直線的1こ増大していることにも注ト1ずべ
きである。
A composite magnet material with a mixing ratio of iron powder or M n -Z n -ferrite powder in a range of about 80 to 99 cm has a coercive force H
c is small, and y]N is suitable as a semi-hard magnetic material. In addition, for nylon, the whole composite material is cut into 5 to 4 Q
About wt% is preferable. Composite iJ Fl, +AI
It should also be noted that the specific gravity of the composite phase increases linearly by 1 due to the increase in iron powder.

複合磁石材料の例を示すと次の通りである。Examples of composite magnet materials are as follows.

実施例1   実施例2   実施例3−質フエライト
 Bn−7エラ付  Sm−CoBa−7エライまたは 土Wjコバルト   54      60     
48(’wl・%) 磁性金属 鉄 粉  鉄 粉  Mn−Zn−または 
                         
   フェライトフェライト  36      3.
0     39(wL%) 合  絹 ナイロン   ナイロン  ナイロン(wl
・%)     10     10     1.3
+1116気2000  3700 2000nr(G
) イ蔽    ノJ    950          
1400      1150IHC(Oe) このよう5こ、残留磁気Brを大きな値に保持し、かつ
保磁力Heを小さくすることができるから、弱い磁界で
着磁しても大きな残留磁気を得7ることかできる。した
がって、小さな着磁ヘッドを使用することができ、単位
1是さ当りきわめて多数の磁極を着磁することが可能と
なる。
Example 1 Example 2 Example 3 - Quality ferrite Bn-7 gill Sm-CoBa-7 gill or earth Wj cobalt 54 60
48 ('wl・%) Magnetic metal Iron powder Iron powder Mn-Zn- or

Ferrite Ferrite 36 3.
0 39 (wL%) Synthetic Silk Nylon Nylon Nylon (wL%)
・%) 10 10 1.3
+1116 Ki 2000 3700 2000nr (G
) Ishi no J 950
1400 1150 IHC (Oe) In this way, it is possible to maintain the remanent magnetism Br at a large value and to reduce the coercive force He, so it is possible to obtain a large remanent magnetism even when magnetized with a weak magnetic field. . Therefore, a small magnetizing head can be used, and a very large number of magnetic poles can be magnetized per unit.

超多極着磁の例を示すと、次の通りである。B++−フ
ェライト粉54Wもチ、鉄粉35 wl、%、ナイロン
10%VL% を混練して、直径80wILの円板を成
形した。この円板の同縁1こ、着磁ヘッドをパルス駆動
することにより、1400 極の磁極を着磁できた。こ
れは、約55極/ cm lこ相当する。
An example of super multipolar magnetization is as follows. B++-ferrite powder 54W, iron powder 35wl%, and nylon 10%VL% were kneaded to form a disk with a diameter of 80wIL. By pulse-driving the magnetizing head on the same edge of this disk, 1400 magnetic poles could be magnetized. This corresponds to approximately 55 poles/cml.

この発明による複合磁石材料は、回転トランスデユーサ
やフライホイールなどに応用が可11シである。複合磁
石材料で形成された」二記の円板の周縁1:たは周面1
こ、所望数の磁極を着磁し、この着磁円板を1i7i1
転47Hを検出すべき回転qq(目こ固定する。そして
、円板の着磁面と対向する位隨lこ、ホール1子その他
の磁電変換素子または磁気ヘッドを配置?′tずれば、
回転トランスデユーサが構成さIする。磁′?11変換
素子などからは、円板の回転b1.Iこ比例した周波数
の信号が得られる。
The composite magnet material according to the present invention can be applied to rotary transducers, flywheels, etc. Peripheral edge 1: or peripheral surface 1 of the disc mentioned in "2" formed of a composite magnetic material
The desired number of magnetic poles is magnetized, and this magnetized disk is 1i7i1.
Rotation qq (eyes are fixed) to detect rotation 47H.Then, if the Hall element or other magnetoelectric conversion element or magnetic head is disposed at a position opposite to the magnetized surface of the disk, then
A rotating transducer is configured. Magnetic? 11 conversion element etc., rotation of the disk b1. A signal with a frequency proportional to I is obtained.

」−述のよう1こ、円板1こはきわめて多数の磁極を着
磁することができるから、磁電変換素子なと力)ら出力
さイ]、る信υの周波数は高くなり、正確な回1ルi 
’1.7N検出か可能となる。この発明による復合磁石
祠第1」の強磁性粉末として比重の大きなもの(jこと
えは鉄粉)を使用すると、形成され1こ」−記の円4に
の重11(は重く、大きな慣性モーメントをJ、5も、
フライホイールとしても適用できる。
- As mentioned above, since one disk can magnetize a very large number of magnetic poles, the frequency of the signal υ becomes high and the frequency of the signal υ becomes high, and the output from the magnetoelectric conversion element becomes high. times 1 le i
'1.7N detection is possible. When a ferromagnetic powder with a large specific gravity (in other words, iron powder) is used as the ferromagnetic powder of the combined magnet shrine No. 1 according to the present invention, it is formed. Moment J, 5 too,
It can also be used as a flywheel.

そして、このフライホイールを回転トランスデユーサと
しても使用すれは、同時1こ2つの機能を持つことにな
る。
If this flywheel is also used as a rotary transducer, it will have one or two functions at the same time.

以」二のように、この発明番こよる複合?if1石(l
料は、残留磁気の大きなフェライト粉末および希土’f
Aコバルト粉末の少なくともいずれか一4′lit、な
らびfこ保磁力の小さな強磁性金属粉末および軟質フェ
ライト粉末の少なくともいずれか−・種薯こ一接合材か
加えられて混練されてなるから、残留磁気を比穀的大き
な値(こ保ち、かつ保磁力を小さくすることかできる。
Is this invention highly complex like ``2''? if 1 stone (l
The materials are ferrite powder with large residual magnetism and rare earth'f
At least one of cobalt powder A, at least one of ferromagnetic metal powder with a small coercive force and soft ferrite powder, and a bonding material are added and kneaded, so that no residual It is possible to maintain magnetism at a relatively large value and reduce coercive force.

したかって、単位長当りの着磁磁極数をきわめて多くす
ることが可能となる。
Therefore, it is possible to greatly increase the number of magnetized magnetic poles per unit length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁化曲線を示すグラフ、第2図は混合比を変え
た場合の複合磁石()I利の!l′4性を示すグラフで
ある。 1、  Ui (!+  の表)IN     昭和5
6年特許願 第139279  号20発明の名称  
複合磁石材料 3、補正をする者 事件との関係    特許用願人 4、代 理 人 住    所 大阪市内1 X’、PIJ谷西之町57
番地の6 イナバビル6階外4名 5 、  Mli i’lE命令の日付   昭和  
年  月   日6、補正により増加する?明の数 7、補正の対象明細カドの発明の詳細な説明の欄。 8補1;の内容 明細書第2頁959行〜第10行の「小さくして」を「
少なくして」と訂正する。 以上 9−
Figure 1 is a graph showing the magnetization curve, and Figure 2 is a graph showing the magnetization curve of a composite magnet () when the mixing ratio is changed. It is a graph showing l'4 property. 1, Ui (!+ table) IN Showa 5
6th year patent application No. 139279 20 Title of invention
Composite magnetic material 3, relationship to the case of the person making the amendment Patent applicant 4, agent address 1X', PIJ Tanishinomachi 57, Osaka City
Address 6 Inaba Building 6th floor 4 people 5, Mli i'lE order date Showa
Year, month, day 6, will it increase due to correction? Number 7, Detailed explanation of the invention on the side of the specification to be amended. 8 Supplement 1; "Make it smaller" on page 2, line 959 to line 10 of the description of contents is changed to "
"Less it," he corrected. Above 9-

Claims (1)

【特許請求の範囲】[Claims] 硬質フェライト粉末および希土類コバルト粉本の少なく
ともいずれか一種、強磁性金4粉末おまひ軟質フェライ
ト粉末の少なくともいすわか−・種、ならびに接合材か
らなる複合磁石材料。
A composite magnet material comprising at least one of hard ferrite powder and rare earth cobalt powder, at least one kind of ferromagnetic gold powder, soft ferrite powder, and a bonding material.
JP56139279A 1981-09-03 1981-09-03 Composite permanent magnet material Pending JPS5840802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139279A JPS5840802A (en) 1981-09-03 1981-09-03 Composite permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139279A JPS5840802A (en) 1981-09-03 1981-09-03 Composite permanent magnet material

Publications (1)

Publication Number Publication Date
JPS5840802A true JPS5840802A (en) 1983-03-09

Family

ID=15241577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139279A Pending JPS5840802A (en) 1981-09-03 1981-09-03 Composite permanent magnet material

Country Status (1)

Country Link
JP (1) JPS5840802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967837A (en) * 1996-10-01 1999-10-19 Alps Automotive, Inc. Assembly for connecting an electric/electronic device to a printed circuit board
CN102982951A (en) * 2012-11-23 2013-03-20 天长市昭田磁电科技有限公司 Nb2O5-containing ferromagnetic core manufacturing method
CN102982952A (en) * 2012-11-23 2013-03-20 天长市昭田磁电科技有限公司 ZrO2-containing ferromagnetic core manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967837A (en) * 1996-10-01 1999-10-19 Alps Automotive, Inc. Assembly for connecting an electric/electronic device to a printed circuit board
CN102982951A (en) * 2012-11-23 2013-03-20 天长市昭田磁电科技有限公司 Nb2O5-containing ferromagnetic core manufacturing method
CN102982952A (en) * 2012-11-23 2013-03-20 天长市昭田磁电科技有限公司 ZrO2-containing ferromagnetic core manufacturing method
CN102982951B (en) * 2012-11-23 2016-05-04 天长市昭田磁电科技有限公司 One contains Nb2O5The manufacture method of ferromagnetic core
CN102982952B (en) * 2012-11-23 2016-08-24 天长市昭田磁电科技有限公司 A kind of containing ZrO2the manufacture method of ferromagnetic core

Similar Documents

Publication Publication Date Title
US3257586A (en) Flexible permanent magnet and composition
US3523836A (en) Permanent magnet constituted of fine particles of a compound m5r
JP2002175907A (en) Strontium ferrite particles and powder for bonded magnet, and bonded magnet using the particles and power
US6190573B1 (en) Extrusion-molded magnetic body comprising samarium-iron-nitrogen system magnetic particles
JPS5840802A (en) Composite permanent magnet material
JP2001135518A (en) Magnet roller
JP2003086421A (en) Magnet roller
JPS61284906A (en) Resin bond magnet raw material
JP2002231526A (en) Magnet roller
JP4032706B2 (en) Magnet roller manufacturing method and magnet roller manufactured by the manufacturing method
JPH01284573A (en) Ferromagnetic adhesive
JP2000323322A (en) Magnet roller
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JP2004087644A (en) Magnet roller
JP2002151324A (en) Magnet roller
JP2001085210A (en) Ferrite sintered magnet
JPH03219056A (en) Rare earth magnetic alloy excellent in corrosion resistance
JP2689619B2 (en) Magnet roll
JP3564374B2 (en) Magnet roller
JPS6441201A (en) Rare earth magnet
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JP2003152240A5 (en) Magnetic head
JP2003163112A (en) Magnet roller
KR920007008A (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS5633934A (en) Production of resin magnet