JPS5840034B2 - Treatment method for hot water that flows out accompanying geothermal steam - Google Patents

Treatment method for hot water that flows out accompanying geothermal steam

Info

Publication number
JPS5840034B2
JPS5840034B2 JP15185079A JP15185079A JPS5840034B2 JP S5840034 B2 JPS5840034 B2 JP S5840034B2 JP 15185079 A JP15185079 A JP 15185079A JP 15185079 A JP15185079 A JP 15185079A JP S5840034 B2 JPS5840034 B2 JP S5840034B2
Authority
JP
Japan
Prior art keywords
hot water
geothermal
steam
geothermal steam
piping system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15185079A
Other languages
Japanese (ja)
Other versions
JPS5675980A (en
Inventor
芳太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP15185079A priority Critical patent/JPS5840034B2/en
Publication of JPS5675980A publication Critical patent/JPS5675980A/en
Publication of JPS5840034B2 publication Critical patent/JPS5840034B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

【発明の詳細な説明】 本発明は、地熱蒸気採取坑井から地熱蒸気に随伴して流
出する熱水の処理方法に関するものであり、その目的と
する処は、地表面に付設した熱水を移送する配管系内の
スケールを防止するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating hot water flowing out from a geothermal steam extraction well along with geothermal steam, and its purpose is to treat hot water attached to the earth's surface. This is to prevent scale from forming within the transport piping system.

既に、地熱蒸気を利用した地熱発電は実施されているが
、この地熱発電では地熱蒸気のみ噴出すホ*ることが理
想的である。
Geothermal power generation using geothermal steam has already been carried out, but it is ideal for geothermal power generation to emit only geothermal steam.

しかし、か\る地熱蒸気のみの噴出は今の処、我国では
岩手県松用の地熱発電所にその例が見られるのみであっ
て、多くは地熱蒸気量に数倍する熱水を随伴するため、
地熱発電にあっては、上述の熱水を地熱蒸気から分離す
る必要がある。
However, in Japan, the only example of such eruptions of geothermal steam is currently seen at the geothermal power plant in Matsuyo, Iwate Prefecture, and in many cases, hot water is accompanied by several times the amount of geothermal steam. For,
In geothermal power generation, it is necessary to separate the above-mentioned hot water from geothermal steam.

現在、上述のように地熱蒸気に熱水を随伴して噴出する
場合は、表熱採取坑井より噴出する地熱蒸気と熱水との
気液二相からなる地熱流体(以下地熱流体と云う)を気
水分離器で地熱蒸気と熱水とに分離し、地熱蒸気はその
ま\発電タービンに送り、他方熱水は気水分離器のレベ
ルヘッダーに接続されている配管系(以下配管系と云う
)を通じて還元坑井へ還元注入せしめることによって、
熱水に伴なう公害問題、さらには地下熱源の涸渇防止の
対策が図られている。
Currently, when geothermal steam and hot water are ejected as described above, geothermal fluid (hereinafter referred to as geothermal fluid) consisting of gas-liquid two phases of geothermal steam and hot water is ejected from surface heat extraction wells. A steam separator separates the water into geothermal steam and hot water, and the geothermal steam is directly sent to the power generation turbine, while the hot water is sent to the piping system (hereinafter referred to as piping system) connected to the level header of the steam water separator. By injecting the reduction into the reduction well through the
Measures are being taken to prevent pollution problems associated with hot water and the depletion of underground heat sources.

しかし、熱水を上述のように配管系で移送する場合、配
管内壁にスケールが堆積し、熱水の円滑な移送が図られ
ず、また甚だしい場合は配管系が閉塞し、連続的、かつ
、円滑な地熱蒸気の採取に支障をきたし、ひいては定常
的な地熱発電を不能ならしめる恐れがある。
However, when hot water is transferred through a piping system as described above, scale accumulates on the inner walls of the pipes, making it difficult to transfer the hot water smoothly, and in extreme cases, the piping system becomes blocked, resulting in continuous and This may hinder the smooth extraction of geothermal steam and may even make regular geothermal power generation impossible.

本発明は、特許請求の範囲に記載した横取とすることに
より、配管系内のスケール生成を防止することによって
、該配管系による熱水の移送を円滑ならしめ、もって地
熱蒸気の連続的、かつ、円滑な採取を可能ならしめたも
のである。
The present invention prevents the formation of scale within the piping system by taking the control described in the claims, thereby smoothing the transfer of hot water through the piping system, thereby allowing the continuous flow of geothermal steam. Moreover, it enables smooth collection.

地熱蒸気に随伴して流出する熱水は、地域によりかなり
のバラツキはあるが、その−例を示せば第1表の通りで
ある。
The amount of hot water that flows out along with geothermal steam varies considerably depending on the region, but examples are shown in Table 1.

第1表に示される紐取のうち、スケール生成の原因とな
るものは、スケールの分析結果から珪酸とカルシウムで
あることが認められる。
Among the strings shown in Table 1, it is recognized from the scale analysis results that silicic acid and calcium are responsible for scale formation.

また、本発明者の研究の結果、熱水中の珪酸及びカルシ
ウムとの析出の機構は次のように考えられる。
Further, as a result of research by the present inventors, the mechanism of precipitation with silicic acid and calcium in hot water is considered to be as follows.

即ち、珪酸は地中の高温、高圧下に存在している熱水が
地表面上に流出することによって、温度と圧力とが低下
し、これらの低下に伴って熱水中の珪酸が重合して高分
子量の珪酸ポリマーを形威し、これが熱水中から析出す
るものと考えられる。
In other words, silicic acid is formed when hot water that exists under high temperature and high pressure underground flows out onto the ground surface, resulting in a decrease in temperature and pressure, and as these decreases, silicic acid in the hot water polymerizes. It is thought that this forms a high molecular weight silicic acid polymer, which precipitates from the hot water.

他方、カルシウムは熱水中に主として重炭酸カルシウム
として溶解しているが、熱水には第1表に示すように可
成りの溶解二酸化炭素が地下の高温、高圧下での平衝溶
解圧を保って含有されている。
On the other hand, calcium is dissolved mainly as calcium bicarbonate in hot water, but as shown in Table 1, there is a considerable amount of dissolved carbon dioxide in hot water, which exceeds the equilibrium solution pressure at high temperatures and high pressures underground. It is preserved and contained.

しかし、熱水が地表面に流出し、熱水に対する圧力低下
を生じてフラッシングを生ずると、蒸気の生成と同時に
熱水中の溶解二酸化炭素の平衝溶解圧が崩れ、該溶解二
酸化炭素が気相中に放出され、そのため熱水中の重炭酸
カルシウムが下記式 のように分解して二酸化炭素を放出すると共に、重炭酸
カルシウムが難溶性の炭酸カルシウムとなる。
However, when hot water flows to the earth's surface, causing a pressure drop on the hot water and causing flashing, the equilibrium solubility pressure of dissolved carbon dioxide in the hot water collapses at the same time as steam is generated, and the dissolved carbon dioxide is released into gas. Therefore, calcium bicarbonate in the hot water decomposes as shown below to release carbon dioxide, and the calcium bicarbonate turns into poorly soluble calcium carbonate.

この炭酸カルシウムはその濃度が溶解度以下であっても
、その溶解速度が低いために、熱水に溶解する以前に配
管系の管内壁にスケールとして付着堆積するものと思わ
れる。
Even if the concentration of calcium carbonate is below its solubility, its dissolution rate is low, so it is thought that it adheres and deposits as scale on the inner wall of the piping system before dissolving in hot water.

以上の解析の結果、本発明は地熱坑井より流出する熱水
を後述するように高温、高圧に保持せしめると共に、該
熱水に可溶性フミン酸塩を添加せしめることにより、配
管系内のスケール防止に成功した。
As a result of the above analysis, the present invention prevents scale within the piping system by maintaining the hot water flowing out from the geothermal well at high temperature and high pressure as described later, and by adding soluble humates to the hot water. succeeded in.

即ち、地熱採取坑井から流出する熱水を後述の如き高温
、高圧に保持せしめれば、熱水中の珪酸は殆んど析出し
ない。
That is, if hot water flowing out from a geothermal extraction well is kept at high temperature and high pressure as described below, almost no silicic acid will precipitate in the hot water.

本発明者の研究では、熱水を100°C以上の温度及び
1.5 ky/iG以上の圧力に保持すれば、熱水は熱
水中の珪酸は重合して珪酸ポリマーとなるが、しかし、
これを配管系によって移送せしめても、該配管系の管内
壁にスケールが付着堆積せず、さらに135℃以上の温
度及び約2kg/iG(飽和蒸気圧相当)以上に保持す
れば、長期間熱水は透明状態を維持することが認められ
る。
The inventor's research has shown that if hot water is maintained at a temperature of 100°C or higher and a pressure of 1.5 ky/iG or higher, the silicic acid in the hot water will polymerize and become a silicic acid polymer, but ,
Even if this is transferred through a piping system, scale will not adhere to the inner wall of the piping system, and if it is maintained at a temperature of 135°C or higher and approximately 2kg/iG (equivalent to saturated vapor pressure) or higher, it will not heat up for a long period of time. Water is allowed to remain clear.

従って、熱水によるスケールの防止は熱水を100℃以
上の高温及び1.5ky/cIILG以上の高圧、好ま
しくは135℃以上の温度及び2kg/cvF、G以上
の圧力で保持せしめればよい。
Therefore, scaling caused by hot water can be prevented by maintaining the hot water at a high temperature of 100° C. or higher and a high pressure of 1.5 ky/cIILG or higher, preferably at a temperature of 135° C. or higher and a pressure of 2 kg/cvF, G or higher.

しかし、熱水を上述の如き高温、高圧に保持した場合で
も、熱水中にカルシウムを含有する場合には、熱水中の
溶解二酸化炭素の放出に伴なう炭酸カルシウムに基因す
るスケールが生成する。
However, even when hot water is held at high temperatures and high pressures as described above, if the hot water contains calcium, scales due to calcium carbonate will form due to the release of dissolved carbon dioxide in the hot water. do.

カバる熱水中の溶解二酸化炭素の放出は、地熱蒸気採取
坑井の坑口における圧力が6〜7kg/ff1Gと高い
ため、その坑口における圧力と配管系内の圧力との相対
的な関係から必然的に生起するため、熱水の圧力が1.
5 ky/iG以上であっても、熱水中に炭酸カルシウ
ムが析出し、これが配管系の管内壁に付着堆積しさらに
、これに珪酸の一部が取込まれてスケールを生成するも
のと考えられる。
Since the pressure at the wellhead of a geothermal steam extraction well is as high as 6 to 7 kg/ff1G, the release of dissolved carbon dioxide in the hot water is inevitable due to the relative relationship between the pressure at the wellhead and the pressure within the piping system. Because of this, the pressure of hot water is 1.
Even if the temperature is 5 ky/iG or more, calcium carbonate precipitates in the hot water, and this deposits on the inner wall of the piping system, and it is thought that some of the silicic acid is incorporated into this, forming scale. It will be done.

本発明は、熱水中の上述炭酸カルシウムを可溶性フミン
酸塩で吸着除去せしめるようにしたものである。
In the present invention, the above-mentioned calcium carbonate in hot water is adsorbed and removed by a soluble humate salt.

に可溶性フミン酸塩とは、天然フミン酸又はニトロフミ
ン酸のナトリウム、カリウム、アンモニウム等の水溶性
フミン酸塩である。
The water-soluble humates are water-soluble humates such as sodium, potassium, and ammonium of natural humic acid or nitrofumic acid.

上述可溶性フミン酸塩は、0.1〜10重量係濃度の水
溶液として熱水中に添加せしめられる。
The above-mentioned soluble humate salt is added to hot water as an aqueous solution having a concentration by weight of 0.1 to 10.

この場合可溶性フミン酸塩の使用量は、熱水中に含有す
るカルシウム量及び使用するフミン酸の種類に応じて適
宜採択することができるが、一般的には、熱水中に含有
されるカルシウム量に対し、はゾ同量又は、それ以下好
ましくは1/10以上で充分である。
In this case, the amount of soluble humate to be used can be appropriately selected depending on the amount of calcium contained in the hot water and the type of humic acid used, but in general, the amount of calcium contained in the hot water is It is sufficient to use the same amount or less, preferably 1/10 or more.

また、可溶性フミン酸塩の添加時期は、地熱坑井から地
熱流体が噴出した直後に添加してもよく、また該地熱流
体を地熱蒸気と熱水とに分離した後、直接熱水に添加し
てもよい。
In addition, the soluble humate may be added immediately after the geothermal fluid is spouted from the geothermal well, or it may be added directly to the hot water after the geothermal fluid is separated into geothermal steam and hot water. It's okay.

上述の如く、熱水中に可溶性フミン酸塩を添加すること
によって、熱水中の溶解二酸化炭素の放出と同時に生成
される炭酸カルシウムが配管系の管内壁に付着する以前
に、熱水中の可溶性フミン酸塩とキレート結合を形成す
るか、又は可溶性フミン酸塩が熱水中に析出懸濁する炭
酸カルシウムを吸着して、準安定なコロイド状粒子を形
成しうろことにより、炭酸カルシウムが配管系の管内壁
に付着堆積するのを阻止しうるものと考えられる。
As mentioned above, by adding soluble humates to hot water, calcium carbonate, which is generated simultaneously with the release of dissolved carbon dioxide in hot water, can be absorbed into the hot water before it adheres to the inner wall of the piping system. Calcium carbonate can form metastable colloidal particles by forming chelate bonds with soluble humates, or by adsorbing suspended calcium carbonate precipitated in hot water. This is thought to be able to prevent adhesion and deposition on the inner walls of the pipes of the system.

以上のように本発明は熱水中の珪酸及びカルシウムに基
因する配管系内のスケール生成を防止することができる
から、地熱蒸気採取坑井から地熱蒸気に随伴して流出す
る熱水を配管系を通じて円滑に移送しうろことができ、
従って地熱蒸気を連続的、かつ、円滑に採取することが
できる。
As described above, the present invention can prevent scale formation in the piping system due to silicic acid and calcium in hot water, so that the hot water flowing out along with geothermal steam from the geothermal steam extraction well can be removed from the piping system. can be transferred smoothly through the
Therefore, geothermal steam can be collected continuously and smoothly.

次に本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

図面は、配管系内のスケール生成試験のための装置の一
例を示したものであって、地熱採取坑井1より噴出する
地熱流体は、メインパイプ2に対し、バイパスに接続さ
れたパイプ3に一部が分配、移送されて気水分離器4に
導入される。
The drawing shows an example of an apparatus for a scale generation test in a piping system, in which geothermal fluid ejected from a geothermal extraction well 1 is sent to a main pipe 2 and to a pipe 3 connected to a bypass. A portion is distributed, transferred, and introduced into the steam/water separator 4.

パイプ3に前記地熱流体が導通されると同時に、タンク
5に収納されている可溶性フミン酸塩の0,5係水溶液
を、定量ポンプ6で計量しつ\、パイプ7を通じて前記
パイプ3の地熱流体に送入することにより可溶性フミン
酸は凡て熱水中に添加される。
At the same time as the geothermal fluid is introduced into the pipe 3, the 0.5 aqueous solution of soluble humate stored in the tank 5 is metered by the metering pump 6, and the geothermal fluid in the pipe 3 is passed through the pipe 7. All soluble humic acids are added to the hot water by feeding it into the hot water.

可溶性フミン酸を添加された地熱流体は、気水分離器4
で蒸気と熱水とに分離され、蒸気は気水分離器4内の蒸
気パイプ8を経てサイレンサー9に至る。
The geothermal fluid to which soluble humic acid has been added is sent to a steam separator 4.
The steam is separated into steam and hot water, and the steam passes through the steam pipe 8 in the steam separator 4 and reaches the silencer 9.

他方、熱水は、レベルヘッダー10に順次接続*ネされ
るバルブ11.パイプ12.パイプ13.バルブ14.
パイプ15.パイプ16.バルブ17及びパイプ18か
らなる配管系並びにバルブ19を経由して還元坑井20
より地下へ還元注入される。
On the other hand, hot water is supplied to the level header 10 through valves 11. Pipe 12. Pipe 13. Valve 14.
Pipe 15. Pipe 16. Reduction well 20 via piping system consisting of valve 17 and pipe 18 and valve 19
Reduction is injected underground.

これらの配管系を経由して移送される熱水は、配管系に
設けられたバルブ11,14,17及びバルブ19を適
宜調整することにより1.5kv/crit、0以上の
圧力を保持せしめることができ、また配管系に適宜保温
処理(必要によっては冷却処理)等を適用することによ
り100°C以上の温度を保持せしめることができる。
The hot water transferred via these piping systems is maintained at a pressure of 1.5 kv/crit, 0 or more by appropriately adjusting the valves 11, 14, 17 and valve 19 provided in the piping system. Furthermore, by appropriately applying heat insulation treatment (cooling treatment if necessary) to the piping system, it is possible to maintain a temperature of 100° C. or higher.

図面に示すスケール生成試験用の装置における各パイプ
3,12,13,15,16,18は伺れも直径5cr
rLの鋼管が用いられた。
Each pipe 3, 12, 13, 15, 16, 18 in the scale generation test equipment shown in the drawing has a diameter of 5 cr.
rL steel pipe was used.

また、図面に示す装置におけるA点、B点、C点、D点
における温度及び圧力は第2表に示す。
Furthermore, the temperatures and pressures at points A, B, C, and D in the apparatus shown in the drawings are shown in Table 2.

以上のような状況で熱水を一昼夜導通せしめた後、配管
系内のスケール生成状況を観察した処、第3表に示す通
りである。
After conducting hot water all day and night under the above conditions, scale formation in the piping system was observed, and the results are shown in Table 3.

尚、スケール生成用式※※験に用いられた熱水は第1表
に示す熱水を用い、また第3表には可溶性フミン酸塩を
添加しない場合を併記した。
The hot water shown in Table 1 was used for the scale generation equation test, and Table 3 also shows the case where no soluble humate was added.

また、 上述フミン酸ナトリウム塩に代えて、 フ ミン酸カリウム塩及びフミン酸アンモニウム塩を用いた
場合、夫々5ppffl、10ppI11の添加でスケ
ールの付着は全く認められなかった。
Furthermore, when potassium humate salt and ammonium humate salt were used in place of the above-mentioned sodium humate salt, no scale was observed at all when 5 ppffl and 10 ppl were added, respectively.

尚、図面に示す試験装置により引続き試験を数ケ月継続
して試験した処、配管系内にスケールの生成は全く認め
られなかった。
Further, when the test was continued for several months using the test equipment shown in the drawing, no scale formation was observed within the piping system.

以上のスケール付着試験装置は、地熱採取坑井から噴出
する地熱流体量に見合うように各種設備をスケールアッ
プし、直接メインパイプ2に接続することによって地熱
蒸気の実生産に適用できる。
The scale adhesion test device described above can be applied to the actual production of geothermal steam by scaling up the various equipment to match the amount of geothermal fluid ejected from the geothermal extraction well and directly connecting it to the main pipe 2.

以上の如く本発明は地熱蒸気に随伴して流出する熱水を
100℃以上の温度及び1.5kg/Cr1LG以上の
圧力に保持することによって、配管系内に珪酸に基因す
るスケールの生成を防止でき、また熱水に可溶性フミン
酸塩を添加することによってカルシウムに基因するスケ
ールの生成も防止でき、従って配管系による熱水の移送
が円滑に行われ、地熱蒸気の連続的、かつ、円滑な採取
が可能である。
As described above, the present invention prevents the formation of scale caused by silicic acid in the piping system by maintaining the hot water flowing out accompanying geothermal steam at a temperature of 100°C or higher and a pressure of 1.5kg/Cr1LG or higher. By adding soluble humates to hot water, it is also possible to prevent the formation of calcium-based scales, thereby facilitating the smooth transfer of hot water through piping systems and ensuring continuous and smooth flow of geothermal steam. It is possible to collect.

【図面の簡単な説明】[Brief explanation of drawings]

図面はスケール生成試験のための装置の一例を示す。 1・・・・・・地熱蒸気採取坑井、2・・・・・・メイ
ンパイプ、3.7,12,13,15,16・・・・・
・パイプ、4・・・・・・気水分離器、5・・・・・・
フミン酸塩水溶液タンク、6・・・・・・定量ホンフ、
10・・・・・・レベルヘッタ−IL14,17,19
・・・・・・バルブ、20・・・・・・還元坑井。
The drawing shows an example of an apparatus for scale generation testing. 1... Geothermal steam extraction well, 2... Main pipe, 3.7, 12, 13, 15, 16...
・Pipe, 4...Steam water separator, 5...
Humate aqueous solution tank, 6... quantitative phonf,
10...Level header-IL14, 17, 19
...Valve, 20...Reduction well.

Claims (1)

【特許請求の範囲】[Claims] 1 地熱発電用の地熱蒸気採取坑井より噴出する地熱蒸
気に随伴して流出する熱水を100℃以上の温度及び1
.5 kg/crit G以上の圧力下に保持すると共
に、さらに該熱水に可溶性フミン酸塩を添加した後、前
記熱水を、地表面上に付設された気水分離器のレベルヘ
ッダーに接続されている配管系を通じて還元坑井へ還元
注入せしめることを特徴とする地熱蒸気に随伴して流出
する熱水の処理方法。
1. Hot water flowing out accompanying geothermal steam gushing out from a geothermal steam extraction well for geothermal power generation is heated to a temperature of 100°C or higher and 1.
.. After maintaining the hot water under a pressure of 5 kg/crit G or higher and adding soluble humates to the hot water, the hot water is connected to a level header of a steam separator attached above the ground surface. A method for treating hot water that flows out accompanied by geothermal steam, which is characterized by injecting reduction into a reduction well through a piping system in which the hot water flows out along with geothermal steam.
JP15185079A 1979-11-22 1979-11-22 Treatment method for hot water that flows out accompanying geothermal steam Expired JPS5840034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15185079A JPS5840034B2 (en) 1979-11-22 1979-11-22 Treatment method for hot water that flows out accompanying geothermal steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15185079A JPS5840034B2 (en) 1979-11-22 1979-11-22 Treatment method for hot water that flows out accompanying geothermal steam

Publications (2)

Publication Number Publication Date
JPS5675980A JPS5675980A (en) 1981-06-23
JPS5840034B2 true JPS5840034B2 (en) 1983-09-02

Family

ID=15527628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15185079A Expired JPS5840034B2 (en) 1979-11-22 1979-11-22 Treatment method for hot water that flows out accompanying geothermal steam

Country Status (1)

Country Link
JP (1) JPS5840034B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207788A (en) * 1985-03-13 1986-09-16 清水建設株式会社 Method and apparatus for preventing scaling in geothermal production well
JP5984270B2 (en) 2014-01-21 2016-09-06 株式会社エポック社 Baseball game board

Also Published As

Publication number Publication date
JPS5675980A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
US5656172A (en) pH modification of geothermal brine with sulfur-containing acid
US5665242A (en) Inhibition of silica precipitation
US4428200A (en) Geothermal plant fluid reinjection system
US5858245A (en) Inhibition of silicate scale formation
US4132075A (en) Method of producing mechanical energy from geothermal brine
JPH0361673A (en) Method of processing brine and method of processing aqueous geothermal fluid
JPS62117983A (en) Method and device for treating noncondensable gas from geothermal well
US9187354B2 (en) Method for inhibiting scale and geothermal power generating device
JPS58202099A (en) Method of acidifying aqueous geothermal liquid at high temperature
JPS59130597A (en) Prevention of scale precipitation
JP5563854B2 (en) Scale suppression method and power generation system
CN114728233A (en) For separating from H-rich2S and CO2Such as geothermal non-condensable gas mixtures, to reduce H2S and CO2Method and system of
JPS5840034B2 (en) Treatment method for hot water that flows out accompanying geothermal steam
JPS5918556B2 (en) Method and apparatus for extracting and using thermal energy from brine in geothermal wells
CN104338704A (en) Method and device for cleaning air preheater of coal-fired power plant boiler SCR (selective catalytic reduction) denitration system online
CA1216746A (en) Method for removing and/or retarding paraffin buildup on surfaces in contact with crude oil or natural gas containing such paraffin
US9403694B2 (en) System for processing brines
CN101376852A (en) Low dose hydrate inhibitor
RU2785098C1 (en) Method for cleaning the gas collection header of the well pad
US9498749B2 (en) Method to neutralize hydrogen chloride in superheated geothermal steam without destroying superheat
HUE027635T2 (en) Removal of sulphur from flue gas with possibility of recovering water
Weres et al. Corrosion by HCl in dry steam wells controlled using potassium carbonate without destroying superheat
BR112019015852A2 (en) inhibition of sulfate scale in high pressure and high temperature applications
CA1332501C (en) Method for inhibiting silica dissolution during oil well steam injection using acid and ammonia gas
SU968342A1 (en) Method of preventing salt deposition in oil producing equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533