JPS5839831Y2 - Water tower for desalination equipment with rectifier grid - Google Patents

Water tower for desalination equipment with rectifier grid

Info

Publication number
JPS5839831Y2
JPS5839831Y2 JP5335379U JP5335379U JPS5839831Y2 JP S5839831 Y2 JPS5839831 Y2 JP S5839831Y2 JP 5335379 U JP5335379 U JP 5335379U JP 5335379 U JP5335379 U JP 5335379U JP S5839831 Y2 JPS5839831 Y2 JP S5839831Y2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
condensate
grid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5335379U
Other languages
Japanese (ja)
Other versions
JPS55155594U (en
Inventor
欽治 杵淵
敏之 太期
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to JP5335379U priority Critical patent/JPS5839831Y2/en
Publication of JPS55155594U publication Critical patent/JPS55155594U/ja
Application granted granted Critical
Publication of JPS5839831Y2 publication Critical patent/JPS5839831Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【考案の詳細な説明】 本考案は下降流通水方式の復水脱塩装置の通水量におけ
る整流格子に関するものであり、通水量に充填したイオ
ン交換樹脂層の表面上に特異な形状の整流格子を設ける
ことによって通水塔内の偏流を防止し、また偏流を防止
することによってイオン交換樹脂層表面の乱れを阻止す
ることを目的とする。
[Detailed description of the invention] The present invention relates to a rectifying grid for the water flow rate of a condensate desalination equipment using a downward flow type water flow method. The purpose of the present invention is to prevent uneven flow in the water tower by providing this, and to prevent disturbance on the surface of the ion exchange resin layer by preventing uneven flow.

火力発電所や原子力発電所の復水中のイオンおよび懸濁
固形物を除去する方法としてイオン交換樹脂を使用した
復水脱塩装置が広く使用されている。
BACKGROUND OF THE INVENTION Condensate desalination equipment using ion exchange resins is widely used as a method for removing ions and suspended solids from condensate at thermal power plants and nuclear power plants.

復水脱塩装置の通水量には円筒型のものと球型のものが
あり、多量の復水を処理するために一般に塔径が2.4
〜3.4mの大型装置が用いられる。
Condensate desalination equipment has two types of water flow: cylindrical and spherical, and in order to process a large amount of condensate, the column diameter is generally 2.4 mm.
A large device of ~3.4 m is used.

またイオン交換樹脂層内における復水の線速度もたとえ
ば90〜120 m/Hと非常に速く、1塔当たりの復
水量が500〜1000 m3/Hの大容量となってい
る。
Furthermore, the linear velocity of condensate in the ion exchange resin layer is very high, for example, 90 to 120 m/H, and the amount of condensate per column is large, 500 to 1000 m/H.

このような復水脱塩装置の通水量においてイオン交換性
能の低下を防ぎ、効率的に処理を行なうには通水塔内の
整流機構に充分な配慮をする必要がある。
In order to prevent deterioration of ion exchange performance and to carry out efficient treatment with the amount of water flowing through such a condensate desalination apparatus, it is necessary to give sufficient consideration to the rectification mechanism in the water tower.

このため従来は復水を均一にイオン交換樹脂層の表面に
分配する整流機構として通水塔内の復水の入口にバッフ
ルプレートを設け、このバッフルプレートによってまず
復水を大まかに分配したのち、さらに通水塔内のイオン
交換樹脂層の上方のフリーボードの中間部に設けた多穴
板を通過させて再度整流操作を行なっていた。
For this reason, in the past, a baffle plate was installed at the inlet of the condensate in the water tower as a rectification mechanism to uniformly distribute the condensate to the surface of the ion exchange resin layer.The baffle plate first roughly distributed the condensate and then further The flow was rectified again by passing through a perforated plate installed in the middle of the free board above the ion exchange resin layer in the water tower.

しかし近年の復水の高線流速化および1塔当たりの通水
量の増加による通水量の大型化により、このような整流
機構を設けた通水量では、イオン交換樹脂を充填した時
点にはイオン交換樹脂層の表面がたいらであったものが
、復水の通水を開始してから長時間(24〜72時間)
にわたって観察していると、イオン交換樹脂層の表面の
ある部分がへこみ、ある部分がもり上がり、イオン交換
樹脂層の表面に凸凹が生じる現象があられれる。
However, due to the recent increase in the linear flow rate of condensate and the increase in water flow rate per tower, the water flow rate with such a rectification mechanism is not sufficient for ion exchange at the time of filling with ion exchange resin. The surface of the resin layer was rough for a long time (24 to 72 hours) after the condensate water flow started.
When observed over a period of time, it can be seen that some parts of the surface of the ion exchange resin layer are depressed, some parts are raised, and the surface of the ion exchange resin layer is uneven.

このため、イオン交換性能が低下し、懸濁固形物の除去
性能も低下する。
For this reason, the ion exchange performance is reduced, and the removal performance of suspended solids is also reduced.

特に復水中に海水リークが生じた場合、部分的に樹脂層
高が減少していると、充填されているイオン交換樹脂が
有効に働かないため、所定の処理量が得られなくなると
いう欠点を生ずる。
Particularly when seawater leaks into condensate, if the resin bed height is partially reduced, the ion exchange resin packed in the system will not work effectively, resulting in the disadvantage that the specified throughput cannot be obtained. .

復水の通水時においてイオン交換樹脂層の表面に凸凹が
生ずる原因は、通水塔内に起こる微細な偏流によりイオ
ン交換樹脂層表面のイオン交換樹脂が少しずつ移動し、
イオン交換樹脂層の表面に小さな凸凹を生じせしめ、そ
れがまた偏流を拡大するという悪循環をおこし、長時間
ののちには大きな凸凹になるものと考えられる。
The reason why unevenness occurs on the surface of the ion exchange resin layer when condensate flows is that the ion exchange resin on the surface of the ion exchange resin layer moves little by little due to minute drifts that occur in the water tower.
It is thought that small irregularities are formed on the surface of the ion-exchange resin layer, which in turn causes a vicious cycle of expanding the drift, resulting in large irregularities after a long period of time.

本考案はこのような下降流通水方式の復水脱塩装置の通
水量における従来の整流機構の欠点を補うものであり、
当該通水塔内に充填したイオン交換樹脂の表面を基準と
して上下に各3QQmmの範囲内に、各格子の横断面の
形状が面積100〜16000m2の円形あるいは多角
形であり、かつ高さが100〜500 mmの垂直壁を
有する整流格子を設けたことを特徴とする。
The present invention compensates for the shortcomings of the conventional rectification mechanism in terms of the water flow rate of condensate desalination equipment using the downward flow method.
The cross-sectional shape of each grid is circular or polygonal with an area of 100 to 16,000 m2, and the height is 100 to 16,000 m2, within a range of 3QQmm above and below the surface of the ion exchange resin filled in the water tower. It is characterized by the provision of a rectifying grid with vertical walls of 500 mm.

以下に本考案を実施態様の一例を示した図に従って説明
する。
The present invention will be explained below with reference to the drawings showing an example of the embodiment.

第1図において1は下降流通水方式の復水脱塩装置の通
水量であり、通水量1の内部にイオン交換樹脂2を充填
し、通水量1の上部に復水流人管6を接続し、下部に処
理水出口管7を接続する。
In Fig. 1, 1 is the water flow rate of the condensate desalination equipment using the downward flow water flow method. , the treated water outlet pipe 7 is connected to the lower part.

また3はバッフルプレートトで゛あり、当該バツフルフ
3 is a baffle plate, and the baffle plate.

レート3は復水流入管6の直下に取り付ける。The rate 3 is installed directly below the condensate inlet pipe 6.

また4はたとえば穴径が5〜20mm(lの多穴を有す
る平板状の多穴板であり、バッフルプレート3とイオン
交換樹脂2層の表面8との中間位に設ける。
Further, 4 is a flat multi-hole plate having a hole diameter of 5 to 20 mm (1), and is provided at a position intermediate between the baffle plate 3 and the surface 8 of the two layers of ion exchange resin.

さらに5は整流格子であり、高さLが100〜600m
m、好ましくは200〜400mm)垂直壁を有するも
ので、各格子の横断面積は100〜1600cm2とし
、その各格子の形状は第2図aに示したような円形か、
あるいは第2図すに示したような矩形か、または第2図
Cに示したような六角形とする。
Furthermore, 5 is a rectifying grid, and the height L is 100 to 600 m.
m, preferably 200 to 400 mm), and the cross-sectional area of each grid is 100 to 1600 cm2, and the shape of each grid is either circular as shown in Figure 2a, or
Alternatively, it may be rectangular as shown in FIG. 2, or hexagonal as shown in FIG. 2C.

なお、第2図b、第2図Cにかぎらずその他の多角形状
のものでさしつかえない。
Note that the shapes are not limited to those shown in FIG. 2B and FIG. 2C, but other polygonal shapes may be used.

また整流格子5はイオン交換樹脂2層の表面8を基準と
して上下に各3QQmm、好ましくは200 mmの範
囲内に通水塔内に固定した状態で取り付ける。
Further, the rectifying grid 5 is fixedly installed in the water tower within a range of 3QQmm above and below, preferably 200 mm, based on the surface 8 of the two layers of ion exchange resin.

なお、整流格子5の厚みは復水などの通水時あるいはイ
オン交換樹脂2の移送の際に受ける圧力に耐えうるちの
であればよく、たとえば4〜10mmのステンレス鋼を
用いるとよい。
The thickness of the rectifying grid 5 may be such that it can withstand the pressure applied when water such as condensate passes through or when the ion exchange resin 2 is transferred, and for example, stainless steel with a thickness of 4 to 10 mm may be used.

以上のような通水量1において通水を開始すると、復水
は復水流人管6から通水量1内に流入し、まずバッフル
プレート3に復水の流れがぶつかり通水量1内にこれを
大まかに分配したあと、この復水を多穴板4の穴に通過
させ整流する。
When water flow starts at the water flow rate 1 as described above, condensate flows from the condensate flow pipe 6 into the water flow rate 1, and first the flow of condensate hits the baffle plate 3 and roughly divides this into the water flow rate 1. After the condensate is distributed to , the condensate is passed through the holes of the multi-hole plate 4 to be rectified.

続いて復水をイオン交換樹脂2層の表面8付近に設けた
整流格子5によってさらに整流することにより、従来の
通水量1内に生じていた微細な偏流を消滅させる。
Subsequently, the condensate is further rectified by a rectifying grid 5 provided near the surface 8 of the two layers of ion exchange resin, thereby eliminating the minute drift that has occurred in the conventional water flow rate 1.

またたとえ微細な偏流が生じたとしても、イオン交換樹
脂2の動きを整流格子5の側面で阻止するので、イオン
交換樹脂2層の表面8が凸凹とはならない。
Furthermore, even if a minute drift occurs, the movement of the ion exchange resin 2 is blocked by the side surfaces of the rectifying grid 5, so the surface 8 of the two layers of ion exchange resin does not become uneven.

このようにして通水量1内に均等に分配した復水はイオ
ン交換樹脂2層を通過し、処理水出口管7より処理水と
して得る。
The condensate thus evenly distributed within the water flow rate 1 passes through two layers of ion exchange resin and is obtained as treated water from the treated water outlet pipe 7.

整流格子5の取り付は位置は、イオン交換樹脂2層の表
面8を基準として上下に各3QQ mmの範囲内であれ
ば、整流格子5がイオン交換樹脂2層の表面8から上に
完全に露出してもよく、あるいはイオン交換樹脂2層の
表面8から下に完全に埋没してもよいが、好ましくは本
実施態様の一例をあられした第1図のように、イオン交
換樹脂2層の表面8に整流格子5の2分の1の高さがく
るように取り付けると、整流格子5による整流効果が一
段と顕著となる。
The installation position of the rectifier grid 5 should be within a range of 3QQ mm above and below the surface 8 of the two layers of ion exchange resin, so that the rectifier grid 5 is completely above the surface 8 of the two layers of ion exchange resin. Although it may be exposed or completely buried below the surface 8 of the two layers of ion exchange resin, it is preferable that the two layers of ion exchange resin be completely buried below the surface 8 of the two layers of ion exchange resin. If the rectifier grating 5 is attached to the surface 8 so that the height is one-half of the rectifier grating 5, the rectifying effect of the rectifier grating 5 becomes even more remarkable.

また整流格子5の各格子の横断面の面積が余り小さいと
、イオン交換樹脂の移送が困難となったり、あるいは反
対に余り大きいと、整流効果がなくなるので、各格子の
横断面の面積は100〜16000m2が適当で゛ある
Furthermore, if the area of the cross section of each grid of the rectifying grid 5 is too small, it will be difficult to transfer the ion exchange resin, and if it is too large, the rectifying effect will be lost. ~16,000m2 is appropriate.

このように本考案によると整流格子5を通水量1内に設
けることによって、従来の整流機構だけでは防ぐことの
できなかった微細な偏流を防止し、かつ偏流によるイオ
ン交換樹脂2層の表面8における樹脂の移動を防ぐこと
ができる。
In this way, according to the present invention, by providing the rectifying grid 5 within the water flow rate 1, it is possible to prevent minute drifts that could not be prevented by conventional flow straightening mechanisms alone, and to prevent the surface 8 of the two layers of ion exchange resin caused by the drift. This can prevent the resin from moving.

以下に本考案の実施例について説明する。Examples of the present invention will be described below.

実施例 塔径2600 mm i 4の下降流通水方式の復水脱
塩装置の通水量を用い、通水塔内に樹脂層高が89Q
mmとなるようにイオン交換樹脂を充填した。
Example: Using the water flow rate of a condensate desalination equipment with a downward flow water flow system having a tower diameter of 2600 mm i4, the resin layer height in the water tower was 89Q.
The ion exchange resin was filled so that the thickness was 1 mm.

復水の整流機構として通水塔内の復水入口付近に直径5
00mmの皿形バッフルプレートを設け、またバッフル
プレートの下方でイオン交換樹脂層の表面から54Q
mm上方に穴径20 mm q 、ピッチ50mmの多
穴板を設けた。
A diameter of 5 mm is installed near the condensate inlet in the water tower as a condensate rectification mechanism.
A dish-shaped baffle plate of 00mm is installed, and 54Q is placed below the baffle plate from the surface of the ion exchange resin layer.
A multi-hole plate with a hole diameter of 20 mm q and a pitch of 50 mm was provided above the plate.

さらに板厚6mmのSUS 304ステンレス鋼で垂直
壁の高さが200mmの板を並置して格子状に組み、各
格子の横断面の形状が幅250 mmの正方形とした整
流格子を用い、イオン交換樹脂層の表面が整流格子の垂
直壁の高さのほぼ中間になるように通水塔内に取り付け
た。
Furthermore, ion exchange was carried out using a rectifying grid in which 6 mm thick SUS 304 stainless steel plates with vertical walls of 200 mm height were arranged side by side to form a grid, and each grid had a square cross section with a width of 250 mm. It was installed in a water tower so that the surface of the resin layer was approximately halfway between the heights of the vertical walls of the rectifier grid.

このような通水量に復水を610m3/Hの通水量(平
均線流速120 m/H)で通水を開始し、72時間に
わたってイオン交換樹脂の表面の様子を観察した。
Condensate water flow was started at such a water flow rate of 610 m3/H (average linear flow rate 120 m/H), and the appearance of the surface of the ion exchange resin was observed over a period of 72 hours.

また本考案による通水塔における実験と比較するために
、同じ通水塔で皿板バッフルプレートと多穴板のみを設
けた従来装置に復水を610m3/Hの通水量(平均線
流速120 m/H)で通水を開始し、72時間にわた
ってイオン交換樹脂層の表面の様子を観察した。
In addition, in order to compare with the experiment using a water tower according to the present invention, condensate was passed through a conventional device using the same water tower with only a plate baffle plate and a multi-hole plate at a flow rate of 610 m3/H (average linear flow rate of 120 m/H). ), water flow was started, and the appearance of the surface of the ion exchange resin layer was observed for 72 hours.

観察の結果は本考案の整流格子を設けた通水塔では、イ
オン交換樹脂層の表面に凸凹現象が観察されなかったが
、従来の整流機構のみを設けた通水塔では、通水開始後
20時間あたりからイオン交換樹脂層の表面に大きなへ
こみが生じはじめ、これがすこしずつ移動するのが観察
され、通水終了後イオン交換樹脂層の表面の凸凹を測定
したところ、樹脂層面の最高と最低の高さの差が398
mm、また直径95Qmm、深さ280〜319mmの
大きなへこみが1個所、直径350〜520mm、深さ
100〜200mmのへこみが3個所生じた。
As a result of observation, no unevenness was observed on the surface of the ion-exchange resin layer in the water tower equipped with the rectifying grid of the present invention, but in the water tower equipped with only the conventional rectifying mechanism, 20 hours after the start of water flow. Large dents began to appear on the surface of the ion exchange resin layer, and this was observed to move little by little.After the water flow was completed, the unevenness of the surface of the ion exchange resin layer was measured, and the highest and lowest heights of the resin layer surface were observed. The difference in size is 398
There was also one large dent with a diameter of 95 Qmm and a depth of 280 to 319 mm, and three dents with a diameter of 350 to 520 mm and a depth of 100 to 200 mm.

このように本考案の通水塔においては、従来の通水塔に
おけるイオン交換樹脂層の表面の凸凹現象を完全に防止
することができた。
As described above, in the water tower of the present invention, it was possible to completely prevent the phenomenon of unevenness on the surface of the ion exchange resin layer in conventional water towers.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本考案の実施態様を示すものであって、
第1図は本考案の整流格子付復水脱塩装置の通水塔の実
施態様の一例を示す概略断面図、第2図a、l)、cは
通水塔に取り付けた各種の整流格子の概略平面図である
。 1・・・・・・復水脱塩装置の通水塔、2・・・・・・
イオン交換樹脂、3・・・・・・バッフルプレート、4
・・・・・・多穴板、5・・・・・・整流格子、6・・
・・・・復水流入管、7・・・・・・処理水出口管、8
・・・・・・イオン交換樹脂層の表面。
All drawings show embodiments of the present invention,
Fig. 1 is a schematic sectional view showing an example of an embodiment of the water tower of the condensate desalination equipment with a rectifying grid of the present invention, and Fig. 2 a, l), and c are schematic diagrams of various rectifying grids attached to the water tower. FIG. 1... Water tower of condensate desalination equipment, 2...
Ion exchange resin, 3...Baffle plate, 4
...Multi-hole plate, 5... Rectifier grid, 6...
... Condensate inflow pipe, 7 ... Treated water outlet pipe, 8
・・・・・・Surface of ion exchange resin layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下降流通水方式の復水脱塩装置の通水量において、当該
通水塔内に充填したイオン交換樹脂層の表面を基準とし
て上下に各39Qmmの範囲内に、各格子の横断面の形
状が面積100〜1600cm2の円形あるいは多角形
であり、かつ高さが100〜600mmの垂直壁を有す
る整流格子を設けたことを特徴とする整流格子付復水脱
塩装置の通水量。
In the water flow rate of the condensate desalination equipment of the downflow water type, the cross-sectional shape of each grid has an area of 100 mm within a range of 39 Q mm above and below the surface of the ion exchange resin layer filled in the water tower. Water flow rate of a condensate desalination apparatus with a rectifying grid, characterized in that the rectifying grid is circular or polygonal and has vertical walls of 100 to 600 mm in height.
JP5335379U 1979-04-23 1979-04-23 Water tower for desalination equipment with rectifier grid Expired JPS5839831Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5335379U JPS5839831Y2 (en) 1979-04-23 1979-04-23 Water tower for desalination equipment with rectifier grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5335379U JPS5839831Y2 (en) 1979-04-23 1979-04-23 Water tower for desalination equipment with rectifier grid

Publications (2)

Publication Number Publication Date
JPS55155594U JPS55155594U (en) 1980-11-08
JPS5839831Y2 true JPS5839831Y2 (en) 1983-09-07

Family

ID=29288661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5335379U Expired JPS5839831Y2 (en) 1979-04-23 1979-04-23 Water tower for desalination equipment with rectifier grid

Country Status (1)

Country Link
JP (1) JPS5839831Y2 (en)

Also Published As

Publication number Publication date
JPS55155594U (en) 1980-11-08

Similar Documents

Publication Publication Date Title
US4052491A (en) Modular gas and liquid contact means
JPS63503522A (en) mass transfer equipment
US7258328B2 (en) Method for designing radial distributors in mass transfer vessel
US5345482A (en) Passive containment cooling water distribution device
JPS5839831Y2 (en) Water tower for desalination equipment with rectifier grid
CN202709787U (en) Cooling tower
CN210845324U (en) Distributing device for heat exchange tube array in falling film evaporator
CN210409538U (en) Raffinate evaporates out tower
CN210845845U (en) Environment-friendly spray purification tower for rapidly treating waste gas
CN112245956A (en) Filler rectifying tower with concave-convex wall surface structure and using method thereof
RU2145699C1 (en) Sprinkler of counterflow cooling tower
JPS54139263A (en) Method of treating drainge
SU1753231A1 (en) Sprinkler for cooling tower
CN205856119U (en) A kind of artificial wet land system
CN216320007U (en) Distributor of evaporation plant
CN215822727U (en) Tail gas treatment device for cationic salt intermediate MV (medium voltage) synthesis workshop section
CN104815523B (en) A kind of Deuslfurizing system for sea water
CN213790035U (en) Filler rectifying tower with concave-convex wall surface structure
CN203803197U (en) Large-diameter film laminating filter
JPS58214389A (en) System of desalination column for condensed water
CN209735211U (en) Waterfall wall type multi-stage absorption tower
RU2184997C2 (en) Device for decontaminating heat-transfer surface of steam generator
JPH0135267Y2 (en)
JPH0615271Y2 (en) Heat medium rectifying means for a downflow heat exchanger
JPS54148177A (en) Liquid distribution and device therefor