JPS5839789A - Electrolyzing method for molten chloride - Google Patents

Electrolyzing method for molten chloride

Info

Publication number
JPS5839789A
JPS5839789A JP13724881A JP13724881A JPS5839789A JP S5839789 A JPS5839789 A JP S5839789A JP 13724881 A JP13724881 A JP 13724881A JP 13724881 A JP13724881 A JP 13724881A JP S5839789 A JPS5839789 A JP S5839789A
Authority
JP
Japan
Prior art keywords
electrolytic
chamber
bath
electrolytic bath
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13724881A
Other languages
Japanese (ja)
Other versions
JPH0211676B2 (en
Inventor
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13724881A priority Critical patent/JPS5839789A/en
Publication of JPS5839789A publication Critical patent/JPS5839789A/en
Publication of JPH0211676B2 publication Critical patent/JPH0211676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To facilitate the recovery of a produced metal and to improve the yield thereof by removing the upper layer of an electrolytic bath, cooling part thereof, supplying the same to the lower part of an electrolytic cell, recovering the produced metal from the other part and supplying part of the electrolytic bath to the upper part of the electrolytic cell. CONSTITUTION:In electrolyzing of metallic chloride such as magnesium chloride, a part of the upper layer of an electrolytic bath contg. molten chloride in an electrolytic cell 1 is removed. The removed part is passed through a cooling passage and is cooled to the extent of maintaining a molten state. The cooled electrolyte is supplied to the bottom part of an electrolytic chamber 2. The other part of the electrolyte is conducted to an upper bath/magnesium separating cell 7, where at least a part of the produced metal such as metallic magnesium is recovered. At least a part of the electrolytic bath after the separation is supplied into the another part in the chamber 2. According to this method, electrolyzing operations are accomplished at adequate temp. and the ascending flow and surface flow in the chamber 2 are accelerated, whereby the floating magnesium etc. in the entire area in the chamber 2 are recovered in good yields.

Description

【発明の詳細な説明】 本発明は金属塩化物、特に溶融塩化マグネシウムの電解
による金属マグネシウムの製造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of magnesium metal by electrolysis of metal chlorides, particularly molten magnesium chloride.

金属マグネシウムは塩化マグネシウム、塩化ナトリウム
、塩化カルシウム等を含む溶融塩化物浴の電気分解によ
つで製造されるが、析出する金属マグネシウムはこの電
解浴に比して比重が小さく電解浴中な上昇するので、電
解装置には陰極表面に析出し浴中を浮上する塩素ガスと
再結合するのを防止するための構成が必要になる。この
様な目的の為に例えば米国特許第2785121号明細
書記載の装置では、析出した液相金属マグネシウムは陰
極面に沿って上昇し、陰極板上方に設けられた樋に受け
られ、樋の傾斜に従って電解槽の側方上部に収集される
構成になっている。この際陰極上部へ浮上したマグネシ
ウムを収集部へ移動させるための力としては電解浴に対
する僅かな比重差しか利用できないので、樋の傾斜角は
充分に大きくとる必要がある。このためには陰極は電解
浴面下深く浸漬しなければならず、その結果電極の断面
積に比べて過度に大きな電解槽断面積を要し、電解槽断
面積当りの電解効率の向上が望めないという欠点が避け
られない。
Magnesium metal is produced by electrolysis of a molten chloride bath containing magnesium chloride, sodium chloride, calcium chloride, etc., but the precipitated metal magnesium has a lower specific gravity than this electrolytic bath and rises in the electrolytic bath. Therefore, the electrolyzer needs a configuration to prevent recombination with the chlorine gas deposited on the surface of the cathode and floating in the bath. For this purpose, for example, in the device described in U.S. Pat. No. 2,785,121, the deposited liquid phase metal magnesium rises along the cathode surface, is received by a gutter provided above the cathode plate, and the inclination of the gutter is According to the structure, the electrolytic cell is collected at the upper side of the electrolytic cell. At this time, since only a slight difference in specific gravity with respect to the electrolytic bath can be used as a force for moving the magnesium floating above the cathode to the collection section, the angle of inclination of the gutter must be set sufficiently large. For this purpose, the cathode must be immersed deep below the surface of the electrolytic bath, which requires an excessively large cross-sectional area of the electrolytic bath compared to the cross-sectional area of the electrodes, making it difficult to expect an improvement in electrolytic efficiency per cross-sectional area of the electrolytic bath. The disadvantage of not having one is unavoidable.

一方陽極側に発生する塩素ガスを捕集する形式の電解槽
に於いても電解浴面に浮上したマグネシウムを一箇所に
収集する必要があり、さらにマグネシウムや塩素のため
の隔壁を設けない構造の電解槽に於いては、浮上したマ
グネシウムをより速やかに槽外へ導出すことが要求され
る。
On the other hand, even in an electrolytic cell that collects chlorine gas generated on the anode side, it is necessary to collect the magnesium floating on the electrolytic bath surface in one place. In an electrolytic cell, it is required that the floating magnesium be led out of the cell more quickly.

またこの様な電解槽の運転に於いては黒鉛電極の寿命や
生成金属の歩留りの点からできるだけ低い浴温を用いる
ことが望まれる。このことは陽極−陰極の電極対を同じ
浴に多数浸漬する場合、或いは両極の間に多数の中間電
極を用いる構成に於いては特に要求される。
Further, in operating such an electrolytic cell, it is desirable to use a bath temperature as low as possible from the viewpoint of the life of the graphite electrode and the yield of produced metal. This is particularly required when a large number of anode-cathode electrode pairs are immersed in the same bath, or when a large number of intermediate electrodes are used between the two electrodes.

従って本発明は陰極及び中間電極の陰極部の表面上に析
出したマグネシウムを電極面から分離・移動するのに電
解浴の強制循環流を、さらに浮上した生成金属を室外へ
搬出するために電解浴上層部に強制的に形成された液流
を利用し、これらの流れに金属マグネシウムを乗せてマ
グネシウム溜りへ速やかに収集できる様にすることによ
り上述の従来技術の欠点を克服したものでありてその要
旨とするところは、溶融した金属塩化物を含有し電解室
内に保持された電解浴を、錬電解浴に浸漬して該電解室
内に水平方向忙装置された少くとも1箇の陽極及び少く
とも1箇の陰極を用いて電気分解し生成される金属及び
塩素ガスを回収するに際し、該電解浴の上層部分を該電
解室の一端から該室外へ流出させ、流出した電解浴の一
部分な電解室内に残留しているものの温度よりも低く且
つ溶融状態を保ちうる程度に冷却し、斯く冷却された電
解浴を電解室下部へ流入させる一方、流出した電解浴の
他の部分から生成金属の少くとも一部分を回収し残りの
電解浴の少くとも一部分を上記電解室の別の部分に供給
することKより該電解室内の電解浴に上昇流及び表面流
を強制的に形成せしめ、以て生成金属の電解室からの搬
出及び回収を容易にしたことを特徴とする溶融塩化物の
電解方法に存する。
Therefore, the present invention uses a forced circulation flow in an electrolytic bath to separate and move the magnesium deposited on the surface of the cathode part of the cathode and the intermediate electrode from the electrode surface, and further uses a forced circulation flow in the electrolytic bath to carry out the floating formed metal to the outside. This method overcomes the above-mentioned drawbacks of the conventional technology by utilizing liquid flows forcibly formed in the upper layer, and by placing metallic magnesium on these flows so that they can be quickly collected into a magnesium reservoir. The gist is that an electrolytic bath containing a molten metal chloride and held within an electrolytic chamber is immersed in an electrolytic bath, and at least one anode and at least one anode are disposed horizontally within the electrolytic chamber. When recovering metal and chlorine gas generated by electrolysis using one cathode, the upper layer of the electrolytic bath is flowed out from one end of the electrolytic chamber to the outside, and a portion of the electrolytic bath that has flowed out is removed from the electrolytic chamber. The electrolytic bath thus cooled is cooled to a temperature lower than that of the metal remaining in the electrolytic bath and remains in a molten state, and the cooled electrolytic bath is allowed to flow into the lower part of the electrolytic chamber, while at least the produced metal is removed from other parts of the electrolytic bath that has flowed out. By collecting a portion of the electrolytic bath and supplying at least a portion of the remaining electrolytic bath to another portion of the electrolytic chamber, the electrolytic bath within the electrolytic chamber is forced to form an upward flow and a surface flow, thereby removing the produced metal. The present invention relates to a method for electrolyzing molten chloride, which is characterized in that it can be easily carried out and recovered from an electrolysis chamber.

本発明方法に従って溶融塩の電解を行な5時は、析出し
た生成金属、特にマグネシウムは浴の上昇流に乗って浮
上し浴表面または表面近く罠達する。
When the molten salt is electrolyzed according to the method of the present invention, the precipitated metal, particularly magnesium, floats up on the upward flow of the bath and reaches the bath surface or traps near the surface.

浴の表面乃至上層部には速い流れが形成されているので
マグネシウムはこの浴流に乗って冷却通路に入り、こへ
で浴表面に分離される。電解室から冷却通路へのマグネ
シウムの誘導には必ずしも特別な案内器臭等は必要とし
ないが、進行方向に浜上部に集められた金属マグネシウ
ムは電解槽から分離して設けたマグネシウム収集槽(例
えば特願昭55−68956に記載のもの)に幾らかの
浴と共に移送され、こ〜で浴を分離した後Ti11.や
ZrC1,のクロル法還元工程へ送ることができる。分
離される浴は電解室の別の部分から電解室に戻される。
Since a fast flow is formed on the surface or upper layer of the bath, magnesium rides on this bath flow and enters the cooling passage, where it is separated on the bath surface. Guide of magnesium from the electrolysis chamber to the cooling passage does not necessarily require a special guide odor, but the metallic magnesium collected on the upper part of the beach in the direction of travel is collected in a magnesium collection tank (e.g. The Ti11. or ZrC1, it can be sent to the chloro method reduction process. The separated bath is returned to the chamber from another part of the chamber.

電解反応によって生成されるも5一方の生成物である塩
素は気体であり密度の差が大きいから電解浴中な容易に
浮上し電解槽の浴面上方の空間に集められ、槽の側壁や
天井に設けた排気口を経て槽外へ排出される。
Chlorine, one of the products produced by the electrolytic reaction, is a gas and has a large difference in density, so it easily floats up in the electrolytic bath and is collected in the space above the bath surface of the electrolytic bath, and is deposited on the side walls and ceiling of the bath. It is discharged outside the tank through the exhaust port installed in the tank.

本発明に於いて冷却通路は電解室から隔壁で隔てられ、
且つ陰極板頂部より上方の高さと底部とに於いて電解室
と連結されて設けられる。内部の電解浴の冷却は、他の
部分に比べて薄く構成された外壁越しに自然通気により
、或はこの外壁の外面に接して設けた空冷ジャケラ)K
強制的に冷気を導入することによって、または冷却通路
内に挿入配置されたパイプに冷気を送入することによっ
てより効果的に実施することができる。電解室を出る浴
と入る浴との温度差は10u以上が適当で、好ましくは
約50”Q程度である。
In the present invention, the cooling passage is separated from the electrolytic chamber by a partition,
Further, it is connected to the electrolytic chamber at a height above the top of the cathode plate and at the bottom. The internal electrolytic bath is cooled by natural ventilation through the outer wall, which is thinner than other parts, or by an air cooling jacket installed in contact with the outer surface of this outer wall.
This can be carried out more effectively by forcibly introducing cold air or by feeding cold air into a pipe inserted into the cooling passage. The temperature difference between the bath leaving the electrolytic chamber and the bath entering the electrolytic chamber is suitably 10 μ or more, preferably about 50"Q.

電解室における浴表面の流れは上記の様に生成マグネシ
ウムの収集槽から戻される浴を利用するのが好都合であ
る。この浴は冷却通路とは反対側の電解室の端部の浴面
近くに供給されるのが最適であるが、場合によっては槽
底部へ補充用の電解浴と共に供給してもよい。
The bath surface flow in the electrolytic chamber advantageously utilizes the bath returned from the produced magnesium collection tank as described above. This bath is optimally supplied near the bath surface at the end of the electrolytic chamber opposite the cooling passage, but in some cases it may be supplied along with a replenishing electrolytic bath to the bottom of the cell.

本発明においては広範囲の電解室構成が利用できる。例
えば電極構成は前述の米国特許に記載された構成、即ち
1箇の陽極と2箇の陰極から成る電極対を数組配置して
もよいし、或いは電解室の両端に陽極及び陰極を各1箇
または本出願人が先に出願せる特願昭54−12489
0号に記載した様に電解室中央に陽極、両端に各1箇の
陰極を置き、両電極の間に1箇以上の中間電極を並べて
成る直列多極型の電解室構成を用いてもよく、特にこの
直列多極型の場合は大きな効果が得られる。いづれの場
合においても電解浴の容積当りの電極数が増すにつれ℃
電解浴の発熱量も増し特に電流密度を上げて操作を行な
う時には陽極材黒鉛の消耗や生成金属の損耗の危険が大
きくなるが本発明に於いてはこの危険は電解浴の電解室
外での冷却圧よって効果的に除去されるものである。
A wide range of chamber configurations can be utilized in the present invention. For example, the electrode configuration may be as described in the above-mentioned US patent, ie, several pairs of electrodes each consisting of one anode and two cathodes, or one anode and one cathode may be placed at each end of the electrolytic chamber. Patent application 12489/1989, which the applicant can file first
As described in No. 0, a series multi-electrode type electrolytic chamber configuration may be used in which an anode is placed in the center of the electrolytic chamber, one cathode is placed at each end of the chamber, and one or more intermediate electrodes are arranged between the two electrodes. , especially in the case of this series multipolar type, a great effect can be obtained. In either case, as the number of electrodes per volume of electrolytic bath increases,
The calorific value of the electrolytic bath also increases, and especially when operating at a higher current density, there is a greater risk of consumption of the anode material graphite and wear and tear of the produced metal, but in the present invention, this risk is eliminated by cooling the electrolytic bath outside the electrolysis chamber. It is effectively removed by pressure.

本願方法で用いられる循環流には乱れを生じさせないこ
とが望ましい。このためには (1)電解槽の壁面に対向する各電極の端部は嵌め込み
等によって密着固定し、下降流を生じる隙間を両者の間
から除くことが好ましい。
It is desirable that the circulating flow used in the method of the present application is not turbulent. For this purpose, (1) it is preferable that the ends of each electrode facing the wall surface of the electrolytic cell be closely fixed by fitting or the like, and gaps that would cause downward flow be removed from between them.

(2)壁面の近くに於いて、槽壁を通じての放熱により
この部分の浴温か低下し、電極面間内で対流(循環流)
が生じるとマグネシウム回収の妨げになるので放熱が大
きい場合は壁面近くの電極間隔を小さくして特にこの部
分の電流密度を上げて発熱量の増加をはかることが望ま
しい。
(2) Near the wall, the bath temperature in this area decreases due to heat radiation through the tank wall, and convection (circulation flow) occurs between the electrode surfaces.
If this happens, it will hinder the recovery of magnesium, so if the heat dissipation is large, it is desirable to reduce the electrode spacing near the wall surface and increase the current density particularly in this area to increase the amount of heat generated.

なお本願発明に於いて使用される電解浴は加熱手段を有
する別容器で溶解し、また必l!に応じて成分の調合を
し保存したものを電解室の底部へ補給するのが好都合で
ある。
Note that the electrolytic bath used in the present invention is dissolved in a separate container equipped with heating means, and is also required! It is convenient to mix and store the ingredients according to the conditions and then replenish the stored material to the bottom of the electrolytic chamber.

次に本願の発明を図面によって詳細に説明する。Next, the invention of the present application will be explained in detail with reference to the drawings.

第1図は本発明方法の実施に適した溶融塩化物の電解装
置の側方断面図、第2図は第1図にA−Aで示す部位に
おける電解槽部分の平面図、第3図は更に第2図KB−
Bで示す部位における立面断面図である。これらの図に
おいて電解槽1は本質的に耐火煉瓦で構成された電解室
2と冷却通路3を有し、両者は隔壁4にて仕切られてい
るが、冷却通路3の上方(電解浴面位付近)及び底部は
それぞれ開口5−6でもって電解室2と連結されている
FIG. 1 is a side cross-sectional view of a molten chloride electrolyzer suitable for implementing the method of the present invention, FIG. 2 is a plan view of the electrolytic cell section at the location indicated by A-A in FIG. 1, and FIG. Furthermore, Figure 2 KB-
FIG. 3 is an elevational cross-sectional view at a portion indicated by B. FIG. In these figures, an electrolytic cell 1 has an electrolytic chamber 2 essentially made of refractory bricks and a cooling passage 3, both of which are separated by a partition wall 4. (near) and the bottom are connected to the electrolytic chamber 2 through openings 5-6, respectively.

冷却通路2の外側の電解槽端部には浴面位よりも上方に
浴/マグネシウム分離槽7が設けられ、管8によって電
解槽1の外端中央部と接続されている。
A bath/magnesium separation tank 7 is provided above the bath level at the outer end of the electrolytic cell of the cooling passage 2, and is connected to the center of the outer end of the electrolytic cell 1 by a pipe 8.

分離槽7には分離されたマグネシウム回収用の管9、浴
を電解槽1の別の端部に供給するための管1o、並びに
浴を分離槽へ汲上げるための適当な手段(例えば吸引、
耐熱メタルポンプ等。図示せず)が備えられている。浴
を電解槽へ戻すには分離槽と電解槽との高低差による浴
の圧力を用いることができる。
The separation tank 7 has a pipe 9 for the recovery of the separated magnesium, a pipe 1o for supplying the bath to the other end of the electrolytic cell 1, as well as suitable means for pumping the bath into the separation tank (e.g. suction,
Heat-resistant metal pumps, etc. (not shown) is provided. To return the bath to the electrolytic cell, the pressure of the bath due to the height difference between the separation tank and the electrolytic cell can be used.

電解室2にはその両端にこれを横断してそれぞれ黒鉛板
からなる陽極11及び鉄板からなる陰極12が配置され
、通電のため陽極11の上部は蓋体から突出し、また陰
極の端部は槽1の側壁から突出し、それぞれ導電部を構
成する。陽極板11と陰極板12との間には黒鉛の厚板
と鉄板とから成り頂部には浴面位より上方に達する絶縁
ブロック14を備えた中間電極15が9枚直列に並べら
れ、各電極は電解室内に置かれたアルミナ等の絶縁物製
の電極支持台16上に載置される。中間電極相互間並び
にこれらと陽極及び陰極との間の間隔は約52とし、電
極相互間でまた極板全面にわたって本質的に等間隔とす
る。更に各電極の側面は電解室20対向する壁面に設け
た溝に嵌込むことによって、電極の固定並びに電解浴循
環流の乱れの防止効果が同時に達成されている。電解室
2の上方の周壁に中間電極や陰極の上端のレベルより間
を置いた高さに塩素ガスを電解槽から排出するための排
気孔17が設けられている。冷却通路の形状はここに示
す様に電解室と平行な矩形の平面断面とすることができ
る。頂部は電解室の中間電極や陰極の頂部よりも少し上
方に位置する前記の開口5によって連結されており、底
部も同様に開口6によって連結されている。底面の位置
はこの図では電解室2の底面とほぼ同じ高さに構成され
ているが、多少勾配を付けて電解室側へ流れやすくして
もよい。この例では冷却通路内の電解浴の冷却のために
電解室と反対側の壁材の厚みが減じられ、更にその外局
には冷気を強制的に通すためのジャケット18が設けら
れている。
An anode 11 made of a graphite plate and a cathode 12 made of an iron plate are arranged at both ends of the electrolytic chamber 2, respectively, and the upper part of the anode 11 protrudes from the lid body for energization, and the end of the cathode is connected to the tank. protruding from the side wall of 1 and forming conductive parts, respectively. Between the anode plate 11 and the cathode plate 12, nine intermediate electrodes 15 are arranged in series, each consisting of a thick graphite plate and an iron plate, each having an insulating block 14 at the top that reaches above the bath level. is placed on an electrode support 16 made of an insulating material such as alumina and placed in the electrolytic chamber. The spacing between the intermediate electrodes and between them and the anode and cathode is approximately 52 cm, with essentially equal spacing between the electrodes and over the entire plate surface. Furthermore, by fitting the side surfaces of each electrode into grooves provided on the opposing walls of the electrolytic chamber 20, the effects of fixing the electrodes and preventing disturbance of the circulating flow of the electrolytic bath are achieved at the same time. An exhaust hole 17 for discharging chlorine gas from the electrolytic cell is provided in the upper peripheral wall of the electrolytic chamber 2 at a height spaced apart from the level of the upper ends of the intermediate electrode and the cathode. The shape of the cooling passage may be a rectangular planar cross section parallel to the electrolytic chamber as shown here. The top part is connected by the opening 5, which is located slightly above the top part of the intermediate electrode or cathode of the electrolytic chamber, and the bottom part is also connected by the opening 6. In this figure, the bottom surface is set at approximately the same height as the bottom surface of the electrolytic chamber 2, but it may be sloped to some extent to facilitate flow toward the electrolytic chamber side. In this example, the thickness of the wall material on the side opposite to the electrolytic chamber is reduced in order to cool the electrolytic bath in the cooling passage, and furthermore, a jacket 18 is provided on the outside thereof to force cold air to pass through.

電解浴は冷却通路3の底部に連結された浴供給管19か
ら冷却通路底部を経て電解室2底部へ供給される。この
浴は加熱手段を有する別体の貯蔵容器(図示せず)で塩
化マグネシウムを溶融して作成され、必l!に応じて組
成を調整され、溶融状態に保持される。
The electrolytic bath is supplied from a bath supply pipe 19 connected to the bottom of the cooling passage 3 to the bottom of the electrolytic chamber 2 through the bottom of the cooling passage. This bath is created by melting magnesium chloride in a separate storage vessel (not shown) with heating means and is required! The composition is adjusted according to the conditions and maintained in a molten state.

電解反応中に形成されるスラッジを槽底部に沈降させ、
槽外に排除するために電極板を載置する支持台16には
多数の間隙ないしスリットが設けられており、また電解
室2と冷却通路3の底面には冷却通路の外端に向かって
下り勾配が付けられており、冷却通路底部に集積された
スラッジは排出子R(図示せず)を用いて取出される。
The sludge formed during the electrolytic reaction is allowed to settle to the bottom of the tank,
The support stand 16 on which the electrode plate is placed is provided with a large number of gaps or slits in order to remove it from the tank, and the bottoms of the electrolytic chamber 2 and the cooling passage 3 have grooves that go down toward the outer ends of the cooling passage. The cooling passage has a slope, and the sludge accumulated at the bottom of the cooling passage is taken out using a discharger R (not shown).

この様な冷却通路は上記の様な中間電極を有する構成に
用いるのが経済効率上好ましいが、従来の如く陽極と陰
極のみから成る電極対を用いる場合にも適用できるもの
である。
Although it is preferable from an economic efficiency point of view to use such a cooling passage in a configuration having an intermediate electrode as described above, it can also be applied to a case where a conventional electrode pair consisting of only an anode and a cathode is used.

次に上記第1〜3図に概略水した本願発明方法による操
作例を示す。
Next, an example of operation according to the method of the present invention is shown schematically in FIGS. 1 to 3 above.

実施例 電解室の大きさは縦1111LX横L511X深さt8
藁、冷却通路は縦α211L×横五511×深さt21
Lである。
The size of the example electrolytic chamber is 1111L in length x 511L in width x depth t8
Straw, cooling passage is length α211L x width 511L x depth T21
It is L.

冷却通路の上方に設けた浴/マグネシウム分離槽は内径
α6m、軸長t21Rの円筒状で、真空吸引により12
0強の溶融物を汲上げる能力をもち、また分離された浴
を電解室内の浴と殆んど同じ温度のまメ電解室に返すこ
とができる。電解槽の外周壁は厚さ46儂(ただし冷却
通路の周囲は最小25aa)、電解室と冷却通路との間
の仕切壁は厚さ20C11のそれぞれ耐火煉瓦で構成さ
れている。電解室に多数のスリットを持つアルミナ製の
支持台を置き、この上に幅1冨、長さく高さ)2rIL
で下部に多少傾斜した面をもつ黒鉛板を一端に据えて陽
極とし、この反対側に同様の傾斜をつけて11!×αB
翼X5cIIL(厚さ)の鉄板を陰極として配置した。
The bath/magnesium separation tank installed above the cooling passage has a cylindrical shape with an inner diameter α6m and an axial length t21R.
It has the ability to pump up 0-strong melt and can return the separated bath to the electrolytic chamber at almost the same temperature as the bath in the electrolytic chamber. The outer peripheral wall of the electrolytic cell is 46 degrees thick (however, the circumference of the cooling passage is at least 25 aa), and the partition wall between the electrolytic chamber and the cooling passage is made of refractory bricks with a thickness of 20C11. Place an alumina support stand with many slits in the electrolytic chamber, and place a support stand made of alumina with many slits on it.
Then, a graphite plate with a slightly sloped surface at the bottom was placed on one end to serve as an anode, and the opposite side was made with a similar slope.11! ×αB
An iron plate of wing X5cIIL (thickness) was placed as a cathode.

これらの間に1stx18m、厚さ12cmの黒鉛板に
埋込んだボルトの頂部罠同断面で厚さt5cIrLの鉄
板を溶接して成る中間電極を9枚、対向面が各々はぼ平
行になる様にして配置した。塩化マグネシウム20貧、
塩化カルシウム30チ、塩化ナトリウム50チの組成の
電解浴を用い、陽極−陰極間に57Vの電・圧・を加え
て隣接電極間に各々367vの電圧を印加し、電流密度
(15)y’(−tl、電解電流4000Aで電解操作
を24時間続けた。この間電解゛室の上部温度が710
0、冷却通路の底部温度が670 ’C,K保たれる様
に冷却ジャケットに冷気を通し、一方浴/マグネシウム
分離槽で120 ’4の速度で浴を汲上げ、主として浴
からなる溶融物を電解室へ戻しつ〜、また溶融浴組成物
を適宜補充することにより浴面をはy一定に保った。
Between these, there were nine intermediate electrodes made by welding iron plates with the same cross section and a thickness of t5cIrL as the top traps of bolts embedded in a graphite plate of 1st x 18m and 12cm thick, so that the opposing surfaces were almost parallel to each other. It was placed as follows. Magnesium chloride 20%,
Using an electrolytic bath with a composition of 30% calcium chloride and 50% sodium chloride, a voltage of 57V was applied between the anode and the cathode, and a voltage of 367V was applied between each adjacent electrode, and the current density was (15)y' (-tl, electrolysis operation was continued for 24 hours at an electrolysis current of 4000A. During this time, the upper temperature of the electrolysis chamber was 710℃.
0, cold air is passed through the cooling jacket so that the temperature at the bottom of the cooling passage is maintained at 670'C,K, while the bath is pumped up at a rate of 120'4 in the bath/magnesium separation tank to remove the melt consisting mainly of the bath. While returning to the electrolytic chamber, the bath surface was maintained at a constant level by appropriately replenishing the molten bath composition.

以上の操作により金属マグネシウム405Mと塩素ガス
137屯を得た。これは同一操作条件下におけるこの様
な表面流を用いない方法(Mg39ohp、CLt32
4L)に比し3%の向上を示し、表面流・強制循環流の
いづれも用いない方法に対しては&5チもの向上を示す
ものである。
Through the above operations, 405 M of magnesium metal and 137 tons of chlorine gas were obtained. This is similar to methods without such surface flow (Mg39ohp, CLt32
It shows an improvement of 3% compared to 4L), and an improvement of &5 cm compared to the method using neither surface flow nor forced circulation flow.

以上詳述した様に本発明によれば電解室で加熱された電
解浴は冷却通路で強制的に放熱させられるので電極消耗
の少い適正温度で電解操作が行なえる。その上、より重
要なことはこの操作によりて密度が増加され通路内に強
制的な下降流が形成されることで電解室内の上昇流形成
が促進されることにより生成マグネシウムの電極面から
の分離及び浴中の上昇が促進され、更に表面流の形成に
よって電解室内全域の浮上マグネシウムを回収すること
を可能にし、歩留りの向上を達成せしめたものである。
As described in detail above, according to the present invention, the electrolytic bath heated in the electrolytic chamber is forcibly radiated heat in the cooling passage, so that electrolysis can be performed at an appropriate temperature with less electrode consumption. What is more important is that this operation increases the density and creates a forced downward flow in the passageway, which promotes the formation of an upward flow in the electrolytic chamber, thereby separating the produced magnesium from the electrode surface. In addition, the formation of a surface flow makes it possible to recover the floating magnesium throughout the electrolytic chamber, thereby improving the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に適した溶融塩化物の電解装
置の側方断面図、第2図は第1図においてA−Aで示す
部位における千両図、第5図は更に第2図でB−Hに示
す部位における正面断面図である。図において各参照番
号は次の部材を示す。 1・−・・・・電解槽;  2・・・・・・電解室; 
 ト・・冷却通路;4・・・−・・隔壁; 5.6・・
・・・・隔壁開口;7・・・−・・浴/マグネシウム分
離槽;  8・・・・・・接続管;9・・−・・・Mg
回収管;1o・・川・電解浴供給管;11・・・・・・
陽極板;12・・・・・・陰極板;13・・・・・・電
解槽蓋体:14・山・・絶縁ブロック;15・・・・・
・中間電極;16・・・・・・電極支持台;17・・・
・・・C1,排気孔;18・旧・・冷却ジャケット;1
9・・・・・・電解浴供給管; 特許出願人  石 塚   博
Fig. 1 is a side sectional view of a molten chloride electrolyzer suitable for carrying out the method of the present invention, Fig. 2 is a cross-sectional view of a portion indicated by A-A in Fig. 1, and Fig. 5 is a further cross-sectional view of FIG. 2 is a front cross-sectional view of the portion shown on line B-H. In the figures, each reference number indicates the following member. 1... Electrolytic cell; 2... Electrolytic chamber;
G... Cooling passage; 4...-... Partition wall; 5.6...
...Bullet opening; 7...Bath/magnesium separation tank; 8...Connecting pipe; 9...Mg
Recovery pipe; 1o... river/electrolytic bath supply pipe; 11...
Anode plate; 12... Cathode plate; 13... Electrolytic cell lid: 14. Mountain... Insulation block; 15...
・Intermediate electrode; 16... Electrode support stand; 17...
...C1, exhaust hole; 18, old... cooling jacket; 1
9... Electrolytic bath supply pipe; Patent applicant Hiroshi Ishizuka

Claims (1)

【特許請求の範囲】 t 溶融した金属塩化物を含有し電解室内に保持された
電解浴を、該電解浴に浸漬して該電解室内に水平方向に
並置された少くとも1箇の陽極及び少くとも1箇の陰極
を用いて電気分解し生成される金属及び塩素ガスを回収
するに際し、骸電鱗浴の上層部分を骸電解室の一端から
該室外へ流出させ、流出した電解浴の一部分を電解室内
K11m1しているものの温度よりも低く且つ溶融状態
を保ちうる程度に冷却し、斯く冷却された電解浴を電解
室下部へ流入させる一方、流出した電解浴の他の部分か
ら生成金属のりくとも一部分を回収し残りの電解浴の少
くとも一部分を上記電解室の別の部分忙供給することK
より鉄電解室内の電解浴に上昇流及び表面流を強制的に
形成せしめ、以【生成金属の電解室からの搬出及び回収
を容易にしたことを特徴とする溶融塩化物の電解方法。 2 上記金属塩化物が塩化マグネシウムである特許請求
の範囲第1項記載の溶融塩化物の電解方法。 五 電解室外へ流出し生成金属を分離された電解浴が該
電解室における電解浴の表面近くに導入される特許請求
の範囲第1項記載の溶融塩化物の電解方法。 4、電解室外へ流出し生成金属を分離された電解浴が該
電解室の底部付近に導入される特許請求の範囲第1項記
載の溶融塩化物の電解方法。 i 上記電解浴の冷却手段が他の部分に比べて薄く構成
された電解槽壁構造から本質的に成る特許請求の範囲第
1乃至4項記載の溶融塩の電解装置。 6 上記電解浴の冷却手段が上記外部流路内に設けられ
た冷気の通路から本質的に構成されている特許請求の範
囲第1乃至4項記載の溶融塩の電解装置。 Z 上記冷却手段が更に、上記外部流路の外壁面上に強
制的に冷気の流れを接触せしめる構成を有する特許請求
の範囲第5項或いは第6項記載の溶融塩の電解装置。
[Scope of Claims] t. An electrolytic bath containing a molten metal chloride and held in an electrolytic chamber, at least one anode and at least one anode immersed in the electrolytic bath and arranged horizontally in parallel within the electrolytic chamber. When recovering the metal and chlorine gas produced by electrolysis using one cathode, the upper part of the electrolytic bath is drained from one end of the electrolytic chamber to the outside of the chamber, and a portion of the electrolytic bath that has flowed out is removed. The electrolytic bath is cooled to a temperature lower than the temperature of the 11 ml of electrolytic chamber and still maintains a molten state, and the cooled electrolytic bath is allowed to flow into the lower part of the electrolytic chamber, while the produced metal is removed from other parts of the electrolytic bath that flowed out. Collecting a portion of the electrolytic bath and supplying at least a portion of the remaining electrolytic bath to another portion of the electrolytic chamber.
A method for electrolyzing molten chloride, characterized in that an upward flow and a surface flow are forcibly formed in an electrolytic bath in an iron electrolysis chamber, thereby facilitating the transport and collection of produced metals from the electrolysis chamber. 2. The method for electrolyzing molten chloride according to claim 1, wherein the metal chloride is magnesium chloride. (5) The method for electrolyzing molten chloride according to claim 1, wherein the electrolytic bath that has flowed out of the electrolytic chamber and from which the produced metal has been separated is introduced near the surface of the electrolytic bath in the electrolytic chamber. 4. The method for electrolyzing molten chloride according to claim 1, wherein the electrolytic bath that has flowed out of the electrolytic chamber and from which the produced metal has been separated is introduced near the bottom of the electrolytic chamber. i. The molten salt electrolyzer according to any one of claims 1 to 4, wherein the cooling means for the electrolytic bath essentially consists of an electrolytic cell wall structure that is thinner than other parts. 6. The molten salt electrolyzer according to any one of claims 1 to 4, wherein the cooling means for the electrolytic bath essentially consists of a cold air passage provided within the external flow path. Z. The molten salt electrolyzer according to claim 5 or 6, wherein the cooling means is further configured to forcibly bring a flow of cold air into contact with the outer wall surface of the external flow path.
JP13724881A 1981-09-01 1981-09-01 Electrolyzing method for molten chloride Granted JPS5839789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13724881A JPS5839789A (en) 1981-09-01 1981-09-01 Electrolyzing method for molten chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13724881A JPS5839789A (en) 1981-09-01 1981-09-01 Electrolyzing method for molten chloride

Publications (2)

Publication Number Publication Date
JPS5839789A true JPS5839789A (en) 1983-03-08
JPH0211676B2 JPH0211676B2 (en) 1990-03-15

Family

ID=15194225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13724881A Granted JPS5839789A (en) 1981-09-01 1981-09-01 Electrolyzing method for molten chloride

Country Status (1)

Country Link
JP (1) JPS5839789A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215995A (en) * 1988-01-13 1989-08-29 Alcan Internatl Ltd Electrolytic cell for refining metal
WO2004074552A1 (en) * 2003-02-24 2004-09-02 Takayuki Shimamune Molten salt electrolytic cell and method for producing zinc
JP2019052336A (en) * 2017-09-13 2019-04-04 東邦チタニウム株式会社 Molten salt electrolysis tank
JP2020193378A (en) * 2019-05-29 2020-12-03 東邦チタニウム株式会社 Method of molten salt electrolysis and production method of magnesium metal
JP2022011141A (en) * 2020-06-29 2022-01-17 東邦チタニウム株式会社 Molten salt electrolysis method, method for manufacturing magnesium metal, and magnesium chloride supply device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443470U (en) * 1990-08-20 1992-04-13

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215995A (en) * 1988-01-13 1989-08-29 Alcan Internatl Ltd Electrolytic cell for refining metal
WO2004074552A1 (en) * 2003-02-24 2004-09-02 Takayuki Shimamune Molten salt electrolytic cell and method for producing zinc
JP2019052336A (en) * 2017-09-13 2019-04-04 東邦チタニウム株式会社 Molten salt electrolysis tank
JP2020193378A (en) * 2019-05-29 2020-12-03 東邦チタニウム株式会社 Method of molten salt electrolysis and production method of magnesium metal
JP2022011141A (en) * 2020-06-29 2022-01-17 東邦チタニウム株式会社 Molten salt electrolysis method, method for manufacturing magnesium metal, and magnesium chloride supply device

Also Published As

Publication number Publication date
JPH0211676B2 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
EP0101243B1 (en) Metal production by electrolysis of a molten electrolyte
EP1364077B1 (en) A method and an electrowinning cell for production of metal
US3755099A (en) Light metal production
EP0096990B1 (en) Metal production by electrolysis of a molten metal electrolyte
EP0027016B1 (en) Improvement in an apparatus for electrolytic production of magnesium metal from its chloride
CA1280715C (en) Electrolytic cell with anode having projections and surrounded by partition
US5855757A (en) Method and apparatus for electrolysing light metals
JPH0443987B2 (en)
JPS5839789A (en) Electrolyzing method for molten chloride
US4405415A (en) Electrolytic refining of molten metal
US20130032487A1 (en) Multipolar Magnesium Cell
US4133727A (en) Method for extracting heat from a chamber containing a molten salt
KR20090074041A (en) A method and an electrolysis cell for production of a metal from a molten chloride
AU709541B2 (en) Method and apparatus for electrolysing light metals
US5660710A (en) Method and apparatus for electrolyzing light metals
US4495037A (en) Method for electrolytically obtaining magnesium metal
US2393685A (en) Electrolytic cell
US3676323A (en) Fused salt electrolyzer for magnesium production
RU2710490C1 (en) Electrolysis cell for producing metals from metal oxides in molten electrolytes
RU2760025C1 (en) Method for obtaining magnesium and chlorine and electrolyzer for its implementation
US4999092A (en) Transporting a liquid past a barrier
NO134495B (en)
IL161678A (en) Method and apparatus for production of magnesium and chlorine
JPS6360118B2 (en)