JPS5839773A - Surface hardening method for ferrous metal and its alloy - Google Patents

Surface hardening method for ferrous metal and its alloy

Info

Publication number
JPS5839773A
JPS5839773A JP13784681A JP13784681A JPS5839773A JP S5839773 A JPS5839773 A JP S5839773A JP 13784681 A JP13784681 A JP 13784681A JP 13784681 A JP13784681 A JP 13784681A JP S5839773 A JPS5839773 A JP S5839773A
Authority
JP
Japan
Prior art keywords
steel
boron
contg
cerium
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13784681A
Other languages
Japanese (ja)
Inventor
Kazuo Watanabe
一男 渡辺
Masanori Tani
谷 昌徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TOKUSHU GIJUTSU KENKYUSHO KK
Original Assignee
NIPPON TOKUSHU GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TOKUSHU GIJUTSU KENKYUSHO KK filed Critical NIPPON TOKUSHU GIJUTSU KENKYUSHO KK
Priority to JP13784681A priority Critical patent/JPS5839773A/en
Publication of JPS5839773A publication Critical patent/JPS5839773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To harden the surfaces of steel contg. metals such as Ni, Co and others in which N, B are difficult to penetrate by forming thin layers of Ce, Cs, etc. on said surface and using the same as catalysts. CONSTITUTION:In hardening the surfaces of steel contg. Ni and Co such as stainless steel and high speed steel by penetrating B and N therein, thin layers are formed on the surfaces of the steel by the vapor of Ce or Cs and the steel is put in a vacuum furnace. While the steel is heated to high temp. together with boron or boron compd., gaseous ammonia is introduced into the furnace. The boron compd. is reduced by the gaseous ammonia and penetrates in the surfaces of the steel with the Ce and Cs layers as catalysts, thus forming the hardened layer of high abrasion resistance contg. boron nitride as a lubricant.

Description

【発明の詳細な説明】 従来、鉄系金属のコバルトとニッケルとは。[Detailed description of the invention] What are the conventional iron-based metals cobalt and nickel?

窒素−硼素を浸透させることが困難であった。It was difficult to penetrate nitrogen-boron.

本発明は、セシウム・セリウム等が低温で蒸気圧のある
金属であることを利用して、これを触媒とすれば、窒素
や硼素を浸透させることができることを発見したもので
ある。
The present invention is based on the discovery that nitrogen and boron can be permeated by utilizing the fact that cesium, cerium, etc. are metals that have vapor pressure at low temperatures and are used as catalysts.

実用上、鋼材の表面硬化には1次のことが要求される。In practice, the following is required for surface hardening of steel materials.

(1)  表面硬度が高いこと (2)  靭性がありて、硬化部分が剥離しないこと(
3)耐摩耗性があること (4)  処理前との寸法変化が少ないこと(5)硬化
処理によって、素地が弱化しないこと。
(1) High surface hardness (2) Toughness so that the hardened part does not peel off (
3) It should be wear resistant (4) There should be little dimensional change from before treatment (5) The base material should not be weakened by hardening treatment.

本発明は、前記の諸条件を目的として1発明されたもの
である。即ち(1)の目的のため、窒化だけでは、処理
後に高温にさらされると軟化するので、硼素を同時に浸
透させた。従来の浸硼処理(ボロナイジング)では、高
温にしないと浸透しなかつたが9本発明では1品物の表
面に。
The present invention was invented to meet the above conditions. That is, for the purpose of (1), since nitriding alone causes softening when exposed to high temperatures after treatment, boron was infiltrated at the same time. In conventional boronizing treatment, it did not penetrate unless heated to a high temperature, but in the present invention, it penetrates into the surface of a single item.

セシウムやセリウム等の蒸気を付着させて、薄い層を造
り、これが触媒作用をするようにしたものなのである。
Vapors such as cesium and cerium are deposited to form a thin layer that acts as a catalyst.

なお従来の浸硼処理では、高温のために、最表面に、鉄
と化合してもろい化合物を生じて剥離するので、(2)
を満足させられない。
In addition, in conventional borening treatment, due to the high temperature, a brittle compound is formed on the outermost surface by combining with iron and peeling off, so (2)
I can't satisfy you.

鉄合金の場合、5oO℃前後の温度で、窒素を浸透させ
2表面附近をオーステナイト組織にしてやれば、一層浸
硼し易くなる。またセシウムやセリウム等の作用は、浸
硼を助けるのと同時に、もろい鉄と硼素との化合物がで
きるのを防ぎ、且つ最表面に窒化硼素を造る。これは潤
滑剤であり、400℃以上の温度では、二硫化そリプデ
ンより良いと言われている。従って、(3)を満足させ
る。
In the case of iron alloys, if nitrogen is permeated at a temperature of around 5oO<0>C to create an austenitic structure near the 2nd surface, it becomes easier to infiltrate. In addition, the action of cesium, cerium, etc. not only aids in borons, but also prevents the formation of brittle iron and boron compounds, and forms boron nitride on the outermost surface. It is a lubricant and is said to be better than tripden disulfide at temperatures above 400°C. Therefore, (3) is satisfied.

ニッケル・コバルト及びその合金において。In nickel/cobalt and their alloys.

常温でオーステナイト組織の場合、処理温度を上げてセ
シウムやセリウム等の付着量を多くして、触媒作用を強
くすることにより、従来できにくかりだ硼素φ窒素を浸
透させることができるようになる。(4)に関しては、
窒化と変りがないが、従来の窒化の場合には、最表面に
剥離し易い窒化物ができるけれど1本発明の場合には。
In the case of an austenitic structure at room temperature, by increasing the treatment temperature to increase the amount of cesium, cerium, etc. deposited and strengthening the catalytic action, it becomes possible to penetrate boron φ nitrogen, which was previously difficult to do. . Regarding (4),
It is no different from nitriding, but in the case of conventional nitriding, a nitride that easily peels off is formed on the outermost surface, but in the case of the present invention.

セシウムやセリウム等の作用により、剥離し易い窒化物
ができないので、窒化後に拡散処理をする必要がない。
Due to the action of cesium, cerium, etc., nitrides that are easy to peel off are not formed, so there is no need to perform a diffusion treatment after nitriding.

(5)に関しては、素地を弱化する心配がない。Regarding (5), there is no need to worry about weakening the base material.

また本発明の更に良い点は、処理後に、グイキャストの
金型の様な高温に一部分がさらされる場合に、窒素を固
溶しているので、400℃以上の温度で、オーステナイ
ト組織になり、フェライト組織の時の様なへき開面がな
いので9割れる心配がないし、ヘアタラ、りが生じても
Another advantage of the present invention is that when a part of the mold is exposed to high temperatures after treatment, as in the case of a Guicast mold, it becomes an austenitic structure at a temperature of 400°C or higher because it contains nitrogen as a solid solution. There are no cleavage planes like in the case of ferrite structure, so you don't have to worry about it breaking into 90s, and even if hair tangles or cracks occur.

亀裂の進行が遅い特徴がある。It is characterized by slow crack growth.

またセシウムやセリウム等のように、低温で蒸気圧を有
する金属は、窒素働硼素と固溶し。
Also, metals such as cesium and cerium, which have a vapor pressure at low temperatures, form a solid solution with nitrogen and boron.

鉄系金属に、これを適当に拡散させる作用を持っている
ので、顕微鏡でなければ判らないビン・ホールのある粉
末冶金製品や結晶粒界に、セシウムやセリウム等の蒸気
が入込んで、触媒作用によりて窒素・硼素を固溶させる
一方、窒化硼素を生じ、これを結晶化の方向に進行させ
るものと考えられる。
It has the effect of properly diffusing cesium and cerium into iron-based metals, so vapors such as cesium and cerium can enter powder metallurgy products and grain boundaries that have holes or holes that can only be seen under a microscope, causing catalyst damage. It is thought that the action causes nitrogen and boron to form a solid solution while producing boron nitride, which progresses in the direction of crystallization.

実施例を示せば1次のようなものである。An example is the one of first order.

実施例1 超硬工具(KIO)をステンレス製の箱に入れ。Example 1 Put the carbide tool (KIO) into a stainless steel box.

その中に粉末状態の水素化硼素ナトリウムとセリウム片
を入れ、それを真空炉に入れて、水銀柱10III11
以上の真空にし、700℃±20℃に加熱してから、ア
ンモニア・ガスを入れ、約3時間加熱して炉冷する。
Put powdered sodium borohydride and cerium pieces in it, put it in a vacuum furnace, and make mercury column 10III11.
After creating a vacuum above and heating to 700°C ± 20°C, ammonia gas is introduced, heated for about 3 hours, and then cooled in the furnace.

実施例2 高速度鋼の9種(8KH9)を焼入れ・焼もどシタモの
をステンレス製の箱に入れ、酸化硼素の粉末とメック、
・メタル(セリウム40%・その他の金属60%)の直
径2關の棒を入れ、この箱を真空炉に入れ、水銀柱1〇
−4閤以上の真空にして、450℃に温度を上げた後に
、アンモニア・ガスを流し、3時間加熱して炉冷する。
Example 2 Hardened and tempered high-speed steel (8KH9) was placed in a stainless steel box and mixed with boron oxide powder and MEC.
・Insert a rod of metal (40% cerium, 60% other metals) with a diameter of 2 degrees, put this box in a vacuum furnace, create a vacuum of more than 10-4 kg of mercury, and raise the temperature to 450 degrees Celsius. , ammonia gas was passed through the mixture, and the mixture was heated for 3 hours and cooled in the furnace.

実施例3 型材8KD61をステンレス製の箱に入れ、酸化硼素の
粉末とメック、・メタルの粉末とを入れ、これ七真空炉
に入れ IQn−以上の真空にして、500℃±20℃
にして、アンモニア・ガスを流し、約7時間後に油冷す
る。
Example 3 A mold material 8KD61 was put in a stainless steel box, and boron oxide powder and MEC/metal powder were put in it, and it was put in a vacuum furnace to a vacuum of IQn- or higher and heated at 500°C ± 20°C.
After about 7 hours, cool with oil.

以上に述べた様に9本発明は、特に工具や金型等の技術
の向上に著大な効果があるものである。
As described above, the present invention is particularly effective in improving the technology of tools and molds.

以  上that's all

Claims (1)

【特許請求の範囲】 鉄のAl変態点以下の温度で、真空中に於て。 鉄系金属及びその合金の表面に、セシウム・セリウム等
の金属で、薄い層を造り、これを触媒として、硼素また
は硼化物をアンモニア・ガスで還元させ、同時に硼素と
窒素とを浸透させる表面硬化法。
[Claims] In vacuum at a temperature below the Al transformation point of iron. A thin layer of metals such as cesium and cerium is created on the surface of iron-based metals and their alloys, and this is used as a catalyst to reduce boron or boride with ammonia gas, and at the same time, surface hardening allows boron and nitrogen to penetrate. Law.
JP13784681A 1981-09-03 1981-09-03 Surface hardening method for ferrous metal and its alloy Pending JPS5839773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13784681A JPS5839773A (en) 1981-09-03 1981-09-03 Surface hardening method for ferrous metal and its alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13784681A JPS5839773A (en) 1981-09-03 1981-09-03 Surface hardening method for ferrous metal and its alloy

Publications (1)

Publication Number Publication Date
JPS5839773A true JPS5839773A (en) 1983-03-08

Family

ID=15208173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13784681A Pending JPS5839773A (en) 1981-09-03 1981-09-03 Surface hardening method for ferrous metal and its alloy

Country Status (1)

Country Link
JP (1) JPS5839773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972834A (en) * 1995-04-27 1999-10-26 Nippon Sanso Corporation Carbon adsorbent, manufacturing method therefor, gas separation method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972834A (en) * 1995-04-27 1999-10-26 Nippon Sanso Corporation Carbon adsorbent, manufacturing method therefor, gas separation method and device therefor

Similar Documents

Publication Publication Date Title
EP1370704B1 (en) Process of production of a sintered ferrous material containing copper
US2206395A (en) Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof
JP3048833B2 (en) Decorative article made of metal or metal alloy and method of manufacturing the same
EP0317366A1 (en) Process for producing nodular cast iron
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JPS5839773A (en) Surface hardening method for ferrous metal and its alloy
JP2007308788A (en) Nitriding/oxidizing treatment method for metal member and reoxidizing method therefor
JPS6389642A (en) Abrasion resistant iron sintered article
JP7397029B2 (en) Carburizing method for steel parts and method for manufacturing steel parts
JPH03140450A (en) Wear resistant alloy powder and member
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP2778140B2 (en) Ni-base alloy hot tool and post-processing method of the hot tool
RU2691431C1 (en) Boron-aluminizing method of steel surface
JP2002194477A (en) Member for molten nonferrous metal
JP5016172B2 (en) High fatigue strength and high rigidity steel and manufacturing method thereof
Baglyuk et al. Powder metallurgy wear-resistant materials based on iron. Part 1. Materials prepared by sintering and infiltration
Yılmaz et al. Microstructural characteristics of gas tungsten arc synthesised Fe-Cr-Si-C coating
JP7289728B2 (en) Nitrided material manufacturing method and nitrided material
JP2002275526A (en) Method for producing steel material
SU998560A1 (en) Master alloy
US2048526A (en) Case hardening
RU2568036C2 (en) Method of induction build-up of high alloyed chromous cast irons
Safronov The Formation of Spherical Graphite in Cast Irons with the Economy of Rare Earth Metals
US1975742A (en) Composite metal article
Wayman et al. The metallurgy of early Chinese wrought-iron and steel objects from the British Museum