JPS5839756A - Manufacture of mn ferroalloy - Google Patents

Manufacture of mn ferroalloy

Info

Publication number
JPS5839756A
JPS5839756A JP13820081A JP13820081A JPS5839756A JP S5839756 A JPS5839756 A JP S5839756A JP 13820081 A JP13820081 A JP 13820081A JP 13820081 A JP13820081 A JP 13820081A JP S5839756 A JPS5839756 A JP S5839756A
Authority
JP
Japan
Prior art keywords
slag
converter
ferroalloy
ore
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13820081A
Other languages
Japanese (ja)
Inventor
Minoru Kitamura
実 喜多村
Yukiyoshi Kurita
栗田 幸善
Shuzo Ito
修三 伊東
Kunio Kataoka
片岡 国男
Masayasu Kimura
木村 雅保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13820081A priority Critical patent/JPS5839756A/en
Publication of JPS5839756A publication Critical patent/JPS5839756A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an Mn ferroalloy while effectively utilizing Mn ore by using MnO-rich slag obtd. by adding Mn ore in slag-minimum or slagless refining in a converter by top and bottom blowing as a starting material for manufacturing a ferroalloy. CONSTITUTION:Molten iron treated to remove Si, P, S, etc. is charged into a top and bottom blowing converter, and after adding Mn ore, slag-minimum or slagless refining is carried out to obtain MnO-rich slag by <=20kg/1ton molten iron. By charging this converter slag into an electric furnace as a starting material for an Mn ferroalloy, silicomanganese (Si-Mn) which is a kind of Mn ferroalloy is manufactured. The Si-Mn is used as a deoxidizing agent for a converter or an alloy component regulating agent.

Description

【発明の詳細な説明】 本発明は、スラグミニマム精錬成いはスラグレス上下吹
転炉精錬においてMn鉱石を添加した上で、Mnを高位
に吹止めて得られるMn0Uツチスラグを合金鉄製造用
原料として利用する方法に関するものである。
Detailed Description of the Invention The present invention uses Mn0U Tsuchi slag obtained by adding Mn ore and blowing off Mn to a high level in slag minimum refining or slagless top-down blowing converter refining, as a raw material for manufacturing ferroalloy. It is about how to use it.

転炉における鉄の精錬に際してlFe鉱石中Mn鉱石を
投入しておくと、鉱石中のpe@化物+Mn酸化物が溶
鉄中のCKよって還元され、F・源中Ml1m源として
溶鋼中に移行することは良く知られた事実である。しか
るに従来の転炉精錬においては鋼中羨素の酸化だけでな
く、脱Pを重大な目的の1つとして一九為、大量のCa
O系エッグを形成させる必要があ31.Pg05だけで
な(、FりやM朧0迄が上記スラグKINされるという
問題があった。1mちFeOや1nooax−s大き(
When Mn ore in lFe ore is added during iron refining in a converter, pe@ide + Mn oxide in the ore is reduced by CK in molten iron and transferred to molten steel as an F source and Ml1m source. is a well-known fact. However, in conventional converter refining, one of the important objectives is not only to oxidize envy in the steel, but also to remove P, so a large amount of Ca is
31. It is necessary to form O-type eggs. There was a problem that the above slug KIN occurred not only with Pg05 (, but up to Fri and Mboro0.1m FeO and 1nooax-s large (
.

スラグ量を極力少なく、すゐこと零要求される様になっ
た。そこで転炉精錬の主目的を脱C一本に絞〕、脱Si
、説S、脱PIsを溶銑段階で完了すると一°う溶銑予
備処理技術が発達し、転炉におけるスラグ量を溶銑1ト
ン当り20Kf以下とすることが可能となル、こo@1
に精錬技術はスラグミニマム或いはスラグレス精錬C以
下代表的に述べるときはスラグレス精錬と称す)と呼ば
れ、特に上下吹き転炉では**な成果を挙げている。と
ころが上下吹自転炉におけるスラグレス精錬において前
記主WでMn鉱石を添加すると、わずかばかシ形成され
るスラグ中のMnO含有率は極めて高濃度とな)%この
スラグを無為に廃棄すゐことは不経済である。
The amount of slag was now required to be as small as possible, ie zero. Therefore, the main purpose of converter refining was narrowed down to the removal of C] and the removal of Si.
, theory S, once PI removal was completed at the hot metal stage, a new hot metal pretreatment technology was developed, and it became possible to reduce the amount of slag in the converter to 20 Kf or less per ton of hot metal.
The refining technology is called slag minimum refining or slagless refining (hereinafter referred to as slagless refining when representatively described), and particularly in top-bottom blowing converters, excellent results have been achieved. However, when Mn ore is added to the main W during slagless refining in a top-down blowing rotary furnace, the MnO content in the slag that is formed becomes extremely high (%).It is impossible to waste this slag. It's the economy.

本発明者等はこの様な状況に着目し、MIIOQッチの
転炉スラグについて検討した結果1Mn純度がlS係以
上、場合によっては20嚢以上にも及ぶことを見出し、
有効利用の方途を研究しえ。
The present inventors focused on this situation, and as a result of studying the converter slag of MIIOQch, they found that the 1Mn purity was higher than the 1S level, and in some cases reached 20 bags or more.
Research ways to use it effectively.

即ち本発明は、前述の如き上下吹き精錬で得られるMR
O)ラチスラグをMn系合金鉄製造用原料として電気炉
に投入する点に要旨を有するものである。
That is, the present invention provides MR
O) The gist is that lattice slag is fed into an electric furnace as a raw material for manufacturing Mn-based ferroalloy.

予め脱Si、脱P、脱S等の処理を行なった溶銑(例え
ばsi≦o、goLP≦o、ogon%S、4G、0J
IO1)[Mm鉱石を添加して酸素吹錬を行なったとき
の鋼浴中における酸化反応は。
Hot metal that has been previously treated to remove Si, P, and S (for example, si≦o, goLP≦o, ogon%S, 4G, 0J
IO1) [What is the oxidation reaction in the steel bath when oxygen blowing is performed with the addition of Mm ore?

IC+02→ICO(1) ZMn +OJ!−2M n O(II)の2通ヤであ
るが、鉄O存在下にかけるMfl及びcoin元二ネ〃
ギーは第1図に示す通)である。
IC+02→ICO(1) ZMn +OJ! -2M n O (II), but Mfl and coin are applied in the presence of iron O.
The ghee is as shown in Figure 1).

第1igK見ら114様[1450℃以上OVm条件下
では反応式α)の自由エネルギーが屓応式■O自由エネ
ルギーより低くなっており、該高温条件の下では1反応
式(I)O方が優先的に進行する。則ち2C+Og→2
CO(I) 2MnO−+ 2Mn+02     (Iil)0)
式及び測成の反応が同時的に進行し、結局C+Mn0−
+ Mn+CO(IV) によってMflOの還元が行なわれる。
1st igK view 114 [Under OVm conditions of 1450°C or higher, the free energy of reaction formula α is lower than the free energy of reaction formula ■O, and under the high temperature conditions, reaction formula (I) O is Proceed with priority. So 2C+Og→2
CO(I) 2MnO−+ 2Mn+02 (Iil)0)
The reactions of formula and measurement proceed simultaneously, and eventually C+Mn0-
MflO is reduced by +Mn+CO(IV).

他方第2.8図は上下吹き精錬にかける鋼浴中Mnの挙
動を示す一例であるが、吹錬の開始直後はMn量が急激
に減少してお夛、吹込み予定全酸素の26g6程度でボ
トムとなって上昇線に転じ。
On the other hand, Figure 2.8 shows an example of the behavior of Mn in a steel bath subjected to top-down blowing refining. Immediately after the start of blowing, the amount of Mn decreases rapidly, and the amount of Mn decreases to about 26g6 of the total oxygen planned to be blown. It bottomed out and turned to an upward trend.

吹止め終了直前にビーク値を示した後再び急降下する現
象が見られる。この現象を第1図に示した還元エネルギ
ーによって説明すると次の通シである。即ち吹錬開始の
直後は鋼浴中に元々含まれていたMlmが酸化によって
減少しはじめるが、吹錬の進行に伴なって鋼浴温度が上
昇し且つスラグ−メタル間反応がシこpはじめると第1
図に関連して説明した様にMnOの還元が優先する結果
鋼浴中のMmlが増大しはじめる。しかし吹錬後半にな
って鋼中Cが減少しはじめると、Cの酸化反応との競合
がなくなり再びMn1lD酸化が進んで鋼中OM!1が
減少し吹止めに至る。即ちピーク以後に進行するMuの
酸化反応はMIIWスを増大させるものであるから、高
MIl化吹止め技術の確立はM@鉱石添加精錬#Cお込
ても特に重要な課題とされていゐ。しかし他方ではMl
lll鉱石加によるMm活愈の増大が認められ、〔C)
≦(Llllの低置領域ではMnの再酸化現象も著しく
なって(、iloで。
There is a phenomenon in which the peak value is reached just before the end of the blow-off period, and then it suddenly drops again. This phenomenon can be explained using the reduction energy shown in FIG. 1 as follows. That is, immediately after the start of blowing, the Mlm originally contained in the steel bath begins to decrease due to oxidation, but as blowing progresses, the steel bath temperature rises and the slag-metal reaction begins. and the first
As explained in connection with the figure, Mml in the steel bath begins to increase as a result of the reduction of MnO taking precedence. However, when C in the steel begins to decrease in the latter half of blowing, there is no competition with the oxidation reaction of C, and Mn11D oxidation proceeds again, resulting in OM in the steel! 1 decreases and reaches a stop. That is, since the Mu oxidation reaction that progresses after the peak increases MIIW, the establishment of high MIl blowstop technology is considered to be a particularly important issue in M@ore addition refining #C. But on the other hand, Ml
An increase in Mm activity was observed due to the addition of lll ore, [C]
≦(In the low-lying region of Lllll, the re-oxidation phenomenon of Mn becomes significant (, ilo).

MIHDJラグ化による田スは回避し111に−ところ
である。従って前に述べ九様KMaOuツチスラグの有
効利用法の探索が必要となるが1本発明者等kiMm純
度が1511以上、場合によっては2011以上に4及
ぶことを利用してMn系合金鉄製造用原料とするもので
ある。
By the way, problems caused by MIHDJ lag can be avoided in 111. Therefore, it is necessary to search for a method for effectively utilizing the above-mentioned KMaOut slag, and the present inventors have utilized the kiMm purity of 1511 or higher, and in some cases as high as 2011 or higher, as a raw material for the production of Mn-based ferroalloys. That is.

Mm系合金欽の一種であるvv:2マンガン(以下8i
−Mu)a、Mmと814Dl11#70憾以上の合金
鉄で、正しくはMn−8i系合金鉄と呼ばれるが、その
製造に肖っては、一般KM鳳鉱石と高脚素(又は中・低
廣雪)7エロ!νガンを電気炉で溶製するときに生成さ
れhM鳳滓をS1→−の原料として配合して偽る。本発
明者等はこのMn滓の全部又は一部を上記のM n O
ElッチスラグKllき換えようとするものであ〕、こ
れを物流フローに従って説明すると、wc4図(従来法
)及び@6図の如く表われゐ。即ち第4図によると従来
はMll鉱石を電気炉に装入してpe−MnHを製造す
ると共に、副生じ九電炉スラグを他の原料と共和電気炉
へ装入して84−Mnを製造し、Fe−MnH及びFe
−41Fi脱酸剤或いは合金成分調整剤として転炉に装
入されていた。そして転炉スラグについては本発明の如
き方法で利用するのではなく、他の手段で廃棄物処理に
付してiることが多い。これに対しIIHS図の本発明
方法によると、Mlk鉱石が上述の蛇〈転炉に装入され
、 MnQリッチスラグが電気炉に装入されて51−M
nが製造される様なフローとなp、この51−Mnは前
述の如く転炉用の脱酸剤或いは合金成分調整剤として利
用される。
VV:2 manganese (hereinafter referred to as 8i) is a type of Mm-based alloy
-Mu) a, Mm and 814Dl11#70 or higher alloy ferroalloys, which are correctly called Mn-8i series ferroalloys, are manufactured using general KM ferromine ore and high (or medium/low) Hiroyuki) 7 erotic! It is faked by mixing hM porridge, which is produced when ν gun is melted in an electric furnace, as a raw material for S1→-. The present inventors converted all or part of this Mn slag into the above-mentioned MnO
This is intended to replace the Elch slug Kll], and if this is explained according to the logistics flow, it will appear as shown in Figure WC4 (conventional method) and Figure @6. That is, according to Fig. 4, in the past, Mll ore was charged into an electric furnace to produce pe-MnH, and by-product Kyuden Furnace slag was charged with other raw materials into a Kyowa electric furnace to produce 84-Mn. , Fe-MnH and Fe
-41Fi was charged into the converter as a deoxidizing agent or alloy composition adjusting agent. In many cases, converter slag is not used in the method of the present invention, but is subjected to waste treatment by other means. On the other hand, according to the method of the present invention shown in the IIHS diagram, Mlk ore is charged into the above-mentioned converter, MnQ-rich slag is charged into an electric furnace, and 51-M
This 51-Mn is used as a deoxidizing agent or an alloy component adjusting agent for converters as described above.

次に具体的な実施例に基づ論て本発明の要旨を明らかに
する。第2.8図は転炉吹錬例を示すものであ#、(C
)Σo、xo憾の段階で(MEI)Oビークを認めたが
、〔C)≦0.10係迄吹き下げると。
Next, the gist of the present invention will be explained based on specific examples. Figure 2.8 shows an example of converter blowing.
) Σo, xo Although (MEI) O peak was recognized at the regrettable stage, it was blown down to [C)≦0.10.

(:Mn)は急激に低下しており1Mn活量OaIい第
8図の例ではその傾向がよシ順著に&っている。
(:Mn) decreases rapidly, and in the example of FIG. 8 where the 1Mn activity OaI is low, this tendency becomes even more pronounced.

第2.8図例にかける吹止めスラグ組成は第1表に示す
通9であシ、明らかに:MaOリッチであるが、第8図
の場合は@KMxhOuツチになりている。tj4Mn
純度に換算すると、第2図のものは20.11第!1図
の411りは26.61e&’)え。
The composition of the blowstop slag applied in the example of FIG. 2.8 is 9 shown in Table 1, which is obviously rich in MaO, but in the case of FIG. 8 it is @KMxhOu. tj4Mn
In terms of purity, the one in Figure 2 is 20.11! 411 in Figure 1 is 26.61e&').

第g図の例で得た転炉スラグに、第2慶の1自組成から
なるM1m鉱石、11石等を@B表の比率で配合して電
気炉に装入し51−Mnを製造したところMnn歩留上
85.7鴫であシ、従来法とほぼ同程度の成績を残した
The converter slag obtained in the example shown in Figure g was mixed with M1m ore, 11 stones, etc. of 1 self-composition from the second Kei in the ratio shown in table @B, and charged into an electric furnace to produce 51-Mn. However, the Mnn yield was 85.7, which was almost the same as the conventional method.

(嗟) 本発明は上述の如<S*収されているので、転炉のスラ
グミニマム61*威いはスラグレス精錬を上下吹きで行
なうに当って装入されるM11重層管。
(For a moment) Since the present invention has the above-mentioned requirements, the slag minimum of the converter is 61*, which is the M11 multilayer tube charged when performing slagless refining with top and bottom blowing.

転炉スラグの形で好適に利用できる様に、tjl、l自
資源の有効利用について新しい方法を提供することがで
きえ。
It is possible to provide a new method for the effective utilization of natural resources, so that they can be suitably utilized in the form of converter slag.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄の存在下におけるMn及びCの還元エネルギ
ーを示すグラフ、嬉!、8図は転炉精錬における浴内(
Mn)の推移例を示すグラフ、第4図は従来法の物流フ
田−1第6@は本発明法の物流70−を示す夫々説明図
である。 出願人  株式会社神戸lll1鋼所 3
Figure 1 is a graph showing the reduction energy of Mn and C in the presence of iron, so happy! , Figure 8 shows the inside of the bath in converter refining (
FIG. 4 is a graph showing an example of the change in Mn), and FIG. 4 is an explanatory diagram showing a distribution gate 1 of the conventional method. Applicant: Kobe Co., Ltd. 1ll1 Steel Works 3

Claims (1)

【特許請求の範囲】[Claims] 141予め脱Si・脱P・脱Ss珊した溶銑を上下吹き
転炉に装入し、溶銑1トン当カのスラグ量が20に9以
下のスラグミニマム精錬成いはスラグレス精錬を行なう
ilc 尚I M m鉱石を添加して得られたMnOリ
ッチスッグを、Mfi系合会合金鉄製造用電気炉料とし
て投入することを特徴とす石Mn系合金鉄の製造法。
141 Hot metal that has been desiliconized, dephosphorized, and desalted in advance is charged into a top-down blowing converter, and slag minimum refining or slagless refining is performed in which the amount of slag per ton of hot metal is 20 to 9 or less. A method for producing a stone Mn-based ferroalloy, characterized in that MnO-rich sug obtained by adding Mm ore is input as an electric furnace feedstock for producing an Mfi-based ferroalloy.
JP13820081A 1981-09-02 1981-09-02 Manufacture of mn ferroalloy Pending JPS5839756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13820081A JPS5839756A (en) 1981-09-02 1981-09-02 Manufacture of mn ferroalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13820081A JPS5839756A (en) 1981-09-02 1981-09-02 Manufacture of mn ferroalloy

Publications (1)

Publication Number Publication Date
JPS5839756A true JPS5839756A (en) 1983-03-08

Family

ID=15216416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13820081A Pending JPS5839756A (en) 1981-09-02 1981-09-02 Manufacture of mn ferroalloy

Country Status (1)

Country Link
JP (1) JPS5839756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056051A (en) * 1983-09-06 1985-04-01 Japan Metals & Chem Co Ltd Production of medium- and low-carbon ferromanganese

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462917A (en) * 1977-10-28 1979-05-21 Chuo Denki Kougiyou Kk Production of medium or low carbon ferromanganese

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462917A (en) * 1977-10-28 1979-05-21 Chuo Denki Kougiyou Kk Production of medium or low carbon ferromanganese

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056051A (en) * 1983-09-06 1985-04-01 Japan Metals & Chem Co Ltd Production of medium- and low-carbon ferromanganese
JPH0355538B2 (en) * 1983-09-06 1991-08-23

Similar Documents

Publication Publication Date Title
JP2011144415A (en) Converter refining method
JPS5839756A (en) Manufacture of mn ferroalloy
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP4461495B2 (en) Dephosphorization method of hot metal
WO2019102705A1 (en) Low/medium-carbon ferromanganese production method
JPH07310110A (en) Production of stainless steel
JP3380305B2 (en) Melting method of chromium-containing steel
JP2003049216A (en) Method for producing molten steel
US2207109A (en) Manufacture of steel
JP2607328B2 (en) Hot metal dephosphorization method
JPH0524962B2 (en)
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JPS5938319A (en) Method for refining high chromium steel
RU2003724C1 (en) Ferrovanadium melting method
JPS58164715A (en) Production of molten metal containing chromium
JPS5819422A (en) Manufacture of steel with converter
JPS5938320A (en) Method for mixing molten metal to refine high alloy steel
KR20230061515A (en) Manufacturing method of low phosphorus molten iron
JPH07216429A (en) Production of stainless crude molten steel using decarburized slag
JPH0673424A (en) Method for efficiently refining stainless steel using decarburized slag
JPH11343514A (en) Method for melting high carbon steel using bottom-blown converter
JP3680385B2 (en) Demanganese process for hot metal
US927097A (en) Manufacture of open-hearth steel.
CN116694847A (en) Method for producing low manganese molten steel by converter process
JPS59150060A (en) Method and device for producing stainless steel by melt reduction of chromium ore