JPS583961B2 - Method for thermochemically producing hydrogen from hydrogen sulfide - Google Patents

Method for thermochemically producing hydrogen from hydrogen sulfide

Info

Publication number
JPS583961B2
JPS583961B2 JP8115477A JP8115477A JPS583961B2 JP S583961 B2 JPS583961 B2 JP S583961B2 JP 8115477 A JP8115477 A JP 8115477A JP 8115477 A JP8115477 A JP 8115477A JP S583961 B2 JPS583961 B2 JP S583961B2
Authority
JP
Japan
Prior art keywords
hydrogen
reaction
aromatic compound
hydrogen sulfide
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8115477A
Other languages
Japanese (ja)
Other versions
JPS5416395A (en
Inventor
亀山哲也
土器屋正之
福田健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8115477A priority Critical patent/JPS583961B2/en
Publication of JPS5416395A publication Critical patent/JPS5416395A/en
Publication of JPS583961B2 publication Critical patent/JPS583961B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は水素を得るために硫化水素を多段階的に熱分解
する新規な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for the multistage thermal decomposition of hydrogen sulfide to obtain hydrogen.

水素は石油や石炭などの化石燃料とは異なり、その燃焼
に際し、亜硫酸ガス、一酸化炭素などの有害ガスの副生
を伴なわないことから、そのクリーン燃料としての利用
に大きな関心が向けられている。
Unlike fossil fuels such as oil and coal, hydrogen does not produce harmful gas by-products such as sulfur dioxide and carbon monoxide when it is burned, so there is a great deal of interest in its use as a clean fuel. There is.

ところで、現在、原油や重油、及び各石油留分の脱硫に
は、水素化脱硫処理が支配的に行なわれており、その際
、相当量の水素が消費され、その結果、相当量の硫化水
素が副生ずる。
By the way, currently, hydrodesulfurization treatment is dominantly carried out for desulfurization of crude oil, heavy oil, and various petroleum fractions, and in this process, a considerable amount of hydrogen is consumed, and as a result, a considerable amount of hydrogen sulfide is produced. is a by-product.

しかもその副生量は、石油精製装置の大型化、石油消費
量の増加、さらには亜硫酸ガス排出濃度の規制強化に伴
なって、年々増加する傾向にある。
Moreover, the amount of by-products tends to increase year by year as oil refinery equipment becomes larger, oil consumption increases, and regulations on sulfur dioxide gas emission concentration become stricter.

そして、この硫化水素については、それ自体では格別の
利用価値を有しないことから、他の価値ある物質に転換
することが強く望まれている。
Since this hydrogen sulfide has no particular utility value by itself, it is strongly desired to convert it into other valuable substances.

しかしながら、この副生硫化水素の有効利用については
、これまでいくつかの方法が提案されてきたが、工業的
に意味ある方法としては、クラウス法や改良クラウス法
が見られる程度であり、しかも、これらの方法では硫化
水素中の水素原子は水の形で廃棄されているので、脱硫
処理に用いた水素ガスは回収されず、経済性の上からは
非常に不利である。
However, although several methods have been proposed for the effective use of this by-product hydrogen sulfide, the only industrially meaningful methods are the Claus method and the modified Claus method. In these methods, the hydrogen atoms in hydrogen sulfide are discarded in the form of water, so the hydrogen gas used in the desulfurization treatment is not recovered, which is extremely disadvantageous from an economic point of view.

このような不利を解消する方法として、硫化水素を触媒
の存在下で直接熱分解することによって水素をイオウと
ともに製造する方法が提案されているが、この直接熱分
解の場合、平衡定数が極めて小さいため、反応を促進さ
せるには生成したイオウを室温にもどして反応系から抜
き取ることが必要であり、したがって、この方法では、
その基本問題として、熱損失が大きいということがある
As a method to overcome these disadvantages, a method has been proposed in which hydrogen sulfide is directly thermally decomposed in the presence of a catalyst to produce hydrogen together with sulfur, but in the case of this direct thermal decomposition, the equilibrium constant is extremely small. Therefore, in order to accelerate the reaction, it is necessary to return the generated sulfur to room temperature and extract it from the reaction system.
The basic problem is that heat loss is large.

本発明者らは、硫化水素の直接熱分解に伴なうこのよう
な問題を克服すべく鋭意研究を重ねた結果、本発明を完
成するに到った。
The present inventors have completed the present invention as a result of intensive research to overcome such problems associated with direct thermal decomposition of hydrogen sulfide.

すなわち、本発明によれば、硫化水素を多段階的に熱分
解するにあたり、 (イ)硫化水素にヨウ素を反応させてヨウ化水素とイオ
ウを生成させる工程、 (口)生成したヨウ化水素に芳香族化合物を反応させて
水素化芳香族化合物とヨウ素を生成させる工程、 (ハ)この水素化芳香族化合物を脱水素して水素を生成
するとともに芳香族化合物を再生する工程、を含むこと
を特徴とする水素の製造方法が提供される。
That is, according to the present invention, in thermally decomposing hydrogen sulfide in multiple stages, (a) a step of reacting hydrogen sulfide with iodine to generate hydrogen iodide and sulfur; A step of reacting an aromatic compound to generate a hydrogenated aromatic compound and iodine; (c) a step of dehydrogenating the hydrogenated aromatic compound to generate hydrogen and regenerating the aromatic compound. A characterized method for producing hydrogen is provided.

本発明の方法を実施するには、まず、硫化水素とヨウ素
とを過剰の水の存在下で反応させて、ヨウ化水素とイオ
ウを生成させる。
To carry out the method of the present invention, hydrogen sulfide and iodine are first reacted in the presence of excess water to produce hydrogen iodide and sulfur.

(H2S+12−2HI+S)この場合、反応温度は2
5〜400℃、好ましくは25〜200℃であり、反応
圧力は1〜15k9/Cm2、好ましくは3〜10kg
/cm2であり、硫化水素に対するヨウ素使用量は、硫
化水素1モルに対し1〜10モル、好ましくは3〜5モ
ルである。
(H2S+12-2HI+S) In this case, the reaction temperature is 2
The temperature is 5 to 400°C, preferably 25 to 200°C, and the reaction pressure is 1 to 15k9/Cm2, preferably 3 to 10kg.
/cm2, and the amount of iodine used relative to hydrogen sulfide is 1 to 10 mol, preferably 3 to 5 mol, per 1 mol of hydrogen sulfide.

また、反応系に存在させる水は、生成物であるヨウ化水
素を溶解させて反応系から除去する作用をなし、その量
は使用するヨウ素に対して過剰量、通常、2〜10モル
倍、好ましくは3〜5モル倍である。
In addition, the water present in the reaction system has the effect of dissolving hydrogen iodide, which is a product, and removing it from the reaction system, and the amount of water is in excess of the iodine used, usually 2 to 10 times the mole. Preferably it is 3 to 5 times the mole.

このようにして、ヨウ素使用量に応じたヨウ化水素が生
成されるが、このヨウ化水素は室温まで冷やして水を宕
媒とする溶媒抽出などの方法で反応系から容易に分離す
ることができる。
In this way, hydrogen iodide is generated according to the amount of iodine used, but this hydrogen iodide can be easily separated from the reaction system by cooling to room temperature and solvent extraction using water as a medium. can.

次に、このようにして生成したヨウ化水素を芳香族化合
物と反応させて対応する水素化芳香族化合物とヨウ素を
得る。
The hydrogen iodide thus produced is then reacted with an aromatic compound to obtain the corresponding hydrogenated aromatic compound and iodine.

(Ar+HI→H−Ar+1/2■2、式中、Arは芳
香族化合物、H−Arは水素化芳香族化合物である)こ
の場合、反応温度は25〜300℃1好ましくは50〜
200℃であり、反応圧力は1〜200kg/cm2,
好ましくは5〜100kg/cm2であり、ヨウ化水素
に対する芳香族化合物の使用量は、通常3〜20モル倍
、好ましくは6〜10モル倍である。
(Ar+HI→H-Ar+1/2■2, where Ar is an aromatic compound and H-Ar is a hydrogenated aromatic compound) In this case, the reaction temperature is 25 to 300℃, preferably 50 to
200℃, reaction pressure 1-200kg/cm2,
It is preferably 5 to 100 kg/cm2, and the amount of aromatic compound used is usually 3 to 20 times, preferably 6 to 10 times, by mole relative to hydrogen iodide.

芳香族化合物としては、ベンゼンを始め、トルエン、キ
シレンなども用いることができ、いずれにしても、前記
ヨウ化水素による芳香族核の水素化反応を阻害しない限
り、種々の置換基たとえばアルキル基、アルコキシ基な
どを有するものも包含される。
As the aromatic compound, benzene, toluene, xylene, etc. can be used, and in any case, various substituents such as alkyl groups, Those having an alkoxy group etc. are also included.

これらの芳香族化合物をヨウ化水素と反応させる場合、
ヨウ素化反応は生じず、水素化反応が生起する。
When these aromatic compounds are reacted with hydrogen iodide,
No iodination reaction occurs, but a hydrogenation reaction.

また、この反応は水素化触媒の存在下で行なわれる。Moreover, this reaction is carried out in the presence of a hydrogenation catalyst.

水素化触媒としては、ヨウ素やヨウ化水素により被毒の
受けにくいもの、殊にルテニウム触媒(金属、水酸化物
、酸化物、有機酸又は無機酸塩を含む)の使用が好適で
ある。
As the hydrogenation catalyst, it is preferable to use a catalyst that is not easily poisoned by iodine or hydrogen iodide, especially a ruthenium catalyst (containing metal, hydroxide, oxide, organic acid, or inorganic acid salt).

生成した水素化芳香族化合物は、活性炭あるいはデンプ
ン等にヨウ素を吸着させヨウ素を反応系から分離除去す
ることにより、より容易に分離される。
The generated hydrogenated aromatic compound can be more easily separated by adsorbing iodine on activated carbon, starch, etc. and separating and removing the iodine from the reaction system.

最後に、このようにして生成した水素化芳香族化合物を
常法により脱水素して芳香族化合物を再生し、これを前
記水素化工程へ循環使用する。
Finally, the hydrogenated aromatic compound thus produced is dehydrogenated by a conventional method to regenerate the aromatic compound, which is recycled to the hydrogenation step.

本発明の方法は、各反応工程はいずれも比較的低温で実
施することができるので、熱エネルギー的に有利であり
、また反応生成物の分離に要する熱量も少ないので、熱
損失も極めて少ない。
The method of the present invention is advantageous in terms of thermal energy because each reaction step can be carried out at a relatively low temperature, and since the amount of heat required to separate the reaction products is small, heat loss is also extremely small.

さらに、ヨウ素が関与する反応温度は200℃以下であ
るので、反応器材の選定にも格別の困難はない。
Furthermore, since the reaction temperature involving iodine is 200° C. or lower, there is no particular difficulty in selecting reaction equipment.

その上、本発明の方法は、完全なクローズドシステムと
して実施され、消費原料は実質的に硫化水素のみである
ので、公害問題を生じず、経済的にも極めて有利である
Moreover, since the process of the invention is carried out as a completely closed system and the raw material consumed is essentially only hydrogen sulfide, it does not pose any pollution problems and is very economically advantageous.

次に本発明を実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 A:H2S+■2→2HI+Sの反応 7QCCの水と10.0gr.のヨウ素を内容積150
CCの流通式石英反応管につめ、硫化水素を300cc
/minの流速、50℃の条件で24時間反応させたと
ころ77.0mmoleのヨウ化水素が生成した。
Example A: Reaction of H2S+■2→2HI+S 7QCC of water and 10.0 gr. of iodine with an internal volume of 150
Fill a CC flow-through quartz reaction tube with 300cc of hydrogen sulfide.
When the reaction was carried out for 24 hours at a flow rate of /min and 50°C, 77.0 mmole of hydrogen iodide was produced.

生成したイオウはろ過法によって分離した。The generated sulfur was separated by a filtration method.

生成したヨウ化水素量から算出したヨウ素のヨウ化水素
への転化率は98%で、ほぼ定量的に反応が進行したこ
とがわかる。
The conversion rate of iodine to hydrogen iodide calculated from the amount of hydrogen iodide produced was 98%, indicating that the reaction progressed almost quantitatively.

B:6HI+C6H6→C6H12+3■2の反応(1
)ヨウ化水素の水溶液であるヨウ化水素酸(HI濃度5
7%、比重1.7)40ml(HI:3.03×10−
1モル)とベンゼン4.4ml(4.95X10−2モ
ル)とを触媒としての水酸化ルテニウム0.66gとと
もに内容積100mlのハステロイ製のオートクレープ
に入れ、150℃、10kg/cm2の条件下で2時間
反応させたところ、ベンゼンに対し100%の収率でシ
クロヘキサンが得られた。
B: Reaction of 6HI+C6H6→C6H12+3■2 (1
) Hydroiodic acid, which is an aqueous solution of hydrogen iodide (HI concentration 5
7%, specific gravity 1.7) 40ml (HI: 3.03 x 10-
1 mol) and benzene 4.4 ml (4.95 x 10-2 mol) were placed in a Hastelloy autoclave with an internal volume of 100 ml together with 0.66 g of ruthenium hydroxide as a catalyst, and the mixture was heated at 150°C and under the conditions of 10 kg/cm2. When the reaction was carried out for 2 hours, cyclohexane was obtained with a yield of 100% based on benzene.

(2)硫酸バリウムに担持させたルテニウム(担持量5
重量%)1gを触媒として用いる以外は前記B−(1)
と同様に反応させたところ、ベンゼンに対し100%の
収率でシクロヘキサンが得られた。
(2) Ruthenium supported on barium sulfate (supported amount 5
The above B-(1) except that 1 g (% by weight) is used as a catalyst.
When the reaction was carried out in the same manner as above, cyclohexane was obtained with a yield of 100% based on benzene.

C:C6H12→C6H6+3H2の反応流通式ガラス
系反応装置を用いてpt1%をA1203に担持させた
触媒を5gつめシクロヘキサンの送入速度を0、02C
C/min−m2(cat・surface area
)で反応温度300℃、圧力1気圧の条件下で反応させ
たところ出口ガス中のシクロヘキサン濃度はトレース程
度であり、シクロヘキサンのベンゼンへの転化率はほぼ
100係であった。
C: C6H12 → C6H6 + 3H2 reaction Using a flow-type glass reactor, 5 g of catalyst with pt1% supported on A1203 was packed and the feeding rate of cyclohexane was 0.02C.
C/min-m2 (cat・surface area
) at a reaction temperature of 300° C. and a pressure of 1 atmosphere, the concentration of cyclohexane in the outlet gas was at a trace level, and the conversion rate of cyclohexane to benzene was approximately 100%.

Claims (1)

【特許請求の範囲】 1 硫化水素を熱分解するにあたり、 (イ)硫化水素にヨウ素を反応させてヨウ化水素とイオ
ウを生成させる工程、 (口)生成したヨウ化水素に芳香族化合物を反応させて
水素化芳香族化合物とヨウ素を生成させる工程、 (ハ)水素化芳香族化合物を脱水素して水素を生成させ
るとともに芳香族化合物を再生する工程、を含むことを
特徴とする水素の製造方法。 2 硫化水素とヨウ素との反応工程(イ)を水の存在下
で行なう特許請求の範囲第1項の方法。 3 ヨウ化水素と芳香族化合物との反応工程(口)をル
テニウム触媒の存在下で行なう特許請求の範囲第1項又
は第2項の方法。
[Claims] 1. In thermally decomposing hydrogen sulfide, (a) a step of reacting hydrogen sulfide with iodine to produce hydrogen iodide and sulfur; (b) reacting the produced hydrogen iodide with an aromatic compound. (c) dehydrogenating the hydrogenated aromatic compound to generate hydrogen and regenerating the aromatic compound. Method. 2. The method according to claim 1, wherein the step (a) of reacting hydrogen sulfide and iodine is carried out in the presence of water. 3. The method according to claim 1 or 2, wherein the step of reacting hydrogen iodide with an aromatic compound is carried out in the presence of a ruthenium catalyst.
JP8115477A 1977-07-07 1977-07-07 Method for thermochemically producing hydrogen from hydrogen sulfide Expired JPS583961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8115477A JPS583961B2 (en) 1977-07-07 1977-07-07 Method for thermochemically producing hydrogen from hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8115477A JPS583961B2 (en) 1977-07-07 1977-07-07 Method for thermochemically producing hydrogen from hydrogen sulfide

Publications (2)

Publication Number Publication Date
JPS5416395A JPS5416395A (en) 1979-02-06
JPS583961B2 true JPS583961B2 (en) 1983-01-24

Family

ID=13738510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8115477A Expired JPS583961B2 (en) 1977-07-07 1977-07-07 Method for thermochemically producing hydrogen from hydrogen sulfide

Country Status (1)

Country Link
JP (1) JPS583961B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189382B2 (en) 2002-09-26 2007-03-13 Honda Motor Co., Ltd. Methods for the production of hydrogen
EP2883834A1 (en) * 2013-12-10 2015-06-17 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Hydrogen sulfide conversion
JP7345777B2 (en) * 2019-06-11 2023-09-19 国立大学法人千葉大学 Method for producing ketone compounds, method for producing carboxylic acid derivatives

Also Published As

Publication number Publication date
JPS5416395A (en) 1979-02-06

Similar Documents

Publication Publication Date Title
US2330934A (en) Sulphur oxidation of hydrocarbons
Weller et al. Kinetics of Coal Hydrogenation Conversion of Anthraxylon
US4039302A (en) Process and catalyst for synthesizing low boiling (C1 to C3) aliphatic hydrocarbons from carbon monoxide and hydrogen
US3962409A (en) Process for production of hydrogen and sulfur from hydrogen sulfide as raw material
JPS59500516A (en) How to produce ethanol
US1836927A (en) Removal of acetylene from gases
EP0044740B1 (en) Process for the production of lower hydrocarbons and oxygenated derivatives thereof by the catalytic conversion of carbon monoxide and hydrogen
JPH0647563B2 (en) Method for producing alcohol from synthesis gas
CN104193606A (en) Technique for preparing acetone from synthetic gas
US3997582A (en) Process and catalyst for synthesizing a gaseous hydrocarbon mixture having a high methane content from carbon monoxide and hydrogen
US4077995A (en) Process for synthesizing low boiling aliphatic hydrocarbons from carbon monoxide and hydrogen
JPS583961B2 (en) Method for thermochemically producing hydrogen from hydrogen sulfide
US2680757A (en) Catalyst recovery process
US4039613A (en) Process for production of hydrogen and sulfur from hydrogen sulfide as raw material
US1826974A (en) Process of producing hydrogen
JPH0232312B2 (en)
US2628890A (en) Process for the decomposition of hydrocarbons
EP0109645A2 (en) Process for the simultaneous preparation of methanol and ethanol
US2727055A (en) Catalytic synthesis of aromatic hydrocarbons from co and h2
EP3023479A1 (en) Process for the deoxygenation of alcohols and use thereof
US2720550A (en) Dehydrogenation of naphthenes by means of sulfur dioxide
WO1989012058A2 (en) Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation
JPS6147430A (en) Control of ratio of methanol/higher alcohol
Schulze et al. Synthesis of tertiary alkyl mercaptans
US4656279A (en) Process for production of decahydroisoquinoline