JPS5839291B2 - detection circuit - Google Patents

detection circuit

Info

Publication number
JPS5839291B2
JPS5839291B2 JP6417477A JP6417477A JPS5839291B2 JP S5839291 B2 JPS5839291 B2 JP S5839291B2 JP 6417477 A JP6417477 A JP 6417477A JP 6417477 A JP6417477 A JP 6417477A JP S5839291 B2 JPS5839291 B2 JP S5839291B2
Authority
JP
Japan
Prior art keywords
electrode
sensitive
heat
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6417477A
Other languages
Japanese (ja)
Other versions
JPS53149065A (en
Inventor
敏雄 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6417477A priority Critical patent/JPS5839291B2/en
Publication of JPS53149065A publication Critical patent/JPS53149065A/en
Publication of JPS5839291B2 publication Critical patent/JPS5839291B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

【発明の詳細な説明】 この発明は感熱サイリスクを用いた検知回路に係り、特
に浴槽等の湯温検出、水位検知および監視などの機能を
兼ね具えた検知回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection circuit using a heat-sensitive cylisk, and more particularly to a detection circuit that has functions such as detecting the temperature of hot water in a bathtub, detecting the water level, and monitoring the same.

従来から浴槽の湯温検知にはサーミスタ、バイメタルな
どを利用した商品が市販されている。
Products that use thermistors, bimetals, etc. have been commercially available to detect bath water temperature.

しかし、サーミスタは温度検知の機能のみしか持たない
ので、温度を検知して警報器を働かすのみでもトランジ
スタなどのスイッチング素子を併用せねばならない。
However, since the thermistor only has the function of detecting temperature, it is necessary to use a switching element such as a transistor in order to detect the temperature and activate the alarm.

また、バイメタルの場合は機械的接点の開閉を利用する
ので、浴室のような高湿の場所ではその接点の寿命に問
題がある。
In addition, since bimetallic devices use mechanical contacts to open and close, there is a problem with the lifespan of the contacts in high-humidity locations such as bathrooms.

さらに、浴槽への給水時の水位検知もしくは空だき防止
のための水位監視などの機能を附加しようとすればトラ
ンジスタなどの素子が多数必要であった。
Furthermore, if a function was to be added such as detecting the water level when water is being supplied to the bathtub or monitoring the water level to prevent emptying, a large number of elements such as transistors would be required.

この発明は以上のような点に鑑みてなされたもので、感
熱サイリスクの感熱機能とスイッチング機能とを利用す
ることによって、極めて少ない能動素子で構成され、か
つ浴槽等の湯温検出、水位検知および監視などの機能を
兼ね具えた検知回路を提供することを目的とするもので
ある。
This invention was made in view of the above points, and by utilizing the heat-sensitive function and switching function of the heat-sensitive Cyrisk, it can be configured with an extremely small number of active elements, and can be used to detect water temperature, water level, etc. in bathtubs, etc. The purpose of this invention is to provide a detection circuit that also has functions such as monitoring.

感熱サイリスクは周囲温度が所定温度以上になると非導
通(オフ)状態から導通状態(オン)状態に移行する温
度検知機能とスイッチング機能とを兼ね備えた素子であ
り、第1図にその一例の断面図を示すように、アノード
領域を構成するP形シリコン基板1中に拡散技術などに
よってN形ベース層2.P形ベース層3、およびN形カ
ソード領域4が順次形成されており、それぞれアノード
端子A、Nゲート端子GN、Pゲート端子GP、および
カソード端子Kが設けられている。
A heat-sensitive SIRISK is an element that has both a temperature detection function and a switching function that changes from a non-conducting (off) state to a conducting state (on) when the ambient temperature exceeds a predetermined temperature. As shown in FIG. 2, an N-type base layer 2. A P-type base layer 3 and an N-type cathode region 4 are sequentially formed, and are provided with an anode terminal A, an N-gate terminal GN, a P-gate terminal GP, and a cathode terminal K, respectively.

第2図は感熱サイリスクを利用したこの発明の一実施例
を示す回路図で、感熱サイリスクにはNゲート端子GN
を用いる方法と、Pゲート端子GPを用いる方法と2つ
の方法があり、この実施例はNゲート端子GNを用いる
方法のものである。
FIG. 2 is a circuit diagram showing an embodiment of the present invention using a heat-sensitive thyrisk.
There are two methods, one using the P gate terminal GP and the other using the P gate terminal GP, and this embodiment is a method using the N gate terminal GN.

図において、R1は感熱サイリスタT8を流れる電流を
制限する抵抗、R2はNゲート端子GNと電源Eの正極
との間に接続された可変抵抗で、この可変抵抗R2を調
整することによって感熱サイリスタTsのスイッチング
温度を調整するものである。
In the figure, R1 is a resistor that limits the current flowing through the heat-sensitive thyristor T8, and R2 is a variable resistor connected between the N gate terminal GN and the positive electrode of the power source E. By adjusting this variable resistor R2, the heat-sensitive thyristor Ts This is to adjust the switching temperature.

R3はNゲート端子〜とカソード端子にとの間に接続さ
れた抵抗である。
R3 is a resistor connected between the N gate terminal and the cathode terminal.

Slは電源スィッチ、S2は切換えスイッチでその切換
接点イは電源電池点検用、口は水位検知用、ハは湯温検
知および空だき防止用接点である。
SL is a power switch, S2 is a changeover switch, the changeover contact A is for checking the power battery, the port is for water level detection, and the contact C is for hot water temperature detection and prevention of dry boiling.

R6は切換接点イと感熱サイリスタTsのカソード端子
にとの間に接続された抵抗、aは切換接点口に接続され
た電極、Cは感熱サイリスタTsのカソード端子Kに接
続された共通電極で両電極a、cは水位が所定位置に達
すると水に浸漬して電気的導通を生ずるように配設され
ている。
R6 is a resistor connected between the switching contact a and the cathode terminal of the thermal thyristor Ts, a is the electrode connected to the switching contact port, and C is a common electrode connected to the cathode terminal K of the thermal thyristor Ts. Electrodes a and c are arranged so that when the water level reaches a predetermined position, they are immersed in water to create electrical continuity.

TRIはコレクタが切換接点ハにエミッタが感熱サイリ
スタTsのカソード端子Kに接続されたNPN形トラン
ジスタ、bは空だき防止用水位検知電極、R4,R5は
電源Eの正極と電極極すとの間の電圧を分圧してトラン
ジスタTRIのベースへ供給する抵抗である。
TRI is an NPN transistor whose collector is connected to the switching contact c and whose emitter is connected to the cathode terminal K of the heat-sensitive thyristor Ts, b is the water level detection electrode for preventing dry heating, and R4 and R5 are between the positive terminal of the power source E and the electrode terminal. This is a resistor that divides the voltage and supplies it to the base of the transistor TRI.

電極すは共通電極Cと並行して配設され浴槽の水が十分
あるときは両電極す、cは水に浸漬して電気的に導通し
、水漏れなどがあり水位が低下すると両電極す、c間は
非導通になる。
Electrode C is placed in parallel with common electrode C, and when there is sufficient water in the bathtub, both electrodes S and C are immersed in water to be electrically conductive, and when water leaks and the water level drops, both electrodes C and C are connected. , c becomes non-conductive.

従って、電極a、b、cは共通電極Cが最下位に電極a
、bが同じレベルもしくは電極aの方を若干上位になる
ように浴槽内に設けるのが普通である。
Therefore, the electrodes a, b, and c are arranged such that the common electrode C is the lowest electrode and the electrode a is the lowest electrode.
, b are usually placed at the same level or slightly higher than electrode a in the bathtub.

なお、Xは出力端子である。Note that X is an output terminal.

抵抗R1〜R6の値は次のような条件で決定する。The values of the resistors R1 to R6 are determined under the following conditions.

抵抗R1は感熱サイリスタTsが導通した時でも、その
保持電流よりやへ大きい程度の電流に抑え、感熱サイリ
スクのターン・オフを確実にする。
Even when the heat-sensitive thyristor Ts conducts, the resistor R1 suppresses the current to a level slightly larger than its holding current, thereby ensuring turn-off of the heat-sensitive thyristor.

浴槽に水が入っておらず電極a、b、c間が開放のとき
切換えスイッチS2を接点口へ切換えると感熱サイリス
タTsはターンオフするように抵抗R2。
The resistor R2 is set so that when the changeover switch S2 is switched to the contact port when there is no water in the bathtub and electrodes a, b, and c are open, the heat-sensitive thyristor Ts is turned off.

R3の値を設定する。Set the value of R3.

一方電極す、c間が水で浸漬されたときトランジスタT
□1は非導通になるように抵抗R4,R5の値を選ぶ。
On the other hand, when the electrodes S and C are immersed in water, the transistor T
□1 selects the values of resistors R4 and R5 so that they are non-conductive.

抵抗R5の抵抗値はゼロであってもよい。The resistance value of the resistor R5 may be zero.

抵抗R6の値は切換えスイッチS2を接点イヘ切換えた
とき、電源Eの電圧が規定値以上あるときは感熱サイリ
スタTSは導通し、電源Eの電圧が許容値以下に低下し
たときは感熱サイリスタTsは非導通になるように設定
される。
The value of the resistor R6 is that when the changeover switch S2 is switched to contact I, the thermal thyristor TS becomes conductive when the voltage of the power source E is above the specified value, and the thermal thyristor TS becomes conductive when the voltage of the power source E drops below the allowable value. Set to be non-conductive.

以上の構成の説明からこの回路の動作は容易に理解でき
るものとは思うが、まとめて略説する。
I believe that the operation of this circuit can be easily understood from the above explanation of the configuration, but I will briefly explain it here.

まず、電源スィッチS1を投入するとこの回路は動作状
態に入る。
First, when the power switch S1 is turned on, this circuit enters the operating state.

切換えスイッチS2を接点イへ切換えたときは電源電池
点検動作をするもので、電源電池電圧が規定値以上ある
と感熱サイリスタT8は導通し出力端子Xの電圧はその
オン電圧まで低下し極めて低くなる。
When the changeover switch S2 is switched to contact A, the power supply battery is inspected, and if the power supply battery voltage exceeds the specified value, the heat-sensitive thyristor T8 conducts and the voltage at the output terminal X drops to its ON voltage and becomes extremely low. .

ところが、電源電池電圧が低下して感熱サイリスタTs
のブレークオーバ電圧に達しなくなると、もはや導通せ
ず、電池電圧そのまXが出力端子Xに現れる。
However, the voltage of the power supply battery decreased and the heat-sensitive thyristor Ts
When the breakover voltage is no longer reached, it is no longer conductive and the battery voltage X appears at the output terminal X.

これによって、電源電池の点検が可能である。This allows inspection of the power supply battery.

次に、切換えスイッチS2を接点口に切換えたときは浴
槽への給水時の水位検知動作をする。
Next, when the changeover switch S2 is switched to the contact port, a water level detection operation is performed when water is supplied to the bathtub.

すなわち、水が電極a、C間を浸漬しない間は両電極a
、c間は開放しているので、感熱サイリスタTsは非導
通状態にあり出力端子Xへは電源電圧が現れる。
That is, while water is not immersing between electrodes a and C, both electrodes a
, c are open, so the heat-sensitive thyristor Ts is in a non-conducting state and the power supply voltage appears at the output terminal X.

給水が進んで電極a、c間を浸漬すると感熱サイリスタ
Tsは導通し、出力端子Xの電位は低下する。
As the water supply progresses and immerses between the electrodes a and c, the heat-sensitive thyristor Ts becomes conductive, and the potential of the output terminal X decreases.

従って、給水完了の報知信号を出そうとする場合はに電
源Eの正極端子と出力端子Xとの間の電圧を利用するよ
うにした方が好都合である。
Therefore, it is more convenient to use the voltage between the positive terminal of the power source E and the output terminal X when attempting to issue a signal indicating the completion of water supply.

更に、切換えスイッチS2を接点ハに切換えると、湯温
検知および空だき防止の動作をする。
Furthermore, when the changeover switch S2 is switched to contact C, the water temperature is detected and water boiling prevention is performed.

すなわち、水が電極す、c間を浸漬しているのが普通で
あるから、トランジスタTR□は非導通になっている。
That is, since water is normally immersed between the electrodes A and C, the transistor TR□ is non-conductive.

従って、加熱当初は感熱サイリスタTsは非導通状態に
あり出力端子Xには電源電圧が現れている。
Therefore, at the beginning of heating, the heat-sensitive thyristor Ts is in a non-conducting state, and the power supply voltage appears at the output terminal X.

湯温の上昇とともに感熱サイリスクT8の温度も上昇し
そのスイッチング温度に達すると導通し出力端子Xの電
位は低下する。
As the temperature of the hot water rises, the temperature of the heat-sensitive thyristor T8 also rises, and when it reaches its switching temperature, it becomes conductive and the potential of the output terminal X decreases.

これによつて湯温検知が可能で、上記スイッチング温度
は抵抗R2を調整して任意に設定できる。
This makes it possible to detect the hot water temperature, and the switching temperature can be set arbitrarily by adjusting the resistor R2.

ところで、万一水漏れなどのために浴槽内の水位が低下
しているときは、空だきとなり火災の危険もある。
By the way, if the water level in the bathtub drops due to a water leak, the bathtub will become empty and there is a risk of fire.

この回路では浴槽内の水位が低下して電極す、c間が開
路されるとトランジスタTR1は導通し、感熱サイリス
クTsは温度に関係なく導通し出力端子Xの電位を低下
して警報を発せしめる。
In this circuit, when the water level in the bathtub decreases and the circuit between electrodes S and C is opened, the transistor TR1 becomes conductive, and the heat-sensitive silicon risk Ts becomes conductive regardless of the temperature, lowering the potential of the output terminal X and issuing an alarm. .

以上の説明では出力端子Xの電位の高低によって検知で
きる旨述べたが、実用的には電子式ブヂ回路などを出力
端子Xの電位によって動作させるようにすればよい。
In the above description, it has been stated that detection can be performed based on the level of the potential of the output terminal

なお、感熱サイリスクの電流を利用できれば、この回路
に直接警報発生装置を入れるのが最も効率的である。
Furthermore, if the electric current of the heat-sensitive cyrisk can be used, it is most efficient to insert an alarm generating device directly into this circuit.

なお、上記実施例では、感熱サイリスタT8のオンおよ
びオフに応じて出力端子Xにそれぞれ低および高の電位
が取り出せたが、抵抗R1を感熱サイリスタTsのカソ
ード側に入れ、出力信号を感熱サイリスタTsのカソー
ドに側からBjM出fようにすれば上記と逆相の出力を
摩り出すこともできる。
In the above embodiment, low and high potentials can be obtained at the output terminal X depending on whether the heat-sensitive thyristor T8 is turned on or off. If BjM is output from the cathode side, an output having the opposite phase to the above can be produced.

また、上記実施例において、空だき防止用回路を構成す
るトランジスタTRIを感熱サイリスタTsのゲート端
子GNとカソード端子にとの間に接続したが、ゲート端
子GNとアノード端子Aとの間に並列に接続しても、同
様の機能をもつようlこ構成することは容易である。
Further, in the above embodiment, the transistor TRI constituting the dry firing prevention circuit was connected between the gate terminal GN and the cathode terminal of the heat-sensitive thyristor Ts, but it was connected in parallel between the gate terminal GN and the anode terminal A. Even if they are connected, it is easy to configure them to have similar functions.

第3図はこの発明の他の実施例を示す回路図で、感熱サ
イリスタTsのPゲート端子GPを利用したものである
FIG. 3 is a circuit diagram showing another embodiment of the present invention, in which the P gate terminal GP of the heat-sensitive thyristor Ts is used.

第2図の実施例回路とは回路構成部分の結線配置が感熱
サイリスタTsのアノード端子Aとカソード端子にとを
入れ換え、しかも電源Eは当然ながらアノード端子A側
に正極をカソード端子に側に負極を接続しており、回路
構成上トランジスタT□1にはPNP l−ランジスク
を用いている。
In the example circuit shown in Fig. 2, the wiring arrangement of the circuit components is swapped between the anode terminal A and the cathode terminal of the heat-sensitive thyristor Ts, and the power supply E has the positive terminal on the anode terminal A side and the negative terminal on the cathode terminal side. A PNP l-transistor is used for the transistor T□1 due to the circuit configuration.

従って、出力端子Xには感熱サイリスクTsの導通時に
高電位、非導通時に低電位の出力を出す。
Therefore, the output terminal X outputs a high potential when the heat-sensitive silicon risk Ts is conductive, and outputs a low potential when it is not conductive.

この回路の動作は第2図のものから容易に理解できるで
あろう。
The operation of this circuit can be easily understood from FIG.

第3図の実施例においても、抵抗R1を感熱サイリスタ
のアノード端子A側に入れ、出力端子Xもアノード端子
A側から取出すようにして、逆の位相の出力を得ること
もできる。
In the embodiment shown in FIG. 3 as well, by inserting the resistor R1 into the anode terminal A side of the heat-sensitive thyristor and taking out the output terminal X from the anode terminal A side, it is also possible to obtain an output with the opposite phase.

上記各回路とも直流電源のみならず交流電源でも動作し
、浴槽以外の温水器などにも適用できる。
Each of the above circuits operates not only on DC power but also on AC power, and can be applied to water heaters other than bathtubs.

以上詳述したように、この発明では感熱サイリスクの感
熱スイッチング機能と通常のサイリスクとしてのゲート
電位によるスイッチング機能とを利用したので槽内の湯
温検出、水位検知および監視による空だき防止装置が極
めて数少い素子で、しかも機械的開閉素子を用いること
なく実現でき、信頼度の高い長寿命の検知回路装置が得
られる。
As detailed above, this invention utilizes the heat-sensitive switching function of the heat-sensitive SIRISK and the switching function based on the gate potential of the normal SIRISK, so the device for preventing dry boiling by detecting the temperature of the water in the tank, detecting the water level, and monitoring it is extremely effective. This can be realized with a small number of elements and without using mechanical switching elements, and a highly reliable and long-life detection circuit device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に用いる感熱サイリスクの一例を示す
断面図、第2図および第3図はそれぞれこの発明の一実
施例を示す回路図である。 図において、Tsは感熱サイリスク、Aはそのアノード
端子、Kはカソード端子、GN、GPはゲート端子、E
は電源、R1は陽極回路の抵抗、R2゜R3はゲート回
路の抵抗、aは第2の電極、bは第3の電極、Cは第1
の電極、TB□yTR2はトランジスタ、R5p R6
はそのベース回路の抵抗、口は第1の接点、ハは第2の
接点、S2は切換えスイッチである。 なお、図中同一符号は同一もしくは相当部分を示す。
FIG. 1 is a sectional view showing an example of a heat-sensitive cylisk used in the present invention, and FIGS. 2 and 3 are circuit diagrams showing one embodiment of the present invention. In the figure, Ts is a heat-sensitive silica, A is its anode terminal, K is its cathode terminal, GN, GP are its gate terminals, and E
is the power supply, R1 is the resistance of the anode circuit, R2゜R3 is the resistance of the gate circuit, a is the second electrode, b is the third electrode, C is the first
electrodes, TB□yTR2 are transistors, R5p R6
is the resistance of the base circuit, mouth is the first contact, C is the second contact, and S2 is the changeover switch. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 槽内の貯水が所定水位に達した時に相互間が上記貯
水を通じて電気的に導通する第1および第2の電極、上
記槽内の貯水が上記所定水位にある時は上記第]の電極
と上記貯水を通じての電気的導通を保持し上記貯水が上
記所定水位から許容水位だけ低下した時に上記第1の電
極との電気的導通が断たれる第3の電極、上記貯水の温
度が伝達され上記貯水の温度の変化に追随して温度が変
化するように配設されたnゲート(またはpゲート:形
の感熱サイリスク、この感熱サイリスクの陽極に直接(
または抵抗を介して)正極が接続され上記感熱サイリス
クの陰極に抵抗を介して(または直接)負極が接続され
た直流電源、この直流電源電圧を分圧して常温では上記
感熱サイリスクを非導通に保持し上記貯水の温度が所望
値になったときに上記感熱サイリスクを導通させるよう
な電圧を上記感熱サイリスクのゲートに供給する抵抗分
圧器、上記第2の電極に接続された第1の接点、上記第
1の電極を上記直流電源の負極(または正極)に接続す
る接続線、上記第1の電極にトランジスタのエミッタ・
コレクタ回路を介して接続された第2の接点、上記第1
の電極と上記第3の電極との間の導通および非導通に応
じてそれぞれ上記トランジスタを非導通および導通にす
るような電位を上記トランジスタのベースに与える抵抗
回路、並びに上記感熱サイリスクのゲートを上記第1お
よび第2の接点の間に切換える切換えスイッチを備えた
検知回路。 2 感熱サイリスクのゲートに電圧を供給する抵抗分圧
器の分圧比を調整して上記感熱サイリスクのスイッチン
グ温度を調整するようにしたことを特徴とする特許請求
の範囲第1項記載の検知回路。
[Claims] 1. A first and a second electrode that are electrically connected to each other through the stored water when the water stored in the tank reaches the predetermined water level, and when the water stored in the tank reaches the predetermined water level. a third electrode that maintains electrical continuity between the first electrode and the water reservoir, and is electrically disconnected from the first electrode when the water reservoir drops by an allowable water level from the predetermined water level; An n-gate (or p-gate) type heat-sensitive cyrisk is arranged so that the temperature of the stored water is transmitted and the temperature changes in accordance with the change in the temperature of the stored water.
A DC power supply with a positive terminal connected (or via a resistor) and a negative terminal connected to the cathode of the above heat-sensitive thyrisk via a resistor (or directly), and dividing this DC power supply voltage to keep the above heat-sensitive thyrisk non-conductive at room temperature. a resistive voltage divider for supplying a voltage to the gate of the heat-sensitive cyrisk to cause the heat-sensitive thyrisk to conduct when the temperature of the stored water reaches a desired value; a first contact connected to the second electrode; A connection line connecting the first electrode to the negative electrode (or positive electrode) of the DC power supply, and a connection line connecting the first electrode to the emitter of the transistor.
a second contact connected via a collector circuit;
a resistor circuit that applies a potential to the base of the transistor such that the transistor becomes non-conductive and conductive depending on conduction and non-conduction between the electrode of the transistor and the third electrode; A sensing circuit comprising a transfer switch for switching between the first and second contacts. 2. The detection circuit according to claim 1, wherein the switching temperature of the heat-sensitive thyrisk is adjusted by adjusting the voltage division ratio of a resistive voltage divider that supplies voltage to the gate of the heat-sensitive thyrisk.
JP6417477A 1977-05-31 1977-05-31 detection circuit Expired JPS5839291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6417477A JPS5839291B2 (en) 1977-05-31 1977-05-31 detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6417477A JPS5839291B2 (en) 1977-05-31 1977-05-31 detection circuit

Publications (2)

Publication Number Publication Date
JPS53149065A JPS53149065A (en) 1978-12-26
JPS5839291B2 true JPS5839291B2 (en) 1983-08-29

Family

ID=13250427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6417477A Expired JPS5839291B2 (en) 1977-05-31 1977-05-31 detection circuit

Country Status (1)

Country Link
JP (1) JPS5839291B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061880U (en) * 1983-10-05 1985-04-30 カシオ計算機株式会社 LCD television receiver
JPS6066167U (en) * 1983-10-13 1985-05-10 カシオ計算機株式会社 LCD television receiver
JPS6066169U (en) * 1983-10-13 1985-05-10 カシオ計算機株式会社 LCD television receiver
JPS60174376U (en) * 1984-04-26 1985-11-19 セイコーエプソン株式会社 liquid crystal television

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162214A (en) * 1988-12-15 1990-06-21 Meguro Keiki Seisakusho:Kk Piezoelectric type mechanical quantity measuring apparatus having temperature measuring function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061880U (en) * 1983-10-05 1985-04-30 カシオ計算機株式会社 LCD television receiver
JPS6066167U (en) * 1983-10-13 1985-05-10 カシオ計算機株式会社 LCD television receiver
JPS6066169U (en) * 1983-10-13 1985-05-10 カシオ計算機株式会社 LCD television receiver
JPS60174376U (en) * 1984-04-26 1985-11-19 セイコーエプソン株式会社 liquid crystal television

Also Published As

Publication number Publication date
JPS53149065A (en) 1978-12-26

Similar Documents

Publication Publication Date Title
US3896369A (en) Circuit for soft-starting electric load comprising temperature sensitive diac
JPS6131573B2 (en)
CA1091738A (en) Leakage current thermostat
IE781888L (en) A heating circuit
US3896289A (en) Aquarium water heater
JPS5839291B2 (en) detection circuit
US4199694A (en) Terminal convertible alternating current switch
US4081660A (en) Heater shutdown circuit
US3644885A (en) Low liquid level indicator
US3360693A (en) Switching circuit for an electrically heated blanket
US4112336A (en) Lamp-starting device
US3825852A (en) Control system comprising differential amplifier with dual current comparator having two outputs separated by a deadband
US4185207A (en) Amplifier system with alternate inputs
US3579050A (en) High-low voltage detector
US3889183A (en) Conductivity measuring circuit
US3974430A (en) Motor protection circuit
MY109371A (en) Electronic automatic temperature control.
US3887000A (en) Control system comprising differential amplifier with dual current comparator having two outputs separated by a deadband
US3950741A (en) Accessory outage monitoring circuitry
US3116396A (en) Electric temperature control
JPS596365B2 (en) bath buzzer
KR900019304A (en) Apparatus for protecting semiconductor circuits from transients in the supply line
US3648077A (en) Circuit for controlling a heat-generating device
JPH04296484A (en) Temperature control unit of heater
JPH02112191A (en) Multi-faceted heat-sensitive heat generator