JPS5839234B2 - Pickling and descaling method for steel wire rod - Google Patents

Pickling and descaling method for steel wire rod

Info

Publication number
JPS5839234B2
JPS5839234B2 JP17163881A JP17163881A JPS5839234B2 JP S5839234 B2 JPS5839234 B2 JP S5839234B2 JP 17163881 A JP17163881 A JP 17163881A JP 17163881 A JP17163881 A JP 17163881A JP S5839234 B2 JPS5839234 B2 JP S5839234B2
Authority
JP
Japan
Prior art keywords
pickling
descaling
steel wire
solution
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17163881A
Other languages
Japanese (ja)
Other versions
JPS5873778A (en
Inventor
信幸 丸山
博夫 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17163881A priority Critical patent/JPS5839234B2/en
Publication of JPS5873778A publication Critical patent/JPS5873778A/en
Publication of JPS5839234B2 publication Critical patent/JPS5839234B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】 この発明は、鋼線材を酸洗により、脱スケールする方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for descaling steel wire rods by pickling.

従来、1塩基系酸洗溶液を用いる鋼線材の脱スケール操
業では、塩酸溶液が用いられている。
Conventionally, a hydrochloric acid solution has been used in a steel wire descaling operation using a monobasic pickling solution.

その一般的酸洗条件は、 (1)塩酸濃度 10〜20wtφ (2)溶液温度 常温〜40℃ (3)浸漬時間 20〜40m1n (※但し、鋼線材をコイル状に巻いて浸漬した場合。The general pickling conditions are: (1) Hydrochloric acid concentration 10-20wtφ (2) Solution temperature Room temperature to 40℃ (3) Immersion time 20-40m1n (*However, when the steel wire is wound into a coil and immersed.

)というものである。).

即ち、従来の酸洗脱スケールは、脱スケールに関与する
物質が酸のみであって、脱スケール作用を促進するには
、物理的環境を変える方法、すなわち溶液温度を変える
方法が採られていたのである。
That is, in conventional pickling descaling, the only substance involved in descaling is acid, and in order to promote the descaling action, a method of changing the physical environment, that is, a method of changing the solution temperature, was adopted. It is.

しかし溶液温度をあまり高めるとヒユーム等の飛散の原
因となり、又必然的に装置の大型化が必要となって、脱
スケールのコストアップを招く。
However, if the solution temperature is too high, fumes etc. will be scattered, and the equipment will inevitably need to be enlarged, leading to an increase in the cost of descaling.

本発明は、上記実状に鑑み、大損りな設備投資をするこ
となぐ脱スケール時間の短縮を図る目的でなされ、その
特徴とするところは、酸洗溶液のベースである1塩基系
の酸1wt%〜飽和濃度に、更にFeCt2を0.2w
t%〜飽和濃度及びFeCt3を1wt%〜飽和濃度を
加えて、該溶液中で酸洗脱スケール操業を行い、この操
業中にFe3+/Fe2+の酸化還元電位を測定して、
Fe3+が酸洗溶液中に常時1wt%以上存在するよう
に調整する点にある。
In view of the above-mentioned circumstances, the present invention was made for the purpose of shortening the descaling time without making a large capital investment. Add 0.2w of FeCt2 to the saturation concentration.
Add t% to saturation concentration and FeCt3 to 1wt% to saturation concentration, perform pickling descaling operation in the solution, measure the redox potential of Fe3+/Fe2+ during this operation,
The point is that Fe3+ is adjusted so that it always exists in the pickling solution in an amount of 1 wt% or more.

以下、実施例を示す図面及び表に基き詳述する。Examples will be described in detail below based on drawings and tables showing examples.

第1図は本発明の1実施例を示し、同図において1は酸
洗液槽、2は一定テンションのもと所定速度で矢印方向
に送られる鋼線材、3は案内ロール、4は酸洗溶液を示
し、該酸洗溶液は、l Owt%HCtにl0wt%F
eCt2及びl w t 中F eC4を含ませたもの
である。
FIG. 1 shows one embodiment of the present invention, in which 1 is a pickling liquid tank, 2 is a steel wire rod fed in the direction of the arrow under constant tension at a predetermined speed, 3 is a guide roll, and 4 is a pickling liquid tank. The pickling solution contains 1 Owt% HCt and 10 wt% F
FeC4 is included in eCt2 and lwt.

5は酸洗溶液4内のFe3+/Fe2+の酸化還元電位
を測定する白金電極、6は塩化第1水銀電極を示し、両
電極5,6はそれぞれ電位検知器1に接続され、該電位
検知器7において両電極5,6の電位差が測定されるよ
うになっている。
Reference numeral 5 indicates a platinum electrode for measuring the redox potential of Fe3+/Fe2+ in the pickling solution 4, and reference numeral 6 indicates a mercurous chloride electrode.Both electrodes 5 and 6 are each connected to the potential detector 1, and the potential detector At 7, the potential difference between the electrodes 5 and 6 is measured.

8は高濃度のFeCL、水溶液9を貯え管理するFeC
t3槽、10はFeCt3水溶液9を酸洗液槽1に導く
注入管を示し、該注入管10の中程にバルブ11が設け
られ、該バルブ11は上記電位差検知器7の発する電気
エネルギーにより、所定ケースに応じ開閉する構成とさ
れている。
8 is FeC that stores and manages high concentration FeCL and aqueous solution 9.
t3 tank, 10 indicates an injection pipe that leads the FeCt3 aqueous solution 9 to the pickling liquid tank 1, a valve 11 is provided in the middle of the injection pipe 10, and the valve 11 is operated by the electric energy emitted by the potential difference detector 7. It is configured to open and close depending on the predetermined case.

具体的には、両電極5,6により検知された電位差が「
Fe3+を含む塩(FeCl2)の濃度が1wt%を割
っている。
Specifically, the potential difference detected by both electrodes 5 and 6 is "
The concentration of salt containing Fe3+ (FeCl2) is less than 1 wt%.

」ことを示す場合には、バルブ11が自動的に開き、注
久管10から高濃度のFeCl3水溶液9が酸洗液槽1
に注入される構成となっている。
”, the valve 11 automatically opens and the highly concentrated FeCl3 aqueous solution 9 flows from the pouring pipe 10 into the pickling liquid tank 1.
It is configured to be injected into the

なお、上記バルブ11の開閉時間は、酸洗液槽1の容量
、使用鋼線材の線径や鋼質等の条件により定められる。
The opening/closing time of the valve 11 is determined by conditions such as the capacity of the pickling liquid tank 1, the wire diameter and quality of the steel wire used.

下記表−1、表−2は本発明の方途により脱スケールを
行なった場合の結果と、従来の酸洗溶液(10wt%H
CZ)に依る結果と比較して示すものである。
Tables 1 and 2 below show the results of descaling using the method of the present invention and the results of descaling using the conventional pickling solution (10 wt% H
This is shown in comparison with the results obtained by CZ).

すなわち、上記実施例においては、第1図に示すように
順次送り込まれる鋼線材2が酸洗液槽1内で酸洗溶液4
に浸漬され、とSで鋼線材2はFe2+、Fe”の存在
下、良好に脱スケールされる。
That is, in the above embodiment, as shown in FIG.
The steel wire rod 2 is well descaled in the presence of Fe2+ and Fe''.

こ5で本発明の酸洗機構は、 となり、スケールの割れ目を通してHCtが地鉄を腐蝕
し、上記反応で発生するH2がスケールの上層部を形成
するFe504層、Fe2O3層に内部圧を与えること
により、スケールを効率良く剥離する。
In this 5, the pickling mechanism of the present invention is as follows: HCt corrodes the base iron through the cracks in the scale, and H2 generated in the above reaction applies internal pressure to the Fe504 layer and Fe2O3 layer that form the upper layer of the scale. This allows scale to be removed efficiently.

この場合に、実施例中の酸洗溶液4に含まれているFe
3+は、 の如く反応し、脱スケール性向上(酸洗所要時間の短縮
)に寄与する。
In this case, Fe contained in the pickling solution 4 in the example
3+ reacts as shown below and contributes to improved descaling performance (shortened pickling time).

上記表−1、表−2は、この脱スケール性向上を和実に
示すもので、従来例に比すと、表−Iの場合約2.5倍
のスピードで、表−■の場合は約2倍のスピードで良好
な脱スケール状態が得られている。
Tables 1 and 2 above clearly show this improvement in descaling performance. Compared to the conventional example, the speed in Table I is about 2.5 times faster, and the speed in Table II is about 2.5 times faster than in the conventional example. Good descaling conditions were obtained at twice the speed.

ところで、FeCl2中のFe2+は一般的には、その
添加量15wt%以上で腐食量を増大するのであるが、
本発明の場合はFe”十力S共存していて、FeCl2
が0.2wt%であっても良好な脱スケール状態が得ら
れる。
By the way, Fe2+ in FeCl2 generally increases the amount of corrosion when the amount added is 15 wt% or more.
In the case of the present invention, Fe"JurikiS coexists, and FeCl2
Even if the amount is 0.2 wt%, a good descaling state can be obtained.

一方、上記F♂ん量は脱スケール操業中、少しづ\減少
する。
On the other hand, the amount of F♂ decreases little by little during the descaling operation.

すなわち、Fe3+はHC,eJこよってFe2+に還
元されてゆく。
That is, Fe3+ is reduced to Fe2+ by HC and eJ.

しかしながら上記実施例では酸洗溶液4中のFeCl3
の量が1wt%を割った時は、電位差検知器7から出る
電気エネルギーがバルブ11を開かせ、注λ管10から
高濃度のFeCl3水溶液9を酸洗溶液4中に流し込み
Fe3+の含有量を適正に保持調整し、脱スケール操業
を連続して良好に行うのである。
However, in the above example, FeCl3 in the pickling solution 4
When the amount of FeCl3 is less than 1wt%, the electric energy emitted from the potential difference detector 7 opens the valve 11, and a high concentration FeCl3 aqueous solution 9 is poured into the pickling solution 4 from the injection tube 10 to check the Fe3+ content. By properly holding and adjusting it, descaling operations can be performed continuously and successfully.

なお、本発明においてFeCl3の添加量を、常時1w
t%以上とした理由は、第2図のグラフに示すように、
FeC73の添加効果は1wt%ll上の濃度において
現われるからである。
In addition, in the present invention, the amount of FeCl3 added is always 1w.
The reason for setting it above t% is as shown in the graph of Figure 2.
This is because the effect of adding FeC73 appears at a concentration of 1wt%II or more.

当該グラフは、酸洗溶液4のベースとして10wt%H
CA+10wt%FeCt2を用い、その酸洗溶液温度
は15℃、使用鋼線材は0.5%炭素鋼、表示は表−1
、表−2と同じとしたものである。
The graph shows 10 wt% H as the base of pickling solution 4.
CA+10wt%FeCt2 is used, the pickling solution temperature is 15℃, the steel wire used is 0.5% carbon steel, and the display is Table-1
, is the same as Table-2.

以上説明したように本発明は、従来の酸洗脱スケール方
法に比べ、脱スケール所要時間を著しく短縮するもので
あり、しかもその方途は、■塩基系の酸にFeCl2及
びFeCl3を添加して酸洗溶液となし、該酸洗溶液中
のFe3+量を酸化還元電位の測定によって保持調整す
るものであって格別の装置を必要としないし、溶液温度
を上げることなく脱スケール所要時間を短縮化するもの
である故に、冒頭に記したヒユーム飛散等の問題は無く
なる許りでなく、Fe3+の量が常時酸洗溶液中に適正
保持されていて、良好な酸洗脱スケール操業を順調に行
い得る。
As explained above, the present invention significantly shortens the time required for descaling compared to the conventional pickling descaling method. The amount of Fe3+ in the pickling solution is maintained and adjusted by measuring the redox potential, so no special equipment is required, and the time required for descaling is shortened without raising the solution temperature. Therefore, the problems such as fume scattering described at the beginning cannot be eliminated, and the amount of Fe3+ is always maintained at an appropriate level in the pickling solution, so that a good pickling and descaling operation can be carried out smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す概略図、第2図はFe
Cl3の添加効果を表示するグラフである。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG. 2 is a schematic diagram showing an embodiment of the present invention.
It is a graph displaying the effect of addition of Cl3.

Claims (1)

【特許請求の範囲】 11塩基系の酸1wtφ〜飽和濃度迄を含有する酸洗溶
液で鋼線材の脱スケールを行う酸洗脱スケール方法にお
いて、上記1塩基系の酸にFeCJ!。 を0.2wt%〜飽和濃度及びFeCt3を1wt%〜
飽和濃度を加え、脱スケール操業中に酸洗溶液中のFe
3+、Fe2+それぞれの酸化還元電位を測定し、上記
Fe3+が酸洗溶液中に常時1wt%以上存在するよう
に調整することを特徴とする鋼線材の酸洗脱スケール方
法。
[Claims] In a pickling and descaling method for descaling a steel wire with a pickling solution containing 1wtφ to saturation concentration of a 11-base acid, FeCJ! . 0.2 wt% ~ saturation concentration and FeCt3 ~ 1 wt%
Fe in the pickling solution during descaling operation by adding saturating concentration.
A method for pickling and descaling steel wire rods, the method comprising: measuring the redox potential of each of Fe3+ and Fe2+, and adjusting the Fe3+ so that it always exists at 1 wt% or more in the pickling solution.
JP17163881A 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod Expired JPS5839234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17163881A JPS5839234B2 (en) 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17163881A JPS5839234B2 (en) 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod

Publications (2)

Publication Number Publication Date
JPS5873778A JPS5873778A (en) 1983-05-04
JPS5839234B2 true JPS5839234B2 (en) 1983-08-29

Family

ID=15926903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17163881A Expired JPS5839234B2 (en) 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod

Country Status (1)

Country Link
JP (1) JPS5839234B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231188A (en) * 1985-04-04 1986-10-15 Nippon Paint Co Ltd Method for controlling aluminum surface cleaning agent
US5154774A (en) * 1985-09-19 1992-10-13 Ugine Aciers De Chatillon Et Gueugnon Process for acid pickling of stainless steel products
FR2657888B1 (en) * 1990-02-08 1994-04-15 Ugine Aciers STRIPPING METHODS FOR STAINLESS STEEL MATERIALS.
FR2673200A1 (en) * 1991-02-25 1992-08-28 Ugine Aciers METHOD FOR OVERDRAWING STEEL MATERIALS SUCH AS STAINLESS STEELS AND ALLIED STEELS.
FR2745301B1 (en) * 1996-02-27 1998-04-03 Usinor Sacilor PROCESS FOR STRIPPING A STEEL PART AND PARTICULARLY A STAINLESS STEEL SHEET STRIP

Also Published As

Publication number Publication date
JPS5873778A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
Ogundele et al. Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide
Stern et al. The influence of noble metal alloy additions on the electrochemical and corrosion behavior of titanium
Garvin et al. Blood parasites of nearctic–neotropical migrant passerine birds during spring trans-gulf migration: impact on host body condition
Abd El Wanees et al. Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions
Garcés et al. Corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments in the micropores of concrete in the propagation period
Gui et al. Localized corrosion of carbon steel and its implications on the mechanism and inhibition of stress corrosion cracking in fuel-grade ethanol
Abd El-Haleem et al. Chloride induced pitting corrosion of nickel in alkaline solutions and its inhibition by organic amines
Loto et al. Potentiodynamic polarization behavior and pitting corrosion analysis of 2101 duplex and 301 austenitic stainless steel in sulfuric acid concentrations
Toribio Role of hydrostatic stress in hydrogen diffusion in pearlitic steel
JPH0420996B2 (en)
Frignani et al. Inhibition of iron corrosion in different acid media by N-Decyl-Pyridinium derivatives
JPS5839234B2 (en) Pickling and descaling method for steel wire rod
Cabrini et al. Effects of thiosulphates and sulphite ions on steel corrosion
Town et al. Determination of metal ion binding parameters for humic substances: Part 2. Utility of ASV pseudo-polarography
Stolica Pitting corrosion on Fe-Cr alloys
Chappell et al. The Electrochemical Action of Inhibitors in the Acid Solution of Steel and Iron1
Basilico et al. Effect of O2 contamination on carbon steel pseudo-passive scales in CO2 aqueous solutions
Huang et al. Localized corrosion resistance of Fe-Cr-Mo-WBC bulk metallic glasses containing Mn+ Si or Y in neutral and acidified chloride solutions
Frignani et al. Inhibitors for Armco iron and ASTM A106 plain steel in hydrofluoric acid
JPS5839235B2 (en) Pickling and descaling method for steel wire rod
Chen et al. Role of Trace Dissolved Oxygen Content in Corrosion Scale of 3Cr Steel in CO2 Aqueous Environment
Guocheng et al. The enrichment of chloride anion in the occluded cell and its effect on stress corrosion crack of 304 stainless steel in low chloride concentration solution
Carroll et al. A crevice-free electrode assembly for the determination of reproducible breakdown potentials for stainless steels in halide environments
Rostron The correlation between molecular structure and tendency to maintain or to destroy iron passivity in aqueous solution—II. Activation effectiveness of anions present together with a corrosion inhibitor and/or an oxidant
Mulimbayan et al. Cyclic voltammetric study of the pitting corrosion behavior of low-nickel austenitic stainless steels in citric acid