JPS5839105A - Compensating method for frequency-temperature characteristic of surface acoustic wave resonator - Google Patents

Compensating method for frequency-temperature characteristic of surface acoustic wave resonator

Info

Publication number
JPS5839105A
JPS5839105A JP13739681A JP13739681A JPS5839105A JP S5839105 A JPS5839105 A JP S5839105A JP 13739681 A JP13739681 A JP 13739681A JP 13739681 A JP13739681 A JP 13739681A JP S5839105 A JPS5839105 A JP S5839105A
Authority
JP
Japan
Prior art keywords
electrode
frequency
resonator
temperature
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13739681A
Other languages
Japanese (ja)
Other versions
JPH0124366B2 (en
Inventor
Takao Morita
孝夫 森田
Masaki Tanaka
田中 昌喜
Kazuo Ono
和男 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP13739681A priority Critical patent/JPS5839105A/en
Publication of JPS5839105A publication Critical patent/JPS5839105A/en
Publication of JPH0124366B2 publication Critical patent/JPH0124366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To make frequency-temperature characteristics coincident with one another among plural resonance frequencies, by setting the ratio of the width of electrode fingers to the width of no-electrode parts between electrodes to a desired value. CONSTITUTION:Three bus bar electrodes 2, 3, and 4 are provided in the X-axial direction on the main surface of an ST cut quartz substrate 1, and the center bus bar electrode 3 is used as a common electrode for both resonators to excite two kinds of resonance frequency. When resonance frequencies, surface wave wavelengths, widths of electrode fingers, and widths of no-electrode parts of respective resonators and the thickness of electrode films are denoted as f1 and f2, lambda1 and lambda2, l1 and l2, s1 and s2, and (h) respectively, both resonators show the same peak temperature on condition that l2/l1=(lambda2/lambda1)<2>=(f1/f2)<2> is true. Consequently, the frequency f1 of the resonator as a reference is determined, and the quartz cut angle and the electrode finger width l1 are so determined that the peak temperature of frequency-temperature characteristics becomes a prescribed value, and thus, the electrode finger width l2 of the resonator having the frequency f2 is obtained automatically.

Description

【発明の詳細な説明】 本発IjIは弾性表面波共振器の周波数一温度特性の補
償方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of compensating for frequency-temperature characteristics of a surface acoustic wave resonator.

周知の如く水晶基板上に多対のインタディジタル・トラ
ンスジ、−サ電極を設け、弾性表面波共振器を構成した
場合、その周波数一温度特性は基本的に水晶基板のカッ
ト・アングルによりて決まるが、同時にその共振器の共
振周波数(これはインタディジタル・トランスジ、−サ
電極のピッチにより定まる)及び電極膜厚によっても変
化する。
As is well known, when a surface acoustic wave resonator is constructed by providing multiple pairs of interdigital transformers and electrodes on a crystal substrate, its frequency-temperature characteristics are basically determined by the cut angle of the crystal substrate. At the same time, it changes depending on the resonant frequency of the resonator (this is determined by the pitch of the interdigital transistor electrodes) and the electrode film thickness.

従りて、水晶基板を用いた共振器を設計する場合、イン
タディジタル・トランスジ、−サ電極のピッチ及び電極
膜厚を考慮して前記水晶基板のカット・アングルを決定
する必要がある。
Therefore, when designing a resonator using a quartz substrate, it is necessary to determine the cut angle of the quartz substrate in consideration of the interdigital transistor, the pitch of the -circuit electrodes, and the electrode film thickness.

特に同一の水晶基板上に同一膜厚の電極を以って異なつ
た複数の共振器を設ける場合、夫々の周波数毎に異なる
周波数−温[特性を呈し、これを補償することは事実上
不可能であった。
In particular, when multiple resonators of different types are provided on the same crystal substrate with electrodes of the same film thickness, each frequency exhibits a different frequency-temperature characteristic, and it is virtually impossible to compensate for this. Met.

本発明社従来の共振器、41に多対のインタディジタル
・トランスジェーサ電極を備えた弾性表面波共振器に於
ける上記の如き欠点を解決する為になされたものであっ
て、圧電基板上に設けるインタディジタル・トランスジ
、−サ電極による質量付加効果が共振周波数に無関係に
最良の周波数一温度特性となるよう、前記電極の電極指
幅と電極間の無電極部幅との比を選択することを特徴と
する弾性表面波共振器の周波数一温度特性の補償方法を
提供することを目的とする。
This invention was made in order to solve the above-mentioned drawbacks of the conventional resonator, a surface acoustic wave resonator equipped with multiple pairs of interdigital transducer electrodes at 41. The ratio of the electrode finger width of the electrodes to the width of the non-electrode portion between the electrodes is selected so that the mass addition effect of the interdigital transformer and -sa electrodes provided in the electrodes provides the best frequency-temperature characteristics regardless of the resonance frequency. An object of the present invention is to provide a method for compensating the frequency-temperature characteristics of a surface acoustic wave resonator.

以下、本発明を実施例及びその実験結果に基づいて詳細
に説明する。
Hereinafter, the present invention will be described in detail based on Examples and experimental results.

例を最も周波数一温度特性の優れたST−カット系水晶
基板を用いた弾性表面波共振器にとるならば、この共振
器は第1図に示す如き構成となる。
If we take as an example a surface acoustic wave resonator using an ST-cut crystal substrate which has the best frequency-temperature characteristics, this resonator will have a configuration as shown in FIG.

即ち、一枚の水晶基板上で2種撃の共振周波数を励振し
、必要に応じていずれかを選択する形式の共振器を考え
る場合、STカット系の水晶基板1の主表面上のX軸方
向に3本のパスバー電極2.3及び4を設け、中央のバ
スバー電極3Yt両共振器の共通電極とする。
In other words, when considering a resonator that excites two types of resonant frequencies on a single crystal substrate and selects one of them as necessary, the X-axis on the main surface of the ST-cut crystal substrate 1 Three passbar electrodes 2.3 and 4 are provided in the direction, and the central busbar electrode 3Yt serves as a common electrode for both resonators.

前記中央バスバー電極30両側及び該電極3を挾む前記
両パスバー電極2,4の内側より夫々多数のインクディ
ジタル電極指5,5.−・・・・、6.6.・・・・−
及び? 、 7、−−−−−18 、8、−・・・・・
 を相互に交叉する如く延長して所謂正規型のインタデ
ィジタルートランスジェーサ電極管構成する。
A large number of ink digital electrode fingers 5,5. -..., 6.6.・・・・−
as well as? , 7,---18 ,8,------
are extended so as to intersect with each other to form a so-called regular type interdigital transducer electrode tube.

該電極の製造法は周知の如く基板1上K1着した金属膜
をフォト・エツチング等によって所定のパターンに削シ
取ることによればよい。
As is well known, the electrode may be manufactured by etching the metal film K1 deposited on the substrate 1 into a predetermined pattern by photo-etching or the like.

前記インタディジタル・トランスジ、−サ電に印加され
た電気エネルギによって励起される弾性表面波の波長を
λ1とすると、11+s重−λ1/2 となるように設
計する必要があること社いうまでもなく、製造の容易性
の面から11=81とするのが一般的である。
Needless to say, if the wavelength of the surface acoustic wave excited by the electrical energy applied to the interdigital transformer is λ1, it is necessary to design it so that the wavelength is 11+s-λ1/2. , it is common to set 11=81 from the viewpoint of ease of manufacture.

次に、上述の如き弾性w両波共振器の周波数一温度特性
について述べる。共振器の温度特性は、水晶のカットア
ングルで第−義的に決定され、一般KFiSTカットと
呼ばれている38°回転Yカット板を用いる。その温度
特性は、常温付近は零温度係数をもつ2次曲線である。
Next, the frequency-temperature characteristics of the elastic w-wave resonator as described above will be described. The temperature characteristics of the resonator are primarily determined by the cut angle of the crystal, and a 38° rotated Y-cut plate, commonly called KFiST cut, is used. Its temperature characteristic is a quadratic curve with a zero temperature coefficient near normal temperature.

更に第二義的に温度特性を決定する要因は、前記電極の
厚さ、及び電極幅で、電極管厚くシ光り電極@を広くす
ることは電極の質量付加効果を受けて、頂点温度が低温
側にずれる。
Furthermore, the second factor that determines the temperature characteristics is the thickness of the electrode and the width of the electrode.If the electrode tube is thicker and the electrode @ is wider, the peak temperature will be lower due to the added mass effect of the electrode. Shift to the side.

このことは周波数が高い程顕著である。それ故、一枚の
基板上に検数の共振器を設けると、周波数の低い共振器
と高い共振器では、その温度特性が異なることになる。
This becomes more noticeable as the frequency becomes higher. Therefore, when multiple resonators are provided on a single substrate, the temperature characteristics of the low frequency resonator and the high frequency resonator will be different.

即ち、低い周波数の共振器の頂点温度は高温側に、高い
ものは低温側にずれて、画集振器の温度特性は一致しな
いことになる。このずれは、周波数差が大きくなる程大
きくなる。その実例について述べると、2つの周波数6
1.25MHz及び67.25 MHzの共振器を第1
図の如(8’l’カツト水晶基板上に作る場合を想定す
ると、各々の共振器の周波数一温度特性は2次曲線を示
すが、一方の周波数に対して2次曲線の頂点温度を所望
の頂点温度に合わせて最良の周波数一温度特性を得るよ
う基板水晶のカットアングルを選ぶならば、他の周波数
の共振器性周波数一温度特性における頂点温度が、最良
の点から4〜6℃程ずれてしまう。そこでこの問題につ
いての改善策を検討するに、本共振器の周波数一温度特
性はその表面に付着する電極の質量付加効果に依存する
こと社周知であるから、画集振器の電極膜厚を違えれば
良いことがわかる。しかしながら斯る方法は電極蒸着を
困難にし、製造が複雑となる。
That is, the peak temperature of the low frequency resonator shifts to the high temperature side, and the peak temperature of the high frequency resonator shifts to the low temperature side, so that the temperature characteristics of the image collectors do not match. This shift increases as the frequency difference increases. To give an example, two frequencies 6
The 1.25 MHz and 67.25 MHz resonators are the first
As shown in the figure (assuming that it is fabricated on an 8'l' cut crystal substrate), the frequency-temperature characteristic of each resonator shows a quadratic curve. If the cut angle of the substrate crystal is selected to obtain the best frequency-temperature characteristic according to the peak temperature of Therefore, when considering ways to improve this problem, since it is well known that the frequency-temperature characteristics of this resonator depends on the mass addition effect of the electrode attached to the surface, the electrode of the image collector It can be seen that different film thicknesses can be used. However, such a method makes electrode deposition difficult and manufacturing complicated.

そこで本発明は質量付加効果を1両周波数に対応する電
極に関して同等となるようインタディジタル・トランス
ジ、−サ電極の電極指幅と無電極部幅との比IP変える
ことによυ画周波数に対する周波数一温度特性を一致さ
せんとするものである。
Therefore, in the present invention, the ratio IP of the electrode finger width of the -sa electrode to the non-electrode part width of the interdigital transformer is changed so that the mass addition effect is the same for the electrodes corresponding to both frequencies. The objective is to match the temperature characteristics.

即ち、同一基板上に設けた二つの共振器の共振周波数、
表面波身長、電極指幅並びに無電極部幅を夫々f1及び
fzwλl及びλ!、!1及びl!並びKsl及び32
とし電極膜厚を両者等しくhとすれば、両弁振器が同一
の頂点温度を示す条件は電極材料が基板全面に均一に付
着し九と仮定した場合、この厚さt’s面波々長で規準
化した値が等しいことであると考えられるから、 又、表面波伝搬速度をυとすれば fl・λt=fz・λ3=u ・・・・・・・・・・・
・(3)上記(1) 、 (21及び(3)式よりt得
る。
That is, the resonant frequency of two resonators provided on the same substrate,
The surface wave height, electrode finger width and non-electrode part width are f1, fzwλl and λ!, respectively. ,! 1 and l! and Ksl and 32
Assuming that both electrode film thicknesses are equal and h is the same, the condition for both valve vibrators to have the same peak temperature is that the electrode material adheres uniformly to the entire surface of the substrate. Since the values normalized by the length are considered to be equal, if the surface wave propagation velocity is υ, then fl・λt=fz・λ3=u ・・・・・・・・・・・・・・・
・(3) Obtain t from the above (1), (21 and equation (3).

従って基準となる共振器の周波数f1を決め、周波数一
温度特性の頂点温*1−例えに常温25℃となるように
水晶のカッ)・アングル及び電極指幅jxt決定すると
周波数f2の共振器の電極指幅!茸は自動的に求めるこ
とができる。
Therefore, by determining the frequency f1 of the resonator as a reference, and determining the peak temperature *1 of the frequency-temperature characteristic - for example, the angle and electrode finger width jxt of the crystal so that the room temperature is 25°C, the resonator of frequency f2 is determined. Electrode finger width! Mushrooms can be found automatically.

又、上記の如き本発明に係る温度特性補償方法は2個の
周波数のみならず蕾数個の周波数を発振する共振器に適
用しうろこと社自明であシ、この場合には基準となる共
振器の電極指幅11に対する第fil@の共振器の電極
指幅!。
Furthermore, it is obvious that the temperature characteristic compensation method according to the present invention as described above can be applied to a resonator that oscillates not only two frequencies but also several frequencies; in this case, the reference resonance The electrode finger width of the fil@th resonator with respect to the electrode finger width 11 of the resonator! .

を となるよう設定すれば周波数一温度特性を全て一致させ
ることができる。
By setting , it is possible to match all the frequency-temperature characteristics.

最后に本発明に係る方法を61.25及び67.25M
Hz  の二周波共振器に適用した場合の実験結果につ
いて説明する。
Finally, the method according to the present invention was applied to 61.25 and 67.25M.
Experimental results when applied to a Hz dual-frequency resonator will be explained.

先ず前記画周波数に対応する共振器を共に電極指幅と無
電極部幅との比、l : 8 ”” 1 : 1とし九
場合、67゜25MHz の共振器の頂点温度を25℃
に合わせると61.25MH,の共振器の頂点温度は約
5℃高温側にずれる。(第2図社第1.8T力ツF水晶
基板主表面に於ける弾性表面波伝搬速度は3130m/
sであるからλ1=46.543μm、従ってj1=8
s°λ、/4−11・635μm、故に72=14.0
33μmとなる。
First, if the ratio of the electrode finger width to the non-electrode width of the resonator corresponding to the image frequency is 1:1, then the peak temperature of the resonator of 67°25MHz is 25°C.
Accordingly, the peak temperature of the 61.25 MH resonator shifts to the higher temperature side by about 5°C. (The surface acoustic wave propagation speed on the main surface of the quartz crystal substrate is 3130 m/
Since s, λ1 = 46.543 μm, therefore j1 = 8
s°λ, /4-11・635μm, therefore 72=14.0
It becomes 33 μm.

l s=11.518 Jim 。l s=11.518 Jim.

従って12 : S m−14,033: 11.51
 B”q5 :4と危るように設計する。
Therefore 12: S m-14,033: 11.51
B"q5: Designed to be dangerous at 4.

斯くの如く設計された共振器の周波数一温度特性は第3
図に示す如< 67.25 、61.25MHz双方共
はソ25℃の頂点温度を有するようになゐ。
The frequency-temperature characteristic of a resonator designed in this way is the third
As shown in the figure, both 67.25 MHz and 61.25 MHz have peak temperatures of 25°C.

本発明は上述の如く構成するので単一圧電基板上で多数
の異なる周波数を選択的に共振させ得る弾性表面波共振
器に於いていずれの共振器について%周波数一温度特性
を実質的に同一とすることができるのみならず共振器の
M特性をも揃えることが可能となる為、VTRをけじめ
多種周波数を使用する必要のある機器に適用する場合著
しい効果を発揮するものである。
Since the present invention is constructed as described above, in a surface acoustic wave resonator capable of selectively resonating a large number of different frequencies on a single piezoelectric substrate, all resonators have substantially the same %frequency-temperature characteristics. Not only can the M characteristics of the resonator be made uniform, it is extremely effective when applied to equipment that requires the use of a wide variety of frequencies, such as VTRs.

尚、本発明は必ずしも弾性表面波共振器についてのみ適
用されるものではなく、圧電基板直下を伝搬する波、例
えば88BW等を利用する共振器についても同様に適用
可能である。
Note that the present invention is not necessarily applied only to surface acoustic wave resonators, but is similarly applicable to resonators that utilize waves that propagate directly beneath a piezoelectric substrate, such as 88BW.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2周波共振可能なる弾性表面波共振器の構成を
示す図、第2図社第1図に示す共振器に於いて電極指幅
l及び無電極部幅3の比が画集振器共l:lの場合の周
波数一温度特性の差を示す図、第3図は第1図の共振器
に本発明を適用した場合の実験結果を示す図である。 1は圧電基板、5.6.7及び8はインタディジタル・
トランスジューサ電極、11m1意は電極指輪%S1*
Imは無電極部幅、λ1.λ、は夫々画集振器によって
励起される弾性表面波々長を示す。 特許出願人  東洋通信機株式会社
Figure 1 shows the configuration of a surface acoustic wave resonator capable of two-frequency resonance. Figure 2 In the resonator shown in Figure 1, the ratio of the electrode finger width l to the non-electrode width 3 FIG. 3 is a diagram showing the difference in frequency-temperature characteristics in the case of l:l, and FIG. 3 is a diagram showing experimental results when the present invention is applied to the resonator of FIG. 1. 1 is a piezoelectric substrate, 5, 6, 7 and 8 are interdigital
Transducer electrode, 11m1 means electrode ring%S1*
Im is the width of the non-electrode portion, λ1. λ indicates the wave length of the elastic surface excited by the image collector, respectively. Patent applicant: Toyo Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 同一水晶基板上に、多対のインタディジタル・トランス
ジ為−サ電極を複数個設け、置数の異なる周波数を共振
させ得る弾性表面波共振器に於いて、一つの共振周波数
會jte他のいずれかの共振周波数をfnとし、該周波
数に対応する前記インタディジタル・トランスジエーサ
電極の電極指幅を夫々11.lBとするとき、なる関係
を満足するよう、前記電極の電極指幅を設定することに
よって、前記複数の共振器の電極膜厚による質量負荷効
果の影IIIを等しくして各々の周波数−温[Il!f
性を一致せしめることを特徴とする弾性表面波共振器の
周波数一温度特性補償方法。
In a surface acoustic wave resonator in which multiple pairs of interdigital transformer electrodes are provided on the same crystal substrate and can resonate different frequencies, one resonant frequency group or one of the other The resonant frequency of is fn, and the electrode finger width of the interdigital transducer electrode corresponding to the frequency is 11. By setting the electrode finger width of the electrode so as to satisfy the following relationship, when 1B, the influence III of the mass load effect due to the electrode film thickness of the plurality of resonators is equalized, and each frequency-temperature [ Il! f
A method for compensating frequency-temperature characteristics of a surface acoustic wave resonator, which is characterized by matching the characteristics.
JP13739681A 1981-08-31 1981-08-31 Compensating method for frequency-temperature characteristic of surface acoustic wave resonator Granted JPS5839105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13739681A JPS5839105A (en) 1981-08-31 1981-08-31 Compensating method for frequency-temperature characteristic of surface acoustic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13739681A JPS5839105A (en) 1981-08-31 1981-08-31 Compensating method for frequency-temperature characteristic of surface acoustic wave resonator

Publications (2)

Publication Number Publication Date
JPS5839105A true JPS5839105A (en) 1983-03-07
JPH0124366B2 JPH0124366B2 (en) 1989-05-11

Family

ID=15197682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13739681A Granted JPS5839105A (en) 1981-08-31 1981-08-31 Compensating method for frequency-temperature characteristic of surface acoustic wave resonator

Country Status (1)

Country Link
JP (1) JPS5839105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155640A (en) * 1985-12-27 1987-07-10 Nec Corp Timing extraction circuit
US5912602A (en) * 1995-10-20 1999-06-15 Seiko Epson Corporation Surface acoustic wave device and method for designing same using resonators having different frequency-temperature characteristics
US7042133B2 (en) 2002-10-04 2006-05-09 Seiko Epson Corporation Surface acoustic wave device and method of adjusting a temperature characteristic of the same
JP2006148372A (en) * 2004-11-17 2006-06-08 Japan Radio Co Ltd Multiband acoustic wave filer
WO2006063984A1 (en) * 2004-12-14 2006-06-22 Tele Filter Gmbh Oscillator comprising two one-port surface wave resonators

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155640A (en) * 1985-12-27 1987-07-10 Nec Corp Timing extraction circuit
US5912602A (en) * 1995-10-20 1999-06-15 Seiko Epson Corporation Surface acoustic wave device and method for designing same using resonators having different frequency-temperature characteristics
US7042133B2 (en) 2002-10-04 2006-05-09 Seiko Epson Corporation Surface acoustic wave device and method of adjusting a temperature characteristic of the same
JP2006148372A (en) * 2004-11-17 2006-06-08 Japan Radio Co Ltd Multiband acoustic wave filer
WO2006063984A1 (en) * 2004-12-14 2006-06-22 Tele Filter Gmbh Oscillator comprising two one-port surface wave resonators
US7511587B2 (en) 2004-12-14 2009-03-31 Tele Filter Gmbh Oscillator comprising two one-port surface wave resonators

Also Published As

Publication number Publication date
JPH0124366B2 (en) 1989-05-11

Similar Documents

Publication Publication Date Title
US4456850A (en) Piezoelectric composite thin film resonator
CN110114974B (en) Elastic wave device
JP7377920B2 (en) surface acoustic wave device
US6121860A (en) Multimode surface acoustic wave filter with a coupling section not being a uniform metal film
EP0034351B1 (en) Surface acoustic wave device
GB1594379A (en) Surface acoustic wave oscillator
JP3001350B2 (en) Surface acoustic wave filter
JPWO2018070369A1 (en) Elastic wave device
JPH027207B2 (en)
JPH0134411B2 (en)
CN115549639A (en) Acoustic wave filter
JPS5839105A (en) Compensating method for frequency-temperature characteristic of surface acoustic wave resonator
JP7493306B2 (en) Elastic Wave Device
KR0177374B1 (en) Saw resonator having transverse mode ripple at antiresonance point
US20020053856A1 (en) Surface acoustic wave device and piezoelectric substrate used therefor
JPH0746079A (en) Highly stable surface acoustic wave element
JPH06177703A (en) Longitudinal triplex mode saw filter
JP3442202B2 (en) Surface acoustic wave filter
JPH08204502A (en) Longitudinal composite quadruple mode saw filter
US6559738B2 (en) Unidirectional transducer and saw filter comprising the same
US20210044273A1 (en) Transducer structure for source suppression in saw filter devices
JP2006270360A (en) Surface acoustic wave element
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JPS59213A (en) Surface acoustic wave device
JPH0133969B2 (en)