JPS5838308A - Gas turbine-steam turbine composite plant - Google Patents

Gas turbine-steam turbine composite plant

Info

Publication number
JPS5838308A
JPS5838308A JP13415181A JP13415181A JPS5838308A JP S5838308 A JPS5838308 A JP S5838308A JP 13415181 A JP13415181 A JP 13415181A JP 13415181 A JP13415181 A JP 13415181A JP S5838308 A JPS5838308 A JP S5838308A
Authority
JP
Japan
Prior art keywords
turbine
steam
gas
waste heat
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13415181A
Other languages
Japanese (ja)
Inventor
Kengo Shigeta
重田 堅伍
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13415181A priority Critical patent/JPS5838308A/en
Publication of JPS5838308A publication Critical patent/JPS5838308A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent erosion of a moving vane through evaporation of moisture in wet steam of a steam turbine, by a method wherein a part of gas from a waste heat boiler at an exhaust gas flow path of a gas turbine is introduced to the stationary vane of the low-pressure stage of the gas turbine. CONSTITUTION:A composite cycle consists of a gas turbine 4 and steam turbines 13, 17 and 19. A waste heat boiler 5 is installed to the exhaust gas flow path of the gas turbine 4, a part of waste heat gas 100, being exhausted from a chimney 6 of the boiler 5 and having high calory, is sucked through a waste heat gas outlet 103 by a suction blower 102, it is introduced to a stationary vane of a low-pressure trubine 19 located at a wet steam area, and it is exhausted to the chimney 6 after heating the stationary vane. This enables to reduce wetness of a low-pressure stage of a steam turbine, and permits the prevention of erosion of a moving vane. Additionally, the reduction in energy loss due to wet steam permits the improvement of a plant efficiency of a turbine.

Description

【発明の詳細な説明】 本発明は蒸気タービンの低圧段に係り、特に、ガスター
ビンと蒸気タービン、複合サイクルの蒸気タービンにお
いて、湿り蒸気域で運転される低圧タービンの改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low pressure stage of a steam turbine, and more particularly to an improvement in a low pressure turbine operated in a wet steam region in a gas turbine, a steam turbine, or a combined cycle steam turbine.

火力発電プラントの低圧タービンは、タービン内で膨張
を繰シ返すことにより、最終段前2〜3は湿り蒸気域で
運転される。このような湿シ蒸気中でタービンを運転し
た場合、湿り蒸気中の水滴によるタービン動翼がエロー
ジョンを受は損傷する。又湿シ損失によるタービン内部
効率の低下など、信頼性、性能面に多くの支障をきたす
A low-pressure turbine of a thermal power plant is operated in a wet steam region in two to three stages before the final stage by repeating expansion within the turbine. When a turbine is operated in such humid steam, the turbine rotor blades are eroded and damaged by water droplets in the humid steam. Furthermore, it causes many problems in terms of reliability and performance, such as a decrease in turbine internal efficiency due to moisture loss.

従来、エロージョンの防止策として動翼を耐浸食性の良
い材料で保護するか、動翼に付着した水滴を遠心力を利
用して流路外に除去するなどの技術によって湿シ蒸気流
による弊害に対処している。
Conventionally, to prevent erosion, techniques such as protecting the rotor blades with materials with good erosion resistance or using centrifugal force to remove water droplets attached to the rotor blades from the flow path have been used to prevent the harmful effects of wet steam flow. are dealing with.

本発明は湿シ蒸気中で運転される低圧タービン動翼の二
ローションを防止し、湿シ蒸気によるエネルギー損失を
低減してタービン段落効率向上、およびプラント効率向
上を図ることを目的とする。
An object of the present invention is to prevent rotor blades of a low-pressure turbine operated in wet steam, reduce energy loss due to wet steam, and improve turbine stage efficiency and plant efficiency.

その対象とするところは、最近プラント効率を向上させ
るために注目されているガスタービン・蒸気タービン複
合サイクルにおいて、サイクル廃熱を利用して湿シ蒸気
域で作動する蒸気タービン段落の静翼を加熱してタービ
ン流路内の湿シ量を抑制することを目的とする。
The target area is the gas turbine/steam turbine combined cycle, which has recently been attracting attention for improving plant efficiency. Cycle waste heat is used to heat the stationary blades of the steam turbine stage that operates in the wet steam region. The purpose is to suppress the amount of moisture in the turbine flow path.

本発明の実施例を図面によって説明する。Embodiments of the present invention will be described with reference to the drawings.

ガスタービン、蒸気タービン複合サイクルの一例を第1
図に示す。圧縮機1で圧縮した空気と燃料2を燃焼器3
で燃焼させ、ガスタービン4を駆動させ発電機22で負
荷をとる。ガスタービン4で膨張した高熱量をもった廃
熱ガスをボイラ5に導きボイラ給水に熱を回収された後
煙突6から排出される。
The first example is a gas turbine and a steam turbine combined cycle.
As shown in the figure. Air compressed by compressor 1 and fuel 2 are transferred to combustor 3
The gas turbine 4 is driven and the generator 22 takes the load. The waste heat gas expanded by the gas turbine 4 and having a high calorific value is led to the boiler 5, where the heat is recovered by the boiler feed water, and then discharged from the chimney 6.

一方、ボイラ給水ポンプ10によりボイラ伝熱管11!
発生した高温高圧蒸気12は高圧タービン13にて膨張
し、高圧タービン13膨張段からの蒸気14はボイラ再
熱器15にて再熱蒸気16となり中圧タービン17から
低圧タービン19にて膨張し、発電機22′を駆動して
電気出力を得る構成になっている。
On the other hand, boiler heat exchanger tube 11 by boiler feed pump 10!
The generated high-temperature and high-pressure steam 12 is expanded in the high-pressure turbine 13, and the steam 14 from the expansion stage of the high-pressure turbine 13 becomes reheated steam 16 in the boiler reheater 15, and expanded in the low-pressure turbine 19 from the intermediate-pressure turbine 17. It is configured to drive a generator 22' to obtain electrical output.

この様な構成をしているタービンプラントにおいて、低
圧タービン19段落内に入った主蒸気18は段落内で膨
張を繰り返して、排気室20を経て復水器21に導かれ
る。この蒸気が段落内を膨張する過程で、一般に、最終
段前2〜3段落は湿シ蒸気域で運転される。このため、
湿シ蒸気中に含まれる水滴によシ、動翼がエロージョン
を受は動翼を損傷させる。一方、湿り蒸気によるエネル
ギ損失を招き、段落効率を低下させ、ひいては、発電プ
ラント効率を悪化させる。このような、タービン段落内
路内の湿シ量を抑制するため、ボイラ5の煙突6から排
出する高熱量をもった廃熱ガス100の一部を煙突内に
設けた廃熱ガス取出口103から吸込プロワ102によ
り取出し、湿り蒸気域にあるタービン静翼に導き、静翼
を加熱した後に煙突へ排出する。また、廃熱ガスに腐食
性がある場合には、タービン静翼を加熱するガスとして
第2図に示した清浄な空気104を熱交換器103′を
介して静翼に導くこともできる。
In a turbine plant having such a configuration, the main steam 18 that has entered the stage of the low-pressure turbine 19 is repeatedly expanded within the stage, and is led to the condenser 21 via the exhaust chamber 20. During the process in which this steam expands within the stages, generally two to three stages before the final stage are operated in a wet steam region. For this reason,
The rotor blades are damaged by erosion due to water droplets contained in the wet steam. On the other hand, it causes energy loss due to wet steam, lowers stage efficiency, and ultimately deteriorates power plant efficiency. In order to suppress the amount of moisture in the turbine stage inner passage, a part of the waste heat gas 100 having a high calorific value discharged from the chimney 6 of the boiler 5 is passed through a waste heat gas outlet 103 provided in the chimney. The steam is taken out by the suction blower 102, guided to the turbine stationary blades in the wet steam region, and after heating the stationary blades is discharged to the chimney. Furthermore, if the waste heat gas is corrosive, clean air 104 shown in FIG. 2 can be introduced to the turbine stator blades via a heat exchanger 103' as a gas for heating the turbine stator blades.

第3図、第4図においてタービン段落内の静翼加熱方法
を説明する。
A method of heating stator blades in a turbine stage will be explained with reference to FIGS. 3 and 4. FIG.

回転体である動翼51.51’をディスク、52.52
’、ロータシャフト53、静止体である静11s4.5
4’を支持したダイヤフラム55゜55’ 、56.5
6’及びケーシング57などから構成されている。
The rotor blade 51.51' which is a rotating body is a disk, 52.52
', rotor shaft 53, stationary body 11s4.5
Diaphragm 55°55' supporting 4', 56.5
6' and a casing 57.

高熱量をもつ廃熱ガス100は導入管30゜30′によ
ってダイヤフラム外周ポケット31に入り、静翼54の
中空部32を介してダイヤフラム内周部56の内周ポケ
ット33に導かれる。この際、静翼54の中空部32に
導かれた高温の廃ガスによって各静翼を加熱し、静翼表
面に付着して水膜状になる蒸気中の湿り分を蒸発させる
。このように、静翼を加熱したガスはダイヤフラムの内
周部ポケット33に集合され、静翼54aの中空部32
aを通して排出管35がら排出ガス101として吸込み
ブロワ102に接続される。なお、中空部32,32a
には静翼54,54aへの伝熱を促進するための内部構
造物(図示せず)がそう人されている。
The waste heat gas 100 having a high calorific value enters the diaphragm outer peripheral pocket 31 through the inlet pipe 30.degree. At this time, each stator blade is heated by the high-temperature waste gas guided into the hollow part 32 of the stator blade 54, and the moisture in the steam that adheres to the surface of the stator blade and forms a water film is evaporated. In this way, the gas that heated the stator blades is collected in the inner peripheral pocket 33 of the diaphragm, and is heated in the hollow part 32 of the stator blade 54a.
The exhaust pipe 35 is connected to the suction blower 102 as exhaust gas 101 through the exhaust pipe 35a. Note that the hollow parts 32, 32a
An internal structure (not shown) for promoting heat transfer to the stationary blades 54, 54a is provided.

本発明のガスタービン蒸気タービン複合サイクルにおい
て、蒸気タービンの低圧段落の湿り蒸気域にある静翼を
加熱して蒸気中の湿多度を低減することができ、湿シ蒸
気中の水滴によるタービン動1tノ:r−o −ジョン
を防止することができる。又、湿シ蒸気によるエネルギ
損失を低減してタービンのフリント効率の向上を図るこ
とができる。
In the gas turbine steam turbine combined cycle of the present invention, the humidity in the steam can be reduced by heating the stationary blades in the wet steam region of the low pressure stage of the steam turbine, and the turbine movement due to water droplets in the wet steam can be reduced. It is possible to prevent r-o-john. Moreover, energy loss due to wet steam can be reduced, and the flint efficiency of the turbine can be improved.

本発明における湿り蒸気域にある段落の静翼を加熱する
に必要とする廃熱ガス量は次式によって計算できる。G
g=(Gs−X−r)/(GpgΔt)、ここでGg=
廃熱ガス量、Gpg=廃熱ガス定圧比熱、△t=加熱に
要する温度、Gs二二段薫蒸気量X=湿り度である。
In the present invention, the amount of waste heat gas required to heat the stationary blades of the stage in the wet steam region can be calculated using the following equation. G
g=(Gs-X-r)/(GpgΔt), where Gg=
Amount of waste heat gas, Gpg=specific heat of waste heat gas at constant pressure, Δt=temperature required for heating, Gs 22-stage smoke amount X=humidity.

例えば、蒸気タービンの電気出力250MW級の発電プ
ラントにおいて、蒸気タービン低圧段静翼での蒸気温υ
度を約2チ程度減少させるに要する廃ガス量は、ボイラ
から排出される廃ガス量の数多程度であり、吸込みプロ
ア102に多くの動力を要することなく、蒸気タービン
段落内の湿シ度を滅じることかできる。しかも、湿り度
の増減と段落効率の増減とは逆比例関係にあるので、本
発明による蒸気湿り度の減少量は段落効率の向上量に直
結する。一般には、湿り度1チの減少は、段落効率1%
の向上に算定されるので、蒸気タービンの電気出力が増
加し、第1図のプラント効率が向上する。
For example, in a power generation plant with a steam turbine with an electric output of 250 MW, the steam temperature υ
The amount of waste gas required to reduce the temperature by about 2 inches is about the same amount as the amount of waste gas discharged from the boiler, and the humidity in the steam turbine stage can be reduced without requiring much power for the suction blower 102. can be destroyed. Moreover, since there is an inversely proportional relationship between an increase or decrease in humidity and an increase or decrease in stage efficiency, the amount of reduction in steam humidity according to the present invention is directly linked to the amount of improvement in stage efficiency. Generally speaking, a decrease of 1 inch in humidity means 1% of the stage efficiency.
Since the electric output of the steam turbine increases, the plant efficiency shown in FIG. 1 improves.

上記の効果を第5図によって具体的に説明する。The above effect will be specifically explained with reference to FIG.

従来、低圧タービン入口条件A、から段落内で膨張を繰
返し、タービン最終段排気条件Bまで膨張する。この膨
張過程において、最終段前2段静翼入口条件C2では2
%の湿り度であり、最終段静翼入口条件りの湿シ度は5
チである。この様な段熱膨張線図において、0点で07
点まで静翼を加熱して湿り度を減少させ、さらに最終段
静翼入口D′でさらにEまで加熱して湿り度を減少させ
最終段動翼出口Fまで膨張させる。この結果、数チの廃
ガス量を利用することによって、−従来の膨張最終点の
B点と比較して、蒸気湿り度が3〜5チ減少したF′点
にすることができる。したがって湿シ蒸気中に含まれる
水滴、および静翼流路内で発生する水滴を防止し、最終
段動翼に与えるエロージョンを防止することができる。
Conventionally, expansion is repeated within the stage from low-pressure turbine inlet condition A, until the turbine final stage exhaust condition B is reached. In this expansion process, under the inlet condition C2 of the second stage stator blade before the final stage, 2
% humidity, and the humidity at the final stage stator blade inlet condition is 5.
It is Chi. In such a step thermal expansion diagram, 0 point is 07
The stator blade is heated to a point D' to reduce the humidity, and further heated to E at the final stage stator blade inlet D' to reduce the humidity and expand to the final stage rotor blade outlet F. As a result, by utilizing a quantity of waste gas of several inches, it is possible to reach a point F' in which the steam wetness is reduced by 3 to 5 inches compared to point B, which is the conventional final point of expansion. Therefore, it is possible to prevent water droplets contained in wet steam and water droplets generated in the stator blade flow path, and to prevent erosion of the final stage rotor blade.

さらに、湿り度が減少した場合、湿シ蒸気によるエネル
ギー損失が減少してタービン内部効率を向上させること
が可能になシ、ひいてはプラント効率が向上する。
Furthermore, when the humidity is reduced, energy loss due to wet steam is reduced, making it possible to improve the turbine internal efficiency, and thus the plant efficiency.

以上のように、本発明によって効率及び信頼性の浸れた
ガスタービン・蒸気タービン複合サイクルを提供するこ
とができる。
As described above, the present invention can provide a gas turbine/steam turbine combined cycle with high efficiency and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガスタービン蒸気タービン複合サイク
ルの系統図、第2図は、本発明の空気予熱器の概略図、
第3,4図は蒸気タービン段落における本発明のタービ
ン静翼構造図、第5図は本発明の実施例を示すi −s
線図である。 4・・・’i’1xp−ヒン、5川廃熱ボイラ、6・・
・煙突、19・・・蒸気タービン低圧部、1oo・・・
廃熱ガス、¥ 1 目 0 /    4 63図 篤4図
FIG. 1 is a system diagram of a gas turbine steam turbine combined cycle of the present invention, FIG. 2 is a schematic diagram of an air preheater of the present invention,
3 and 4 are structural diagrams of turbine stationary blades of the present invention in a steam turbine stage, and FIG. 5 is an i-s diagram showing an embodiment of the present invention.
It is a line diagram. 4...'i'1xp-hin, 5 river waste heat boiler, 6...
・Chimney, 19...Steam turbine low pressure section, 1oo...
Waste heat gas, ¥ 1 item 0 / 4 Figure 63 Atsushi Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、 ガスタービン・蒸気タービン複合プラントにおい
て、ガスタービンの排ガス流路に設置された廃熱ボイラ
から排出されるガスの一部を蒸気タービンの湿り蒸気で
作動する低圧タービンに導いて、湿シ蒸気中の水分を蒸
発させるための加熱源とするように構成することを特徴
としたガスタービン・蒸気タービン複合プラント。
1. In a gas turbine/steam turbine complex plant, a part of the gas discharged from the waste heat boiler installed in the exhaust gas flow path of the gas turbine is guided to a low-pressure turbine that operates on the wet steam of the steam turbine to generate wet steam. A gas turbine/steam turbine combined plant characterized by being configured to serve as a heating source for evaporating moisture inside.
JP13415181A 1981-08-28 1981-08-28 Gas turbine-steam turbine composite plant Pending JPS5838308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13415181A JPS5838308A (en) 1981-08-28 1981-08-28 Gas turbine-steam turbine composite plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13415181A JPS5838308A (en) 1981-08-28 1981-08-28 Gas turbine-steam turbine composite plant

Publications (1)

Publication Number Publication Date
JPS5838308A true JPS5838308A (en) 1983-03-05

Family

ID=15121654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13415181A Pending JPS5838308A (en) 1981-08-28 1981-08-28 Gas turbine-steam turbine composite plant

Country Status (1)

Country Link
JP (1) JPS5838308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216988A1 (en) * 2016-03-07 2017-09-13 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216988A1 (en) * 2016-03-07 2017-09-13 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine plant

Similar Documents

Publication Publication Date Title
JP3500020B2 (en) Steam cooled gas turbine system
US8500397B2 (en) Seals in steam turbine
US5678401A (en) Energy supply system utilizing gas and steam turbines
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US20080245071A1 (en) Thermal power plant
US20060254280A1 (en) Combined cycle power plant using compressor air extraction
EP0020594A1 (en) Reheat gas turbine.
JPH08114104A (en) Composite gas-steam turbine power plant
US8943836B2 (en) Combined cycle power plant
US11408339B2 (en) Steam turbine system and combined cycle plant
EP1103699A3 (en) Gas turbine combined cycle system
JPS5838308A (en) Gas turbine-steam turbine composite plant
JP2984442B2 (en) Gas turbine steam cooling method and apparatus
JPH09209713A (en) Steam cooling combined cycle plant
JP2883030B2 (en) Hydrogen-oxygen combustion turbine plant
RU2053399C1 (en) Gas turbine plant
JP4209060B2 (en) Steam cooling rapid start system
JP3159641B2 (en) Combined cycle power plant and method for cooling high temperature members in the plant
JPH0988518A (en) Composite power generating plant
WO1999040305A1 (en) Gas turbine for combined cycle power plant
JP7059347B2 (en) Waste heat recovery plant and combined cycle plant
JPH09189236A (en) Combined power generating plant and operation method thereof
RU2092704C1 (en) Combined-cycle plant
JPH08270408A (en) Gas turbine equipment
JPS61138885A (en) Geo-thermal turbine plant