JPS5838075A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS5838075A
JPS5838075A JP56135324A JP13532481A JPS5838075A JP S5838075 A JPS5838075 A JP S5838075A JP 56135324 A JP56135324 A JP 56135324A JP 13532481 A JP13532481 A JP 13532481A JP S5838075 A JPS5838075 A JP S5838075A
Authority
JP
Japan
Prior art keywords
signal
circuit
aperture
supplied
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135324A
Other languages
Japanese (ja)
Inventor
Fumio Nagumo
名雲 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP56135324A priority Critical patent/JPS5838075A/en
Publication of JPS5838075A publication Critical patent/JPS5838075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

PURPOSE:To perform the good adjustment of an aperture using simple constitution by sampling a video signal and adjusting the aperture in accordance with the ratio of counting value in which the sampled signal level becomes above or below a specified level. CONSTITUTION:A video light from an object 1 is supplied to an image pickup section 4 through an aperture 2 and a lens 3, and at the same time, a signal from a synchronizing signal generatir 4' is supplied to the image pickup section 4 and a video signal is taken out. A digital signal from an AD conversion circuit 6 is supplied to a comparator circuit 11 and compared with a digital signal from a reference signal source 12. When the signal from the circuit 11 is larger, a signal of 1 is outputted. The output is counted by a counter 14 and latched in a latch circuit 15 at timing of vertical synchronizing signal. The signal of the circuit 15 is supplied to an adjustment driving circuit 19 through a DA conversion circuit and a drive amplifier 17 to adjust the aperture 2. By this way, adjustment nearly equivalent to the mean value system can be effected, and as an accumulator is not necessary, the circuit constitution can be simplified.

Description

【発明の詳細な説明】 本発明はテレビカメラ等の撮像装置における絞りの自動
調整に関し、49kIl偉部としてCODを使用すると
共に、映像信号をADD換してデジタル信号にで処理を
行う場合に好適な装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to automatic aperture adjustment in an imaging device such as a television camera, and is suitable for using COD as a 49kIl function and converting video signals to ADD and processing them into digital signals. The purpose is to provide a device that provides

従来のテレビカメラにシける絞りの自動調整にお−ては
、一般IIc以下のような3通りの方式で調整用の制御
信号を得ている。
In the automatic adjustment of the aperture in a conventional television camera, control signals for adjustment are obtained using three methods, generally IIc and below.

1)ピーク値方式 b)平均値方式 c)  a)、 b)の並用方式 これらの内、鳳)のピーク値方式は、撮像部から出力さ
れる映像信号のピーク値を一定にするように制御を行う
ものであって、撮像部として燐、き付合やブルーヤング
を起こし易い素子を用いてい友場合に有効である。しか
し反面映倫内容の変化k。
1) Peak value method b) Average value method c) Combined use of a) and b) Among these, the peak value method (Otori) controls the peak value of the video signal output from the imaging unit to be constant. This method is effective when the imaging section uses an element that is prone to phosphorus, adhesion, or blue-young phenomenon. However, the content of the reflection has changed.

対して絞りが敏感に反応し、青葉の明度等が目・まぐろ
しく変化して見にくい。
On the other hand, the aperture reacts sensitively, and the brightness of the green leaves changes rapidly, making it difficult to see.

これに対して、b)の平均値方式は、絞りの応答がスム
ースで良いが、焼き付きやブルーヤング、のおそれがあ
る。
On the other hand, the average value method (b) has a smooth aperture response and is good, but there is a risk of burn-in and blue-young.

そこで従来は、C)のようk a) 、 b)の2つの
制御信号を適当に混合して用−てい几、そしてこの場合
に、撮−僧都としてCODを用いているときkは。
Therefore, in the past, the two control signals of a) and b) were appropriately mixed and used as shown in C), and in this case, when COD was used as the sensor, k was used.

焼き付きやブルーミングのおそれがないので、C)にお
いてb)の割合を多くして用いるのが良いとされていた
。     ・ ところが撮像部としてCODを使用すると共K。
Since there is no risk of burn-in or blooming, it was considered better to use a larger proportion of b) in C). - However, using a COD as an imaging unit is problematic.

映倫信号なAD変換してデジタル信号にて処理を行って
いる場合IC1b)の方式では平均値を得るための回路
、特klE算器の規模が大きくなり、回路全体が大形に
なつ工し管う欠点が生じた。
When the digital signal is processed by AD converting the Eirin signal, in the IC1b) method, the scale of the circuit for obtaining the average value, especially the klE calculator, becomes large, and the entire circuit becomes large. There were some drawbacks.

本発明はこのような点kかんがみ、上述の平均値方式と
略同等の制御信号が得られると共に1回路構成の簡単な
、新規な制御方式を提案するもので−ある。
In view of these points, the present invention proposes a new control method which can obtain control signals substantially equivalent to the above-mentioned average value method and which has a simple one-circuit configuration.

ところで、iii*処理技術の一つとしてヒストグラム
・イコライゼイショy法c以下H書B法)と呼ばfL4
階調補正法がある。これは例えば17レームの映像信号
から階調を横軸とするヒストグラムを形成し1階調補正
後のヒストグラムが平坦になるように補正することによ
り、最良の階調を得ようとするものである。
By the way, as one of the iii* processing techniques, it is called the histogram equalization method (hereinafter referred to as H-B method).
There is a gradation correction method. This attempts to obtain the best gradation by forming a histogram with gradation as the horizontal axis from a 17-frame video signal, for example, and correcting it so that the histogram after one gradation correction becomes flat. .

例えば階調xl(対してヒストグラムF (*)が第1
図AK示すように中間c/4Vc偏よつt映像信号があ
った場合に、この映像信号を階調軸xltc119って
任意の例えば7つの境界で分割して8つの領域とし、こ
の領域ととにヒストグラムを形成し、この第2のヒスト
グラムが平坦になるように境界の位置を定め、この境界
の位置が等間隔になるように階調の補正を行う、すなわ
ち階調1c関して第1図BK示すような入力(X)対出
力(y)%性を有する補正を行うことにより、補正後の
階myK対するヒストグラム’(7>がtX1図C<示
すように平坦になる。
For example, the gradation xl (for which histogram F (*) is the first
As shown in Figure AK, if there is an intermediate c/4Vc biased t video signal, this video signal is divided into eight regions along arbitrary boundaries, for example seven, along the gradation axis xltc119, and this region and A histogram is formed, the boundary positions are determined so that this second histogram becomes flat, and the gradation is corrected so that the boundary positions are equally spaced. In other words, as shown in FIG. By performing correction having the input (X) vs. output (y) % characteristic as shown in BK, the histogram '(7) for the corrected floor myK becomes flat as shown in tX1 diagram C<.

このようにヒストグラムを平坦にすることkより、映像
信号の階調が適正化される。なおこの場合に、階調補正
曲線y = f(x) (第19BK破線で示す)は、
各境界の階調XI、X2・・・・Xyで定義され、仁こ
で階調補正の自由度が7であるとされる。
By flattening the histogram in this way, the gradation of the video signal is optimized. In this case, the gradation correction curve y = f(x) (indicated by the 19th BK broken line) is
Each boundary is defined by the gradations XI, X2, . . .

そこで撮像装置の絞りについて考えた場合に。So when we think about the aperture of the imaging device.

被写体からの映像光の階調軸をX、撮僧都における映像
光の階調軸をyとすると、これらの関係は絞りによって
決まる定数lで定義され、y=ax のようkなる。
Assuming that the gradation axis of the image light from the subject is X and the gradation axis of the image light at the photographed temple is y, the relationship between these is defined by a constant l determined by the aperture, and k such as y=ax.

ここで絞りの調整を一橋の階ilI禰正と考えると。Now, if you think of the aperture adjustment as Hitotsubashi's model.

このときの階調補正曲線f(X)は f(z) = a x となり、ここでこの階調補正I/cおける自由度は麿に
与えられる五のみである。
The gradation correction curve f(X) at this time becomes f(z) = a x , and the degree of freedom in this gradation correction I/c is only five given to Maro.

従って上述のH−1法によって階調補正を行う場合に、
境柊選択の自由度が1であり、この境界の上下2領域の
とストグラムが等しくなるような階調補正口絞りのam
が可能となる。すなわちy軸上の中央値を境界としたE
、ストグラムの平坦化を評価関数として絞りの調整を行
えば、量適の階調が得られる仁とkなる。なjP7軸上
の中央値は、T補正や視覚上の轡性の影響を加味する必
要があり、必らずしも真の中央値でなく、それ以外の値
を選んだ方が良い場合もある。
Therefore, when performing gradation correction using the H-1 method described above,
The degree of freedom in Sakahiragi selection is 1, and the am of the gradation correction aperture diaphragm is such that the stograms of the two areas above and below this boundary are equal.
becomes possible. In other words, E with the median value on the y-axis as the boundary
, if the aperture is adjusted using the flattening of the stogram as an evaluation function, it will be possible to obtain an appropriate amount of gradation. The median value on the P7 axis needs to take into account the influence of T correction and visual distortion, and it may not necessarily be the true median value, and it may be better to choose another value. be.

本発明はこのような点に着目してなされたものである。The present invention has been made with attention to such points.

すなわち本発明におiては、映像光を絞りを通じてma
w<供給して映倫信号を得ると共に、この映倫信号を標
本化し、これらの標本の信号レベルが所定レベル以上あ
るいは以下となる標本の数を計数し、この計数値の全標
本の数に対する割合に応じて絞りを調整する。以下に図
面を参照しながら本発明の一実施例について説明しよう
That is, in the present invention, the image light is passed through the aperture.
At the same time as supplying w< to obtain an Eirin signal, sample this Eirin signal, count the number of samples for which the signal level of these samples is above or below a predetermined level, and calculate the ratio of this counted value to the total number of samples. Adjust the aperture accordingly. An embodiment of the present invention will be described below with reference to the drawings.

1124において、被写体(1Bからの映倫光が絞り信
)、レンズ(3)を通じて撮倫部(COD)(4)K供
給されると共に同期発生器〔4)からの信号がC0D(
41に供給されて映lI信号が取り出される。このC0
D(4)からの映像信号がプリアンプ(5)を通じてA
D変換回路(6)に供給される。こりAD変換回路(6
)からのデジタル信号がr補正用のリードオンリーメモ
リ())k供給され−cr補正される。このr補正され
た信号が同期信号の付加回路(8)を通じてDA変換回
路(9)k供給され、アナログ信号とされて出力端子e
lk@り出される。
At 1124, the subject (Eirin light from 1B is transmitted) is supplied to the COD (4) K through the lens (3), and the signal from the synchronization generator [4] is transmitted to C0D (
41, and the video signal is extracted. This C0
The video signal from D (4) passes through the preamplifier (5) to A.
It is supplied to the D conversion circuit (6). Stiff AD conversion circuit (6
) is supplied to the read-only memory ())k for r correction and -cr is corrected. This r-corrected signal is supplied to the DA conversion circuit (9)k through the synchronization signal addition circuit (8), converted into an analog signal, and output to the output terminal e.
lk @ is taken out.

それと共に、人DiI”換回路(6)からのデジタル信
号がコンパレータ0υに供給され、またy軸上の中央値
に相当する基準信号源α1からのデジタル信号がラッチ
回路a3を介してコンパレータaυに供給される。そし
てこのコy/(レータaυにてAD変換回路(6)から
のデジタル信号がy軸上の中央値より大きいときk「1
」の信号が出力される。なおy軸上の中央値は上述のよ
うに真の中央値ではない場合もある。
At the same time, the digital signal from the conversion circuit (6) is supplied to the comparator 0υ, and the digital signal from the reference signal source α1 corresponding to the median value on the y-axis is supplied to the comparator aυ via the latch circuit a3. When the digital signal from the AD conversion circuit (6) is larger than the median value on the y-axis at this k y/(lator aυ), k
" signal is output. Note that the median value on the y-axis may not be the true median value as described above.

この:r 7 /< L/−夕0υからの信号がカウン
タα尋で計数され、この計数値がラッチa11!QSk
供給されてlI[同期信号のタイ電ングでラッチされる
。なおこのラッチの直後にカウンタ0番がり竜ットされ
る。このラッチ回路αSかもの信号がD人変換回路(I
ek供給される。このDAAD換回路eかものアナーグ
信号がドライブアンプ鰭に供給されると共k。
This:r7/<L/-The signal from 0υ is counted by the counter α fathom, and this count value is the latch a11! QSk
lI[is latched at the tie-edge of the synchronization signal. Immediately after this latch, the counter is reset to zero. This latch circuit αS signal is the D person conversion circuit (I
ek is supplied. When this DAAD conversion circuit e and the anarch signal are supplied to the drive amplifier fin,

バイアス電圧gl錦からのバイアスが供給される。Bias is supplied from the bias voltage GL Nishiki.

そしてト5ライプアンプaηの出力信号が絞り(ツの調
節駆動回路69に供給される。
The output signal of the triple amplifier aη is then supplied to the adjustment drive circuit 69 of the aperture.

従ってこの回路において、AD変換回路(6)からの信
号がy軸上の中央値以上になる画素の数が計数され、こ
の計数値の全画素の数に対する割合に応じて絞りが調整
される。
Therefore, in this circuit, the number of pixels for which the signal from the AD conversion circuit (6) is equal to or greater than the median value on the y-axis is counted, and the aperture is adjusted according to the ratio of this counted value to the total number of pixels.

すなわち@3図において、人は露出不足、Bは適正露出
、Cは露出過度の場合を示している。これらの図にかい
て左は映倫信号のヒストグラムであって、この映倫信号
を中央値O8sを境界として第2ヒストグラムを描くと
右のようになる。ここでN−は中央値以下の画素数、弊
は中央値以上の画素数である。従ってN−> K+−、
あるいは全画素出過度である。な訃CにおいてCCD(
41のグイナ電ツクレンジを越えた標本化信号はホワイ
トクリップ機能で圧縮されて*印となる。そして辱の値
に応じて絞り;りを調整することkより、階調補正特性
が第4図人のように賢化され、ここで1は絞り(2)を
少し閉じた場合、bは標準、Cは少し開いた場合であっ
て、これらの補正により1に4図BK示すように最適の
階調が得られる。
In other words, in Figure @3, the person is underexposed, B is properly exposed, and C is overexposed. In these figures, the left side is a histogram of the Eirin signal, and if a second histogram is drawn for this Eirin signal with the median value O8s as the boundary, it will be as shown on the right. Here, N- is the number of pixels below the median value, and N- is the number of pixels above the median value. Therefore, N−>K+−,
Or, all pixels are out too much. CCD (
The sampled signal exceeding the Guina electric range of 41 is compressed by the white clip function and becomes marked with *. Then, by adjusting the aperture according to the value of the aperture, the gradation correction characteristics are improved as shown in Figure 4, where 1 is when the aperture (2) is slightly closed, and b is the standard , C are cases where the image is slightly opened, and by these corrections, the optimum gradation can be obtained as shown in Figures 1 and 4 BK.

こうして絞りの自動調整が行われるわけであるが、本発
明によれば平均値方式とほぼ同等の調整を行うことがで
きると共に、累算器を必要としないので回路構成が極め
て簡単になる。
In this way, automatic adjustment of the aperture is performed, and according to the present invention, it is possible to perform adjustment almost equivalent to the average value method, and since no accumulator is required, the circuit configuration is extremely simple.

さらkこの回路において、以下のようkすることkより
、回路をより簡単化することができる。
Furthermore, in this circuit, the circuit can be further simplified by doing the following.

まずカウンタa◆のビット数をnとしたときも標本の総
数Nを 8M2n −1 となるようkする。ここでNの数を規定するに″は、全
画素から平均に間引くか、画面の上下左右を適轟に無視
する。
First, when the number of bits of the counter a◆ is set to n, the total number of samples N is set to 8M2n -1. Here, the number N is specified by thinning out the pixels on average from all pixels, or ignoring the top, bottom, left and right of the screen as appropriate.

このようkした場合に、H,liiの条件は、カウンタ
a◆の出力C C=−〔Cn−1,Cn−意 ・・・・co〕に対して 0口(10・・°・・・・ 0 〕 であつ七、このとき N、=2f′″″t−1 へ−2n−1 である。
In this case, the conditions for H,lii are 0 units (10...°...) for the output C of counter a◆.・0], then N, = 2f'''''t-1 to -2n-1.

このことから* crl−t  を露出の過不足を示す
指標とすることができ、 Cl3−1−1  ・・・・ 露出過度Cn、薫0 ・
・・・ 露出不足 とみなすことができる、そして適正露出であれば。
From this, *crl-t can be used as an index indicating overexposure or underexposure, and Cl3-1-1... Overexposure Cn, Kaoru0 ・
... It can be considered underexposed, and if it is properly exposed.

Cn、はOと1の間を往復し1時間平均すれば9、中間
値Tとなる。
If Cn goes back and forth between O and 1 and is averaged for one hour, it becomes 9, which is the intermediate value T.

そこで11E5el!!IK示すように、カラyりα番
のM8B±Cn−、を1ビツトのラッチ回路rlt)’
Ic供給し。
So 11E5el! ! As shown in IK, M8B±Cn- of color α is connected to a 1-bit latch circuit rlt)'
Supply Ic.

ζノラッチ出力をローパスフィルタ■で平均化して散り
出すことにより、DAAD換回路のを省略することがで
きる。
By averaging and dispersing the ζ latch output with a low-pass filter (2), the DAAD conversion circuit can be omitted.

またこのM5図にお論てN−一パ♂−1kできない場合
であっても、N−2″−1であればはぼ同等の効果を期
待できる。さらK N=郷−(♂1−x’r十4であっ
た場合に。
Also, even if N-1 per ♂-1k is not possible using this M5 diagram, if N-2''-1 is used, almost the same effect can be expected.Furthermore, K N=Go-(♂1- If x'r was fourteen.

(、、[10・・−・O] であれば N+−2n−1 N−、、21−1+ノーl であり、基準信号源aりをlを加味して調整しておけば
、ヒスジグラムはイコライズされないが、効果はほぼ同
等になる。
(,,[10...-O], then N+-2n-1 N-,,21-1+norl, and if the reference signal source a is adjusted by taking l into account, the hisdigram is Although not equalized, the effect will be almost the same.

さらに標本信号としてr補正後の信号を用いることkよ
り、ヒストグラムの境界をO,S K、選ぶことができ
る。その場合に標本信号のM2Rが1か0かで0.5を
越えているか否かの判別を行うことができる。
Furthermore, by using the r-corrected signal as the sample signal, the boundaries of the histogram can be selected as O,SK. In this case, it is possible to determine whether M2R of the sample signal exceeds 0.5 based on whether it is 1 or 0.

そこで96図に示すように、リードオンリーメモリ(7
)の出力のM2Rをカウンタ04に供給するととにより
、コンパレータI、基準僧号51fi2等を省略するこ
とができる。なお図は>Nzz・ず−1とした場合であ
る。
Therefore, as shown in Figure 96, read-only memory (7
) by supplying the output M2R to the counter 04, the comparator I, the reference number 51fi2, etc. can be omitted. Note that the figure shows the case where >Nzz.zu-1.

ところで上述の回路は平均値方式の制御とほぼ同等の効
果を有する。従ってこの回路で制御を行って−る場合に
は、部分的にはかなりの露出過度も発生し、プルーミン
グ等が発生して画質が劣化する場合もある。この欠点な
陰くためには平均値万丈の場合と同様、ピーク値方式の
信号を加味して制御を行うことが望ましい。
By the way, the above-mentioned circuit has almost the same effect as average value type control. Therefore, if this circuit is used for control, considerable overexposure may occur in some areas, and pluming may occur, resulting in deterioration of image quality. In order to overcome this drawback, it is desirable to perform control in consideration of the signal of the peak value method, as in the case of average value banjo.

第7図はそのための回路を示す0図においてΩ変換回路
(6)からの信号がラッチ回路+21)に供給されると
共に、このラッチ回路QBの入力信号と出力信号がコン
パレータ(至)K供給され、入力信号の万が大きいとき
、ラッチ回路aUにロード信号が供給される。さらにラ
ッチ回WI(至)からの信号がラッチ回路のに供給され
て@M同期信号のタイぐングでラッチされる。なおこの
ラッチのI後にラッチ回路のピーク値がラッチ回路(至
)k取り出される。そしてこのラッチ回路(至)からの
信号とラッチ回路α9からの信号とが重み付は回路(至
)、(至)で適当に重み付けされ、加算回路(至)で加
算されてDA′R換鴎路傾に供給される。
Figure 7 shows a circuit for this purpose, in which the signal from the Ω conversion circuit (6) is supplied to the latch circuit +21), and the input signal and output signal of this latch circuit QB are supplied to the comparator (to) K. , when the input signal is large, a load signal is supplied to the latch circuit aU. Further, a signal from the latch circuit WI (to) is supplied to the latch circuit and latched by the timing of the @M synchronization signal. Note that after I of this latch, the peak value of the latch circuit is extracted from the latch circuit (to) k. Then, the signal from the latch circuit (to) and the signal from the latch circuit α9 are appropriately weighted by the circuits (to) and (to), and are added by the adder circuit (to), resulting in the DA'R conversion. It is supplied to the road slope.

このようにして、H,E方式とピーク値方式を加味した
絞りの調整を行うことができる。なおこの回路で重み付
は回路c!4)、伺、加算回路ωはマイク胃コンピュー
タで構成してもよい。
In this way, the diaphragm can be adjusted in consideration of the H, E method and the peak value method. Note that in this circuit, the weighting is circuit c! 4) The adder circuit ω may be composed of a microphone computer.

さらに第8図は@7図の方式において回路の共通化を計
ったものである9図ki?いて、AD変換回路(6)か
らの信号と基準信号源α2かもの信号がスイッチC31
)に供給され、このスイッチODかもの信号がラッチ回
路03(ラッチ回路QLlを兼ねる)K供給される。オ
tコンパレータan(コンパレータ@ヲ兼ねる)からの
信号と適当なタイミングの基準信号のロード指令偏角が
スイッチ(至)k供給され、このスイッチ−からの信号
がラッチ回路a3のロード端子に供給される。他は第7
図と同様にされる。
Furthermore, Figure 8 is a diagram that aims to share the circuit in the method shown in @Figure 7, Figure 9 ki? The signal from the AD conversion circuit (6) and the signal from the reference signal source α2 are connected to the switch C31.
), and this switch OD signal is supplied to latch circuit 03 (also serving as latch circuit QLl) K. The signal from the comparator an (which also serves as the comparator @) and the load command deflection angle of the reference signal at appropriate timing are supplied to the switch (to) k, and the signal from this switch is supplied to the load terminal of the latch circuit a3. Ru. Others are 7th
It is done as shown in the figure.

そしてこの回路において、1フイールド41にスイッチ
0υ、□□□を切換えることにより、ラッチ回路09、
−にはそれぞれH−B方式とピーク値方式の制御信号が
象り出される。
In this circuit, by switching the switches 0υ and □□□ to the 1 field 41, the latch circuit 09,
-, control signals of the H-B method and the peak value method are respectively extracted.

この回路にシいてもH,B方式とピーク値方式を加味し
た゛絞−りの調整を行うことができる。
Even if this circuit is not used, it is possible to perform aperture adjustment taking into account the H, B method and the peak value method.

さらにこの第8図kかいて、AD変換回路(6)からの
信号として赤、緑、實の点順次−信号をm−れば、ピー
ク値は3信号中のピーク値になり、またH、R制御信号
は3信号の平均値と同等になり、一つの回路で赤、緑、
背の信号を同時処理することができる。
Further, based on this figure 8k, if the signals from the AD conversion circuit (6) are sequentially red, green, and real, the peak value will be the peak value of the three signals, and the H, The R control signal is equivalent to the average value of three signals, and one circuit can control red, green,
Back signals can be processed simultaneously.

こうして本発明によ゛れば、極めて簡単な構成で、嵐好
な絞りの調整を行うことができる。
Thus, according to the present invention, the aperture can be precisely adjusted with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

1[1図はヒストグラム・イブライゼイション法の説明
のための図%第2図は本発明の一例の構成図、Is■、
第4図はその説呵のtめの図、第5図〜第8図は他の例
の構成図である。 12)は絞り、(4)は撮儂11.+6)はλD変換回
路、αυはコンパレータ、(13は基準信号源、Iはカ
ウンタである。 第3図 第9図
1 [Figure 1 is a diagram for explaining the histogram identification method% Figure 2 is a block diagram of an example of the present invention, Is■,
FIG. 4 is the tth diagram of the explanation, and FIGS. 5 to 8 are configuration diagrams of other examples. 12) is the aperture, (4) is the photographic image 11. +6) is a λD conversion circuit, αυ is a comparator, (13 is a reference signal source, and I is a counter. Figure 3) Figure 9

Claims (1)

【特許請求の範囲】[Claims] 映倫光を絞りを通じて撮像部に供給して映像信号を得る
と共に、この映倫信号を標本化し、これらの標本の信号
レベルが所定レベル以上あるいは以下となる上記標本の
歌を計数し、この計数値の全上記標本の数に対する割合
に応じて上記絞りを調整するようkした撮像装置。
Eirin light is supplied to the imaging unit through the aperture to obtain a video signal, and this Eirin signal is sampled, and the songs of the samples whose signal levels are above or below a predetermined level are counted, and the count value is calculated. An imaging device that adjusts the aperture according to a proportion of the total number of samples.
JP56135324A 1981-08-28 1981-08-28 Image pickup device Pending JPS5838075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135324A JPS5838075A (en) 1981-08-28 1981-08-28 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135324A JPS5838075A (en) 1981-08-28 1981-08-28 Image pickup device

Publications (1)

Publication Number Publication Date
JPS5838075A true JPS5838075A (en) 1983-03-05

Family

ID=15149090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135324A Pending JPS5838075A (en) 1981-08-28 1981-08-28 Image pickup device

Country Status (1)

Country Link
JP (1) JPS5838075A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178512A (en) * 1984-02-24 1985-09-12 Hitachi Ltd Guiding device for moving body
JPS62147872A (en) * 1985-12-23 1987-07-01 Matsushita Electric Ind Co Ltd Image pickup device
JPS63163437A (en) * 1986-12-26 1988-07-06 Fuji Photo Film Co Ltd Diaphragm driving controlling method for electronic still camera
US4843476A (en) * 1986-11-25 1989-06-27 Matsushita Electric Industrial Co., Ltd. System for controlling the amount of light reaching an image pick-up apparatus based on a brightness/darkness ratio weighing
KR100495415B1 (en) * 1999-12-30 2005-06-14 매그나칩 반도체 유한회사 Auto exposure apparatus in image sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178512A (en) * 1984-02-24 1985-09-12 Hitachi Ltd Guiding device for moving body
JPH0370804B2 (en) * 1984-02-24 1991-11-11 Hitachi Ltd
JPS62147872A (en) * 1985-12-23 1987-07-01 Matsushita Electric Ind Co Ltd Image pickup device
US4843476A (en) * 1986-11-25 1989-06-27 Matsushita Electric Industrial Co., Ltd. System for controlling the amount of light reaching an image pick-up apparatus based on a brightness/darkness ratio weighing
JPS63163437A (en) * 1986-12-26 1988-07-06 Fuji Photo Film Co Ltd Diaphragm driving controlling method for electronic still camera
KR100495415B1 (en) * 1999-12-30 2005-06-14 매그나칩 반도체 유한회사 Auto exposure apparatus in image sensor

Similar Documents

Publication Publication Date Title
KR920000294B1 (en) Light signal control circuit for image pick-up apparatus
CN102801918B (en) Picture pick-up device and the method for controlling this picture pick-up device
CN110930301B (en) Image processing method, device, storage medium and electronic equipment
JP3510868B2 (en) Image synthesis device
US5512947A (en) Video camera
GB2243261A (en) Exposure control mechanism for still video camera
JPH05145931A (en) White balance controller
JP2002354498A (en) Electronic camera
CN106358030A (en) Image processing apparatus and image processing method
JPS63173471A (en) Method and apparatus for automatic exposure control of television camera
JPH077651A (en) Exposure control circuit
JP4352730B2 (en) Auto white balance processing apparatus and method, and image signal processing apparatus
CN110572585B (en) Image processing method, image processing device, storage medium and electronic equipment
JP3652902B2 (en) White balance adjustment device
KR20110125170A (en) Apparatus and method for auto adjusting brightness of image taking device
JPS5838075A (en) Image pickup device
US20070019105A1 (en) Imaging apparatus for performing optimum exposure and color balance control
US4910600A (en) Image pickup apparatus
JP4622196B2 (en) Imaging device
JPH11220739A (en) Video camera device
JPH11289548A (en) White balance control method and device
JP2000165896A (en) White balance control method and its system
CN116055907A (en) Image processing apparatus, image capturing apparatus, image processing method, and storage medium
JP2002185977A (en) Video signal processor and recording medium with video signal processing program recorded thereon
JP3958700B2 (en) Digital camera