JPS5837897A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPS5837897A
JPS5837897A JP56136380A JP13638081A JPS5837897A JP S5837897 A JPS5837897 A JP S5837897A JP 56136380 A JP56136380 A JP 56136380A JP 13638081 A JP13638081 A JP 13638081A JP S5837897 A JPS5837897 A JP S5837897A
Authority
JP
Japan
Prior art keywords
transistor
channel
memory cell
data
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56136380A
Other languages
Japanese (ja)
Inventor
Masahiko Kawamura
河村 匡彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56136380A priority Critical patent/JPS5837897A/en
Publication of JPS5837897A publication Critical patent/JPS5837897A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To decrease the number of component elements and bit lines, by constituting a memory cell with a storage node, an MOS transistor which selects an address between data lines, a data holding MOS transistor which is controlled by an MOS inverter, etc. CONSTITUTION:A work line WL is set at a high level (''1''), and an MOS transistor TRQ3n of an address selecting E type n channel is turned on. A storage node N is set at a high level when a data line BL is set at a high level. The output of a CMOS inverter I provided with E type p and n channel MOS TRQ2p and Q2n which use the node N as the input is inverted to a low level. Thus a data holding MOS TRQ1p of E type p channel is kept on even after the TRQ2n is turned off. Then ''1'' is stored in the node N by the 1st reference potential VDD. In the same way, ''0'' is stored. Thus 4 MOS TRs and a data line can form a memory cell with a reduction of both the component elements and bit lines. As a result, the density is increased for an RAM, etc.

Description

【発明の詳細な説明】 本郷明はMob@の半導体記憶装置ζ;係り。[Detailed description of the invention] Akira Hongo is in charge of semiconductor storage devices ζ at Mob@.

特にスタティック蓋ランダム・アクセス・メモ9(1A
M)のメモリセル構造に関する。
Especially static lid random access memo 9 (1A
M) regarding the memory cell structure.

従来より知られているスタテイツ、りfiRAMのメモ
リセルは1通常第1因のように6個のMo1)うyゾス
タから構成され、1個のMo8トランジスタと1個の記
憶用キヤ/#νりから構成されるダイナミック[RAM
に比べてトランジスダの個数を多(要することおよび2
本のビット線を要することが欠点となっている。
The memory cell of the conventionally known state-refiRAM is usually composed of six Mo1) transistors as shown in the first example, one Mo8 transistor and one storage carrier. Dynamic [RAM
The number of transistors is large (required and 2
The disadvantage is that it requires several bit lines.

本発明は、上記欠点を克服して高密度化を可能としたメ
モリセル構造をもつスフティック型の半導体記憶装置を
提供するものである。
The present invention provides a suftic type semiconductor memory device having a memory cell structure that overcomes the above-mentioned drawbacks and enables higher density.

本発明におけるメモリセルは、4個のMOIトランジス
タと1個の抵抗とから構成され%データ線(ビット線)
も1本で済む構成とする。
The memory cell in the present invention is composed of four MOI transistors and one resistor, and has a data line (bit line).
The configuration is such that only one piece is required.

即ち、記憶ノードはデータ保持用MO8)ランジスタ゛
を介して第1の基準電位に接続すると共に抵抗を介して
第2の基準電位に接続し、かっこの記憶ノードな入力と
するMO51インΔ−タにより1記デ一タ保持用M08
トランゾスタを制御するように構成し、記憶ノードとデ
ータ線の間に選択線(ワード線)により制御される番地
選択用MO8)ランゾスタを接続してメモリセルが構成
される。従って本発明によれば、メモリセルの構成素子
数が少なく、またビット線も1本となるためスタティッ
ク型RAMの高密開化が図られる。
That is, the storage node is connected to the first reference potential via the data holding MO8 transistor and to the second reference potential via the resistor, and is connected to the MO51 inverter Δ-input which serves as the storage node input in parentheses. 1. M08 for data retention
A memory cell is constructed by connecting an address selection MO8) transistor controlled by a selection line (word line) between a storage node and a data line. Therefore, according to the present invention, since the number of constituent elements of the memory cell is small and the number of bit lines is reduced to one, it is possible to achieve high density opening of the static type RAM.

以下本発明の詳細な説明する。第2図は一実施例のメモ
リセルを示すもので、記憶ノードNは一一夕保持用のM
蓋PfヤネルM08トランゾスタQ1pを介して第1の
基準電位である正電源電位VDD艦−Wk続され、また
抵抗Rを介して第2の基準電位である接地磁位Wasに
接続されている。そして記憶ノーf−ドNの電位が1型
PチャネルMo1e)ランジスタQ、pとE型nチャネ
ルM08トランジスタQ、mからなるCMO8インΔ−
タIにより反転されてM08トランジスタQ、pを制御
するようになっている。また記憶ノーPNとビット線B
Lの間に番地選択用の1li1膳チャネルMO8)ラン
ゾスタQsnが接続され、そのr−)をワード線WLに
より制御するようになっている。
The present invention will be explained in detail below. FIG. 2 shows a memory cell of one embodiment, in which a storage node N is a memory cell for overnight storage.
The lid Pf is connected to the positive power supply potential VDD which is the first reference potential via the transistor Q1p, and is connected to the ground magnetic potential Was which is the second reference potential via the resistor R. Then, the potential of the storage node f-N is changed to a CMO8in Δ-
It is inverted by the transistor I to control the M08 transistors Q and p. Also, memory no PN and bit line B
A 1li1 channel MO8) run star Qsn for address selection is connected between L and R, and its r-) is controlled by a word line WL.

このように構成されたメモリセルの動作を説明すると次
のとおりである。
The operation of the memory cell configured as described above will be explained as follows.

まず記憶ノーPMに11″(高レベル)を書き込む場合
は、ビット線BL′4:’l”t:ワ°−ド線WLをa
1g&ニする。このときMO8)ランジメタ93膳がオ
ンして記憶ノードNは111となり、この記憶ノードN
を入力するCMO8インバータlの出力は101となる
。従って、MO8)ランジスタQ s Wがオンとなり
、dosトランゾスタQ畠鳳がオフした後も正電[i4
位VDDにより記憶ノードNの111状態が保たれるこ
とになる。
First, when writing 11'' (high level) to memory node PM, bit line BL'4: 'l't: word line WL is
1g&d. At this time, MO8) Ranjimeta 93 is turned on and the storage node N becomes 111, and this storage node N
The output of the CMO8 inverter 1 which inputs 1 is 101. Therefore, MO8) transistor Q s W is turned on, and the positive current [i4
The 111 state of storage node N is maintained by VDD.

また、記憶ノードNに601を書き込む場合はビット線
BLを101に、ワード線WLを111にする。このと
き記憶ノーPNが601になりCMO8インバータIの
出力が111となるため、MO8トランジスタQtpは
オフとなり、g8憧ノードNは正電源電位VDDから1
断される一方、抵抗Rにより10ルベルが保たれる。読
出し動作は、ピット@BLをセンス回路に接続し、ワー
ド線WLを11”にすればよい。
Further, when writing 601 to the storage node N, the bit line BL is set to 101 and the word line WL is set to 111. At this time, the memory node PN becomes 601 and the output of the CMO8 inverter I becomes 111, so the MO8 transistor Qtp turns off and the g8 node N becomes 1 from the positive power supply potential VDD.
On the other hand, the voltage is maintained at 10 lb by the resistor R. A read operation can be performed by connecting the pit @BL to the sense circuit and setting the word line WL to 11''.

以1のように11本実施例によるスタティック型鵞ムM
のメモリセルは構成素子数が少なく、しかも従来のメモ
リセルのようζ:2本のビット線を必要としないので、
高密度集積化に非常に適している。なお抵抗Rとしては
例えば多結晶V9ゴン膜を用いることで、小さな面WI
セ十分高抵抗を実現することができるが%D 匿taチ
ャネルM08トランジスタを用いることも町−である。
As described in 1 below, 11 static type goosenecks M according to this embodiment
This memory cell has a small number of components and does not require two bit lines like conventional memory cells.
Very suitable for high-density integration. Note that by using, for example, a polycrystalline V9 film as the resistor R, the small surface WI
Although it is possible to achieve a sufficiently high resistance, it is also advisable to use a closed ta channel M08 transistor.

第3図は本発明の別の実施例の、メモリセルを示すもの
で、第2図と異なる点は、第1の基準電位を接地電位v
1%第2の基準電位を正in電位VDDとし、データ保
持用Mo5)ランゾスタとしてm2重チャネルMO8)
ランゾスタQ、麿を用いていることである。この実施例
では、ビット線Bl、l”11、ワード線WLを11”
として記憶ノードNに11@を瞥き込むと、トランジス
タQi烏がオフとなってその一一夕が保持され、またC
ット線BLを101.ワード練乳を111として01を
書き込むと、トランジスタQ、aがオンとなってやはり
そのデータが保持される。この実施例によっても先の実
施例と同様の効果が得られる。
FIG. 3 shows a memory cell according to another embodiment of the present invention, and the difference from FIG. 2 is that the first reference potential is set to the ground potential V.
1% The second reference potential is set as a positive in potential VDD, and the data retention Mo5) is used as a lanzo star for m2 double channel MO8)
It uses Lanzosta Q and Maro. In this embodiment, the bit line Bl is 11'' and the word line WL is 11''.
When 11@ is looked at the storage node N as , the transistor Qi is turned off and the moment is held, and the C
Connect the cut line BL to 101. When 01 is written with the word condensed milk as 111, transistors Q and a are turned on and the data is held as well. This embodiment also provides the same effects as the previous embodiment.

なお以上の実施例では、インバータとしてCMOSイン
Δ−夕を用いたが1例えばI/DMOIIインΔ−夕を
用いてもよい。第4図は第3図のCMO8インΔ−タI
の部分を1ロiチャネルM08トランジスタQ雪nとD
型nチャネルMO8トランジスダQ*1’からなるB/
DMOSインΔ−夕I’で置換し、た実施例である。こ
の実施例によれば、第2図、第3図と同様の効果が得ら
れることは勿論、更に構成素子が全て簾チャネルとなる
ためより一層の高密度集積化が可能となる。
In the above embodiments, a CMOS inverter is used as an inverter, but an I/DMO II inverter, for example, may also be used. Figure 4 shows the CMO8 input Δ-input I in Figure 3.
The part of 1ro I channel M08 transistor Q snow n and D
B/ consisting of type n-channel MO8 transistor Q*1'
This is an example in which the DMOS input Δ-I' is replaced. According to this embodiment, not only the same effects as in FIGS. 2 and 3 can be obtained, but also higher density integration is possible because all the constituent elements are blind channels.

以1述べたように本発明によれば、メモリセルの構成素
子数が少なく、またビット線も1本で済むためスダテイ
ック[RAMの高密度化を図ることができる。
As described above, according to the present invention, the number of constituent elements of a memory cell is small, and only one bit line is required, so that it is possible to achieve high density RAM.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来から知られているスタティック型RAMの
メモリセルを示す図、第2図は本発明の一実施例のメモ
リセルを示す図、第3図は別の実施例のメモリセルを示
す図、184図は更に別の実施例のメモリセルを示す図
である。 N・・・配憶ノードsQ@p・・・WfiPチャネルM
O8トプンゾスタ(データ保持用)、l・・・抵抗、工
・・・CMO8(ンパータ、 Q、m・・・B fi 
nチャネルMO8)ランジスタ(番地適訳用)、WL−
°°ワード線(選択線)、BL・・・ビット*Cy″−
夕1i1i)、VDD・・・正電源電位、■ss・・・
接地電位mQ1”・・・E型nチャネルM08トランジ
スタ(データ保持用)、II・・・B/D M O8イ
ンノ童−タ。 出願人代理人  弁理士 鈴 江 武 彦第ill! 第2図 第3図 第4図
FIG. 1 shows a memory cell of a conventionally known static type RAM, FIG. 2 shows a memory cell of one embodiment of the present invention, and FIG. 3 shows a memory cell of another embodiment. 184 is a diagram showing a memory cell of still another embodiment. N...Storage node sQ@p...WfiP channel M
O8 topunzoster (for data retention), l...resistance, work...CMO8 (amperta, Q, m...B fi
n-channel MO8) transistor (for address translation), WL-
°°Word line (selection line), BL...bit *Cy″-
1i1i), VDD...Positive power supply potential, ■ss...
Ground potential mQ1''...E-type n-channel M08 transistor (for data retention), II...B/DM O8 inno-doctor. Applicant's agent: Takehiko Suzue, patent attorney! Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)記憶ノードと第1および第2の基準電位との間に
それぞれ接続されたデータ保持用Mo8トランジスタお
よび抵抗と、入力端がn妃記憶ノードに接続され出力端
が前記データ保持用Mo8Fランジスタのr−ト也;接
続されたMolインバータと、前記記憶ノードとデータ
線の間に接続され選択線により制御される番地選択用M
o8トランジスタとから構成されたメモリセルを有する
ことを特徴とする半導体記憶装置。
(1) A data holding Mo8 transistor and a resistor connected between the storage node and the first and second reference potentials, and the data holding Mo8F transistor whose input end is connected to the nth memory node and whose output end is the data holding Mo8F transistor. a connected Mol inverter, and an address selection M connected between the storage node and the data line and controlled by a selection line.
1. A semiconductor memory device comprising a memory cell configured with an O8 transistor.
(2)第1の基準電位が正電源電位、第2の基準電位が
接地電位であり、データ保持用Mo8Fランジスタが造
型Pチャネル、番地選択用M08)ランジスタがlil
 fJ *チャネルであり、Mo8(yパークが0MO
8インバータである特許請求の範囲第1項記載の半導体
記憶装置。
(2) The first reference potential is the positive power supply potential, the second reference potential is the ground potential, the Mo8F transistor for data retention is a molded P channel, and the M08F transistor for address selection is lil.
fJ * channel and Mo8 (y park is 0 MO
The semiconductor memory device according to claim 1, which is an 8 inverter.
(3)第1の基準電位が接地電位、第2の基準電位が正
電源電位であり、データ保持用Mo8トランゾスタiよ
び番地選択用Mo8トランジスタがl1lsチヤネルで
あり1MO8インΔ−夕がCMOBMolインバータ特
許請求の範1第1項記載の半導体記憶装置。
(3) The first reference potential is the ground potential, the second reference potential is the positive power supply potential, the Mo8 transistor for data retention and the Mo8 transistor for address selection are l1ls channels, and 1 MO8 in Δ-1 is a CMOB Mol inverter patent. A semiconductor memory device according to claim 1.
JP56136380A 1981-08-31 1981-08-31 Semiconductor storage device Pending JPS5837897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56136380A JPS5837897A (en) 1981-08-31 1981-08-31 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56136380A JPS5837897A (en) 1981-08-31 1981-08-31 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS5837897A true JPS5837897A (en) 1983-03-05

Family

ID=15173795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56136380A Pending JPS5837897A (en) 1981-08-31 1981-08-31 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS5837897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766372A (en) * 1982-08-21 1998-06-16 Sumitomo Special Metals Co., Ltd. Method of making magnetic precursor for permanent magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766372A (en) * 1982-08-21 1998-06-16 Sumitomo Special Metals Co., Ltd. Method of making magnetic precursor for permanent magnets

Similar Documents

Publication Publication Date Title
US4028557A (en) Dynamic sense-refresh detector amplifier
US6414873B1 (en) nvSRAM with multiple non-volatile memory cells for each SRAM memory cell
US6333874B2 (en) Semiconductor memory device having normal and standby modes, semiconductor integrated circuit and mobile electronic unit
US4162416A (en) Dynamic sense-refresh detector amplifier
JPH0462436B2 (en)
JPH05250870A (en) Refresh timer in semiconductor memory device
KR0140175B1 (en) Sense amplifier in memory device
JP3494488B2 (en) Semiconductor device
JPH0366757B2 (en)
KR950014256B1 (en) Semiconductor memory device using low source voltage
US4610003A (en) Dynamic type semiconductor memory device
JPS5837897A (en) Semiconductor storage device
US4584670A (en) Integrated dynamic write-read memory
JP2801654B2 (en) Dynamic semiconductor memory device
US8159861B2 (en) Compact and highly efficient DRAM cell
JPH07254288A (en) Semiconductor memory
JPH11176153A (en) Semiconductor integrated circuit
JPH0334191A (en) Static semiconductor memory
JPH0822693A (en) Semiconductor storage device
EP0318094A1 (en) Integrated memory circuit with on-chip supply voltage control
JP3068377B2 (en) Dynamic semiconductor memory device
JPH0361277B2 (en)
JP2933128B2 (en) Semiconductor storage device
JPH04271090A (en) Semiconductor memory device
JPH03116490A (en) Static ram