JPS5837711B2 - Mode mode laser touch - Google Patents

Mode mode laser touch

Info

Publication number
JPS5837711B2
JPS5837711B2 JP50043582A JP4358275A JPS5837711B2 JP S5837711 B2 JPS5837711 B2 JP S5837711B2 JP 50043582 A JP50043582 A JP 50043582A JP 4358275 A JP4358275 A JP 4358275A JP S5837711 B2 JPS5837711 B2 JP S5837711B2
Authority
JP
Japan
Prior art keywords
pulse
loss
mode
excitation
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50043582A
Other languages
Japanese (ja)
Other versions
JPS51117890A (en
Inventor
俊二 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50043582A priority Critical patent/JPS5837711B2/en
Publication of JPS51117890A publication Critical patent/JPS51117890A/en
Publication of JPS5837711B2 publication Critical patent/JPS5837711B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod

Description

【発明の詳細な説明】 本発明は高出力超短光パルスを安定に発生させるモード
同期レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mode-locked laser device that stably generates high-power ultrashort optical pulses.

従来高出力超短光パルスを得るのに可飽和色素の非線形
吸収や、力一効果によって受動的[Qスイッチ及びモー
ド同期をされたパルス励起固体レーザが用いられてきた
Conventionally, pulse-excited solid-state lasers that are passively [Q-switched and mode-locked] by the nonlinear absorption of saturable dyes or the Force-Ichi effect have been used to obtain high-power ultrashort optical pulses.

しかし、こうして得られる光パルスは、発振初期のノイ
ズの中から可飽和色素のような変調器によって波高選択
された結果生じたもので、あるやむを得ない確率で主パ
ルスの他にサテライトパルスを生じ、高出力超短光パル
スを再現性良く得ることが難しかった。
However, the optical pulse obtained in this way is the result of the wave height being selected from the noise at the initial stage of oscillation by a modulator such as a saturable dye, and there is an unavoidable probability that a satellite pulse will be generated in addition to the main pulse. It has been difficult to obtain high-power ultrashort optical pulses with good reproducibility.

このようなパルス発生の確率的性格を外的制御によって
減らす努力も行われ、実願昭49−112393「モー
ド同期装置」には、強制損失内部変調器を可飽和色素と
併用することにより前記のようなサテライトパルス発生
の確率を著しく減少させうろことが述べられている。
Efforts have been made to reduce the stochastic nature of such pulse generation by external control, and Utility Application No. 49-112393 "Mode Locking Device" uses a forced loss internal modulator in combination with a saturable dye. It is stated that the probability of such satellite pulse occurrence can be significantly reduced.

しかしこの装置では、レーザが発振している間にかげる
強制変調の周期と、共振器内の光パルスの往復周期とを
厳密に一致させる必要があり、実際上その実現はなかな
か難しかった。
However, with this device, it is necessary to precisely match the period of the forced modulation that occurs while the laser is oscillating with the round-trip period of the optical pulse inside the resonator, which has been difficult to achieve in practice.

例えば、発振し始めてからQスイッチがかかる1での時
間が50〜100μS[も達するパルス励起ガラスレー
ザの場合には、変調度100%の強制変調を併用して初
めてサテライトパルスの存在可能時間巾が8Ps程度と
得られるパルス巾と同程となり、ようやくサテライトパ
ルスのない安定な単一パルスを得ることができることに
なる。
For example, in the case of a pulse-excited glass laser in which the Q-switching time from the start of oscillation reaches 50 to 100 μS, the time width in which the satellite pulse can exist can only be achieved by using forced modulation with a modulation depth of 100%. The pulse width is about 8 Ps, which is about the same as the obtained pulse width, and it is finally possible to obtain a stable single pulse without satellite pulses.

しかし、このとき要求される共振器鏡の位置精度は1〜
2μmとなり、通常の機構部品を用いては調節しきれな
い。
However, the positional accuracy of the resonator mirror required at this time is 1~
2 μm, which cannot be fully adjusted using normal mechanical parts.

又、たとえ強制変調器の変調周波数の微調によって実効
的に上記の精度の同期がとれたとしても、フラッシュラ
ンプの機械的振動や、光励起による熱発生に基づくレー
ザ媒質の熱膨張や屈折率変化が、発振中の光路長の変化
をもたらし、前記2つの周期の同期をくずすことになる
Furthermore, even if the above-mentioned precision synchronization can be effectively achieved by finely adjusting the modulation frequency of the forced modulator, thermal expansion and refractive index changes of the laser medium due to mechanical vibration of the flash lamp and heat generation due to optical excitation may occur. , resulting in a change in the optical path length during oscillation and breaking the synchronization of the two periods.

そしてこのように理想的変調ができない場合、サテライ
トパルスの存在可能時間巾が拡がり、その中に強制変調
を使用しないときに比べれば少いがやはりある有限の確
率でサテライトパルスを生じてしすう。
If ideal modulation is not possible in this way, the time range in which satellite pulses can exist is expanded, and satellite pulses will still occur with a certain finite probability, although this is less than when forced modulation is not used.

こうして生ずるサテライトパルスの発生率も、励起レベ
ルを発振閾値ぎりぎり1で下げることを前提としてカリ
、閾値のゆらぎが発振の不安定性をもたらすなどのめん
どうな問題もある。
The generation rate of satellite pulses thus generated is also premised on the fact that the excitation level is lowered to just below the oscillation threshold, and there are also troublesome problems such as fluctuations in the threshold causing instability of oscillation.

もちろん励起レベルをこれより広げると、それに応じて
サテライトパルス発生率も上がる。
Of course, if the excitation level is expanded beyond this, the satellite pulse generation rate will increase accordingly.

一方、通常の連続モード同期レーザの出力から単一パル
スを抽出し、それをQスイッチレーザの発振初期に導入
し、当該パルスを増巾して安定な高出力超短パルスを得
た例もあるが、パルス幅圧縮機能がないために、100
P8前後の比較的広いパルスが得られているにすぎない
On the other hand, there is also an example of extracting a single pulse from the output of a normal continuous mode-locked laser, introducing it at the initial stage of oscillation of a Q-switched laser, and amplifying the pulse to obtain a stable high-power ultrashort pulse. However, since there is no pulse width compression function, the
Only a relatively wide pulse around P8 is obtained.

1た抽出されたパルスを有効に増巾するためには、2つ
の発振器の光路をパルス抽出器を介して完全に一致され
る必要があり技術的にめんどうであった。
In order to effectively amplify the extracted pulse, the optical paths of the two oscillators must be perfectly aligned through the pulse extractor, which is technically troublesome.

さらにパルス抽出器を機能させるためには、通常数ナノ
秒ノ高電圧パルスをつくって電気光学効果を示す媒質に
印加しなげればならないが、このような高速スイッチン
グではほとんどの場合完全なインピーダンスの整合がで
きず印加電圧パルスの形がくずれてくる。
Furthermore, in order for pulse extractors to function, high voltage pulses, typically several nanoseconds long, must be created and applied to a medium that exhibits an electro-optic effect, but such high-speed switching often requires complete impedance. Matching is not possible and the shape of the applied voltage pulse is distorted.

その結果連続モード同期発振器の共振器往復時間だけ遅
れた時刻に次の弱いパルスカ抽出され、このパルスがサ
テライトハルスの種になる。
As a result, the next weak pulse is extracted at a time delayed by the resonator round trip time of the continuous mode-locked oscillator, and this pulse becomes the seed of the satellite halus.

これを防ぐには2つの発振器の共振器長を厳密に一致さ
せなげればならず、やはりめんどうな調整を必要とした
To prevent this, the resonator lengths of the two oscillators had to be exactly matched, which also required troublesome adjustment.

本発明の目的は、上記のようなめんどうな調整を必要と
せず、通常のパルス励起モード同期固体レーザによる超
短パルス発生にみられる確率的性格を容易に全くなくし
、発振閾値のゆらぎも影響せず、連続モード同期状態の
パルス幅よりも狭い高出力超短パルスを、極めて再現性
よく、しかもザテライトパルスが全く生じないように発
生させるレーザ発振器を提供することにある。
The purpose of the present invention is to easily eliminate the stochastic nature of ultrashort pulse generation seen in ordinary pulse-excited mode-locked solid-state lasers without the need for the troublesome adjustment described above, and to eliminate the influence of fluctuations in the oscillation threshold. First, it is an object of the present invention to provide a laser oscillator that generates high-output ultrashort pulses narrower than the pulse width of a continuous mode-locked state with extremely high reproducibility and without generating any satellite pulses.

本発明によれば、連続発振モード同期固体レーザ装置の
共振器内に、活性媒体をさらにパルス的に励起する手段
と、その励起によって生ずる時間的に増加する過剰利得
を丁度打ち消すような損失を与え、そののち任意の時刻
にその損失を急減させうる損失手段と、共振器内の光電
場が強い程損失が減少するが、パルス的な励起はなく連
続発振だけしているときの光電場に対l〜では損失が減
少しない可飽和性の損失体とを含むモード同期レーザ装
置が得られる。
According to the present invention, within the resonator of a continuous wave mode-locked solid-state laser device, a means for further exciting the active medium in a pulsed manner and a loss that exactly cancels the temporally increasing excessive gain caused by the excitation are provided. , and then a loss means that can rapidly reduce the loss at any time, and the stronger the optical electric field inside the resonator, the lower the loss. A mode-locked laser device including a saturable loss body in which the loss does not decrease can be obtained.

次に、本発明によっていかにして安定な高出力超短光パ
ルスが生ずるかを説明する。
Next, a description will be given of how the present invention produces stable high-power ultrashort optical pulses.

上記構成のレーザに釦いて、捷ず、共振器損失や、可飽
和性の吸収体の損失に打ち勝つような利得をもたらす活
性媒体に対する連続的励起、及び強制的もしくは受動的
な変調によって、通常の連続発振モード同期状態が実現
される。
The laser of the above configuration can be operated by continuous pumping of the active medium and forced or passive modulation to provide a gain that overcomes the cavity losses and the saturable absorber losses. A continuous oscillation mode locking state is achieved.

こうして得られる光パルスは、パルス励起固体レーザの
Qスイッチ及びモード同期をされた状態に比べれば光強
度も弱く、パルス幅も広いが、サテライトパルスの発生
がな〈、しかも非常に再現性が良いという特長を持って
いる。
The optical pulses obtained in this way have a weaker optical intensity and a wider pulse width compared to the Q-switched and mode-locked state of a pulse-pumped solid-state laser, but they do not generate satellite pulses and have very good reproducibility. It has the following characteristics.

このパルスを増巾し、かつパルス幅を狭める機能がさら
にあれば、通常のパルス励起モード同期装置に比べて極
めて安定なピコ秒パルス発生装置ができることになる。
If there were an additional function to amplify this pulse and narrow the pulse width, it would be possible to create a picosecond pulse generator that is much more stable than a normal pulse excitation mode locking device.

この役割をはたすのが活性媒体に対するパルス的励起手
段と、過剰利得を打ち消し、ついでそれをやめることの
できる損失手段と、可飽和性の損失体である。
This role is played by a pulsed excitation means for the active medium, a loss means capable of canceling out excess gain and then turning it off, and a saturable loss body.

即ち、定常的な連続モード同期状態を達威してから任意
の時刻にパルス的励起手段によって活性媒体をさらに励
起すれば、ほとんどが基底状態にあった電子は励起され
てより大きな反転分布が形成され、活性媒質の利得はそ
の媒質固有の緩和時間と励起のし方で決寸るある立ち上
り時間で徐々に増加する。
In other words, if the active medium is further excited by pulsed excitation at an arbitrary time after achieving a steady continuous mode-locked state, most of the electrons that were in the ground state will be excited and a larger population inversion will be formed. The gain of the active medium gradually increases with a certain rise time determined by the relaxation time unique to the medium and the method of excitation.

この時点では、連続モード同期によって共振器内に光パ
ルスが往復してかり、増加し始めた利得によって徐々に
増巾されるはずであるが、前記励起によって生じた利得
を丁度打ち消すように損失を増加させる装置が機能して
いると、光パルスの強度は連続モード同期時の定常値に
保たれた1=−1となり、活性媒質の反転分布の増大だ
けが進行する。
At this point, the optical pulses are reciprocated within the resonator due to continuous mode locking, and should be gradually amplified by the gain that has begun to increase. When the increasing device is functioning, the intensity of the optical pulse is kept at a steady value of 1=-1 during continuous mode locking, and only the population inversion of the active medium is increased.

そして、Qスイッチをかげるのに充分な反転分布が形威
されたときに増加していた損失を急減させると、明らか
にQスイッチがかかる。
Then, if the loss that had been increasing when a population inversion sufficient to suppress the Q-switch is suddenly reduced, the Q-switch is clearly activated.

この後、光パルスは大きな増巾なうけ、共振器内の可飽
和損失体を飽和させてパルス幅の圧縮効果をも受けるよ
うになり、通常のパルス励起固体レーザに釦げるQスイ
ッチモード同期と同じ程度の、高出力超短パルスが得ら
れることになる。
After this, the optical pulse becomes greatly amplified, saturates the saturable loss body in the resonator, and also receives the effect of compressing the pulse width, which leads to Q-switch mode locking, which is key to ordinary pulse-pumped solid-state lasers. This means that a high-power ultra-short pulse of the same order of magnitude can be obtained.

以下、図面を用いて本発明を詳細に説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図は第lの実施例の構成図で、共振器鏡14で構或
された共振器内に固体レーザロツド2と、その連続光励
起装置3、及び強制損失変調器6と、その駆動電源Iが
設置されてi−リ、通常の連続発振モード同期状態が維
持されている。
FIG. 1 is a block diagram of the first embodiment, in which a solid-state laser rod 2, a continuous optical excitation device 3, a forced loss modulator 6, and a driving power supply I are installed in a resonator formed by a resonator mirror 14. is installed to maintain the normal continuous oscillation mode synchronization state.

このときの共振器内光強度では、吸収(損失)の飽和し
ない可飽和色素溶液5が共振器内にあるために発振の閾
値は通常の場合よりは上昇している。
At this time, at the intra-cavity light intensity, the threshold for oscillation is higher than in the normal case because there is a saturated dye solution 5 in the resonator whose absorption (loss) is not saturated.

1た、時間的に損失を制御することのできる変調器11
は駆動電源系12〜15によって連続発振モード同期時
に損失を零にしてあるので、そのモード同期には影響を
与えない。
1. A modulator 11 that can temporally control loss.
Since the drive power supply systems 12 to 15 reduce the loss to zero during continuous oscillation mode locking, the mode locking is not affected.

この時点でのパルス幅は、活性媒体として連続発振のし
易さの点から4準位系のNdをドープしたYAG結晶を
用いた場合、〜70ps程度である。
The pulse width at this point is about 70 ps when a 4-level Nd-doped YAG crystal is used as the active medium to facilitate continuous oscillation.

次いで信号発生器15から出たトリガーパルスを増巾器
10で増巾し、トリガー線9で連続励起装置3とは別の
パルス励起放電回路を放電させると、連続発振モード同
期時にはそれほど減少しなかった基底状態の分布数が強
い励起で減少し、反転分布が徐々に増大する。
Next, if the trigger pulse output from the signal generator 15 is amplified by the amplifier 10 and a pulse excitation discharge circuit separate from the continuous excitation device 3 is discharged using the trigger line 9, the trigger pulse will not decrease much during continuous oscillation mode synchronization. The distribution number of ground states decreases with strong excitation, and the population inversion gradually increases.

こうして増大する利得のみが上記連続発振モード同期状
態に加われば、この励起以前の70Ps程度のパルスは
増巾されるが、その後よく知られたように緩和発振に到
り、有効な増巾とパルス幅圧縮ができなくなる。
If only the increased gain is added to the above-mentioned continuous wave mode locking state, the pulse of about 70 Ps before this excitation will be amplified, but then, as is well known, relaxation oscillation will be reached, and the effective amplification and pulse Width compression becomes impossible.

そこで、制御可能な変調器11を用いて、増大する過剰
利得だけを相殺する損失を過剰利得が最犬になる時刻程
度渣で与え、ついでこの損失を消失させると、Qスイッ
チによって一気に共振器内の光パルスは増巾され、可飽
和色素による有効なパルス幅圧縮と相1つてサテライト
パルスの全くない高出力ピコ秒パルスが得られることに
なる。
Therefore, if the controllable modulator 11 is used to provide a loss that offsets only the increasing excess gain at the time when the excess gain reaches its maximum, and then this loss is made to disappear, the The light pulse is amplified to provide a high power picosecond pulse with no satellite pulses, combined with effective pulse width compression by the saturable dye.

この過躬川4得を相殺する損失は具体的には次のように
してつくられる。
Specifically, the loss that offsets this 4 gains is created as follows.

信号発生器15からのトリガーパルスが、2つに分けら
れ、その一方によって開始されたパルス励起装置の放電
と同期するための可変遅延回路14をもう一方が通り、
波形発生器13へ入る。
The trigger pulse from the signal generator 15 is split into two parts, one of which passes through a variable delay circuit 14 for synchronizing the discharge of the pulse exciter initiated by the other;
Enter the waveform generator 13.

そこでは、過剰利得の時間的変化と同じ波形でその後の
任意の時刻に零となるような電気信号がつくられ、丁度
過剰利得を打ち消すように増巾器12の増巾率が調節さ
れて変調器11へ印加される。
There, an electrical signal is created that has the same waveform as the temporal change in excess gain and becomes zero at any subsequent time, and the amplification rate of the amplifier 12 is adjusted and modulated to exactly cancel out the excess gain. is applied to the device 11.

変調器としては、例えば、超音波損失変調器や、偏光素
子と組み合せたポツケルセルやカーセルが考えられる。
As the modulator, for example, an ultrasonic loss modulator, a Pockels cell or a Kersel in combination with a polarizing element can be considered.

このような変調器の印加電圧に対する応答が非緩形とな
る用い方をする場合には、パルス波形発生器13でその
ことをあらかじめ考慮した波形を出すようにする。
When the modulator is used in such a way that the response to the applied voltage is non-slow, the pulse waveform generator 13 generates a waveform that takes this into consideration in advance.

この装置の各機構の働きを時間的に示したのが第2図で
ある。
FIG. 2 shows the function of each mechanism of this device in terms of time.

横軸は全て時間tを表わし、縦軸は第2図a)は励起光
の波形P、第2図b)はその結果生ずる利得Gを現わす
The horizontal axes all represent time t, and the vertical axes represent the waveform P of the excitation light in FIG. 2a) and the resulting gain G in FIG. 2b).

利得Gの極大は、用論る活性媒質内のエネルギー緩和時
間と、波形Pの時間幅に応じて、その極太より遅延して
起こる。
The maximum gain G occurs with a delay from its maximum thickness, depending on the energy relaxation time in the active medium used and the time width of the waveform P.

第2図C)は利得Gを打ち消すべく挿入する損失Lで、
利得Gが極大値をとる直前あたりから零に減少させる。
Figure 2 C) is the loss L inserted to cancel the gain G,
The gain G is decreased to zero from just before it reaches its maximum value.

第2図d)はその結果生ずる実質的過剰利得(G−L)
である。
Figure 2d) shows the resulting substantial excess gain (GL)
It is.

実際には、この過剰利得で戒長した光パルスが犬き〈反
転分布を食うので、利得GはQスイッチとともに大きく
減少して発振光強度は元の連続発振モード同期状態に戻
ることになる。
In reality, the optical pulse lengthened with this excessive gain suffers from population inversion, so the gain G decreases greatly along with the Q switch, and the oscillation light intensity returns to the original continuous oscillation mode locking state.

結局、本発明の特長は、連続発振モード同期レーザから
得られる出力が弱くパルス幅も広いが再現性・安定性に
優れ、サテライトパルスの無い光パルスが、パルス励起
モード同期レーザの発振初規に存在することになるため
、発振の初期条件がランダムなノイズ分布であった従来
のパルス励起受動モード同期と比べ、再現性・安定性が
向上し、サテライトパルスが全く出なくなることにある
In the end, the features of the present invention are that although the output obtained from a continuous wave mode-locked laser is weak and the pulse width is wide, it has excellent reproducibility and stability, and the optical pulse without satellite pulses can be used as the initial oscillation of a pulse-excited mode-locked laser. Compared to conventional pulse-excited passive mode-locking, in which the initial condition of oscillation was a random noise distribution, the reproducibility and stability are improved, and no satellite pulses are generated.

次に第3図に示す第2の実施例を説明する。Next, a second embodiment shown in FIG. 3 will be described.

第1の実施例との大きな違いは、パルス的励起手段が励
起する活性媒体を、連続モード同期用のそれと別個に設
けた点と、パルス的励起手段によって生威された過剰利
得を打ち消す損失として受動的な素子を用いる点にある
The major difference from the first embodiment is that the active medium to be excited by the pulsed excitation means is provided separately from that for continuous mode locking, and that the active medium to be excited by the pulsed excitation means is provided separately from that for continuous mode locking. The point is that passive elements are used.

第3図の1〜5は、第1図の第1の実施例と全く同じも
ので、同じ機能をもち、適当な可飽和色素31と相1っ
て連続発振モード同期状態を現出させる。
1 to 5 in FIG. 3 are exactly the same as the first embodiment in FIG. 1, have the same function, and in phase with an appropriate saturable dye 31, produce a continuous wave mode locking state.

そこで、別の活性媒体32を通常のパルス励起手段で励
起し始める。
Then, another active medium 32 is started to be excited using conventional pulse excitation means.

即ち、高圧トリガー装置35の出力をパルス励起用回路
330ランプに巻きつげてふ・いたトリガー線34に導
びいて、励起ランプの放電を開始する。
That is, the output of the high voltage trigger device 35 is led to the trigger wire 34 which is wound around the pulse excitation circuit 330 lamp, and the discharge of the excitation lamp is started.

第1の実施例に比べ、このように別々の活性媒体を用い
ると、共振器長が太き〈なるなどの欠点はあるが、活性
媒体用の集光器の設計が楽になる。
Compared to the first embodiment, using separate active media in this way has drawbacks such as the resonator length becoming thicker, but it becomes easier to design a condenser for the active media.

以下、利得の時間変化を示す第4図を併用して本実施例
の機能を説明する。
The functions of this embodiment will be explained below with reference to FIG. 4, which shows the change in gain over time.

第4図a)の励起光Pによって生じた過剰利得G(第4
図C)を受動的損失素子36Vcよる損失L(第4図b
)で打ち消し、実効的過剰利得(G−L第4図d)を得
て、第1の実施例と同様の効果を得る。
Excess gain G (4th
Figure C) and loss L due to passive loss element 36Vc (Figure 4b)
) to obtain an effective excess gain (G-L FIG. 4d) and obtain the same effect as in the first embodiment.

ここに導入した受動的損失Lは励起光p[比例するが、
そのような吸収体の具体的な例としては、可視から近赤
外にかげて強い吸収を持つポリメチン系色素が考えられ
、そのエネルギ一単位が第5図に与えられている。
The passive loss L introduced here is proportional to the excitation light p [but
A specific example of such an absorber is a polymethine dye that has strong absorption in the visible to near infrared range, and one unit of its energy is given in FIG.

51は一重項の基底状態、52はその励起状態を表わす
51 represents the singlet ground state, and 52 represents its excited state.

この準位間の吸収(波長入p)は、個々の色素に応じて
可視域から近赤外1でのピークを持ち、吸収の波長幅は
数100AVC達する。
This absorption between levels (wavelength input p) has a peak from the visible region to the near infrared 1 depending on the individual dye, and the wavelength width of absorption reaches several hundred AVC.

パルス励起千段33のランプの広くかつ強い発光スペク
トルのうち、活性媒体32で吸収されなかった成分が、
発振光とほぼ同じ方向にも強くもれてくるので、その光
のもつスペクトルと前記吸収体の吸収スペクトルに重な
りがあれば、吸収の断面積も大きいので有効に色素は励
起される。
Of the broad and strong emission spectrum of the pulse-excited 1,000-stage lamp 33, the components that are not absorbed by the active medium 32 are
Since the oscillation light strongly leaks in almost the same direction as the oscillation light, if the spectrum of the light overlaps with the absorption spectrum of the absorber, the absorption cross-section is large and the dye is effectively excited.

一旦励起準位52に励起された電子は、よく知られたよ
うに、すぐ三重項の基底準位53へ無幅射遷移を起こす
As is well known, the electron once excited to the excited level 52 immediately undergoes a non-radiative transition to the triplet ground level 53.

この準位の寿命は比較的長く、三重項の励起状態54と
の間に一般に別の波長帯(ピーク波長へ、)の有効な吸
収をもたらす。
This level has a relatively long lifetime and typically provides effective absorption of another wavelength band (up to the peak wavelength) between the triplet excited state 54 and the triplet excited state 54.

しかし、これらの準位に関与する緩和時間は、いずれも
ランプの発光時間に比べて充分短かいので、この吸収帯
とレーザ発振の波長とにさらに重なりがある色素を選べ
ば、この色素はパルス的な励起光の波形P(第4図a)
に近似的に一致したレーザ光の吸収L(第4図b)を示
すことになる。
However, the relaxation times involved in these levels are all sufficiently short compared to the light emission time of the lamp, so if you choose a dye whose absorption band overlaps with the laser oscillation wavelength, this dye can be Excitation light waveform P (Figure 4a)
The absorption L of the laser light (FIG. 4b) approximately coincides with .

この吸収Lが、少くともパルス的な励起の初期のうちは
、該励起による過剰利得Gを打ち消すようにするために
は色素濃度を調節すればよい。
In order for this absorption L to cancel out the excess gain G due to the excitation, at least in the initial stage of the pulsed excitation, the dye concentration may be adjusted.

こうして得られる実効的利得(G−L)は、第1の実施
例より早くからゆっくり立ち上ってくることになるが、
その速度が緩和発振を起こすより速く立ち上ればQスイ
ッチが起きて目的は達せられる。
The effective gain (GL) obtained in this way starts to rise earlier and more slowly than in the first embodiment, but
If the speed rises faster than the relaxation oscillation, the Q-switch will occur and the objective will be achieved.

又、本実施例では活性媒体を2ヶ用いるが、こうすると
それぞれ目的に合ったロツドを使い分けることができる
Further, in this embodiment, two active media are used, but in this way, it is possible to use a different rod depending on the purpose.

例えば、ロツド2には高出力の連続発振を安定に行える
Nd : YAGを用い、ロツド32には高い増巾度が
得られ、かつ帯域幅が広くより短いパルスの発生が可能
となるNd:ガラスを用いることもできる。
For example, rod 2 is made of Nd:YAG, which can stably generate high-output continuous oscillation, and rod 32 is made of Nd:glass, which provides a high amplification degree and has a wide bandwidth, making it possible to generate shorter pulses. You can also use

活性媒体として4準位系を選んで卦げば、非励起時のロ
ツド32がレーザ光に対する損失とならないことを明ら
かである。
If a four-level system is selected as the active medium, it is clear that the rod 32 during non-excitation does not cause any loss to the laser beam.

ところで、活性媒体2の連続励起光が受動吸収体36の
動作を邪魔する恐れがある場合はレーザ光は透過して、
吸収色素の吸収波長入pの光を吸収するフィルター37
を、吸収体36と活性媒体2の間に入れておけばよい。
By the way, if there is a possibility that the continuous excitation light of the active medium 2 may disturb the operation of the passive absorber 36, the laser light is transmitted and
A filter 37 that absorbs light at the absorption wavelength p of the absorption dye
may be placed between the absorbent body 36 and the active medium 2.

この第2の実施例の第1の実施例に対する特長、即ち活
性媒体を2つ用いる点と、過剰利得を打ち消す損失体に
受動的素子を用いる点は相互に必然性をもってはいない
ので、それぞれの特長を別個に第1の実施例と組み合せ
ることはもちろん可能である。
The features of this second embodiment over the first embodiment, that is, the use of two active media and the use of a passive element as a loss body for canceling excess gain, are not mutually necessary, so each has its own advantages. It is of course possible to separately combine the first embodiment with the first embodiment.

さた連続モード同期用の変調器として強制的なものを用
いるか、自己的なものを用いるかも相互に互換性がある
のは明らかである。
Furthermore, it is clear that there is mutual compatibility between using a forced modulator and a self-directed modulator for continuous mode locking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例の構或図で、1は全反射鏡、2は
活性媒質を含むレーザロツド、3は連続励起手段、4は
出力鏡、5は可飽和性の吸収体、6は連続モード同期用
損失変調器、7はその駆動電源、8はパルス励起手段、
9はトリガー線、10は増巾器、11ぱ制御可能な変調
器、14は可変遅延回路、13はパルス波形発生器、1
2はその出力の増巾器、15はトリガーパルス発生器で
ある。 第2図は第1図の各機構の働きを時間的に示した図で、
第2図a)はパルス的励起手段の発光波形、第2図b)
は利得の増加分の波形、第2図C)は電気的につくられ
る損失の波形、第2図d)/ri実質的増加利得を示す
。 第3図は第2の実施例の構成図で、31は可飽和色素、
32はパルス励起用の活性媒体、33は励起用電気回路
、34はトリガー線、35は高圧電源、36は損失素子
、37はフィルターである。 第4図は、第2図と同じく第2の実施例の各機構の働き
を示す図である。 第5図は吸収体36の一例の工坏ルギー準位図である。
FIG. 1 is a diagram showing the structure of the first embodiment, in which 1 is a total reflection mirror, 2 is a laser rod containing an active medium, 3 is a continuous excitation means, 4 is an output mirror, 5 is a saturable absorber, and 6 is a laser rod containing an active medium. 7 is a loss modulator for continuous mode locking, 7 is its driving power source, 8 is a pulse excitation means,
9 is a trigger line, 10 is an amplifier, 11 is a controllable modulator, 14 is a variable delay circuit, 13 is a pulse waveform generator, 1
2 is an amplifier for its output, and 15 is a trigger pulse generator. Figure 2 is a diagram chronologically showing the function of each mechanism in Figure 1.
Figure 2 a) is the emission waveform of the pulsed excitation means, Figure 2 b)
2C) shows the waveform of the increase in gain, FIG. 2C) shows the waveform of the electrically generated loss, and FIG. 2D) shows the substantially increased gain. FIG. 3 is a block diagram of the second embodiment, in which 31 is a saturated dye;
32 is an active medium for pulse excitation, 33 is an electric circuit for excitation, 34 is a trigger wire, 35 is a high voltage power supply, 36 is a loss element, and 37 is a filter. FIG. 4, like FIG. 2, is a diagram showing the function of each mechanism of the second embodiment. FIG. 5 is an engineering level diagram of an example of the absorber 36.

Claims (1)

【特許請求の範囲】[Claims] 1 共振器内に活性媒体と強制損失変調器とを含む連続
発振モード同期レーザ装置にかいて、前記活性媒体をさ
らにパルス的に励起する手段と、該励起によって増加す
る過剰利得を打ち消す損失を与え、ついで任意の時間後
に該損失を急減させうる手段と、共振器内の光電場に対
する可飽和性の損失体とを付加したことを特徴とするモ
ード同期レーザ装置。
1. A continuous wave mode-locked laser device including an active medium and a forced loss modulator in a resonator, including means for further exciting the active medium in a pulsed manner, and providing a loss that cancels out excessive gain increased by the excitation. A mode-locked laser device, further comprising means for rapidly reducing the loss after an arbitrary period of time, and a saturable loss body for the optical electric field within the resonator.
JP50043582A 1975-04-09 1975-04-09 Mode mode laser touch Expired JPS5837711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50043582A JPS5837711B2 (en) 1975-04-09 1975-04-09 Mode mode laser touch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50043582A JPS5837711B2 (en) 1975-04-09 1975-04-09 Mode mode laser touch

Publications (2)

Publication Number Publication Date
JPS51117890A JPS51117890A (en) 1976-10-16
JPS5837711B2 true JPS5837711B2 (en) 1983-08-18

Family

ID=12667752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50043582A Expired JPS5837711B2 (en) 1975-04-09 1975-04-09 Mode mode laser touch

Country Status (1)

Country Link
JP (1) JPS5837711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126692A (en) * 1983-01-10 1984-07-21 Nec Corp Q-switching laser device
JP4533733B2 (en) * 2004-11-30 2010-09-01 株式会社キーエンス Laser marking device

Also Published As

Publication number Publication date
JPS51117890A (en) 1976-10-16

Similar Documents

Publication Publication Date Title
Keller et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers
US4019156A (en) Active/passive mode-locked laser oscillator
US4914663A (en) Generation of short high peak power pulses from an injection mode-locked Q-switched laser oscillator
US5381431A (en) Picosecond Q-switched microlasers
EP0990285B1 (en) A laser
Wang et al. Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser
CN108023268B (en) Burst pulse mode ultrafast laser and working method thereof
US20040190563A1 (en) Suppression of mode-beating noise in a q-switched pulsed laser using novel q-switch device
WO2007064298A1 (en) Q-switched laser arrangement
US6807198B1 (en) Laser device
WO2008016287A1 (en) Stable picosecond laser at high repetition rate
US20140269786A1 (en) Continuously variable pulse-width, high-speed laser
Karlsson et al. Q-switching of an Er–Yb: glass microchip laser using an acousto-optical modulator
JPS5837711B2 (en) Mode mode laser touch
French Ultrafast solid-state lasers
US20040190564A1 (en) Hybrid Q-switch device, lasers using the same, and method of operation
JPS5933277B2 (en) Mode-locked laser device
Bado et al. Regenerative amplification in alexandrite of pulses from specialized oscillators
Buchvarov et al. Nonlinear doubling mode-locking of feedback controlled pulsed Nd: YAG laser
Tomov et al. Ultrashort pulse generation in lasers with active mode locking
Keller et al. Ultrafast Laser Physics
Kleinbauer et al. Principles of ultrashort pulse generation
Chi et al. Pulse-jitter reduction in passively Q-switched Nd: YAG/Cr: YAG microchip lasers by injection seeding actively Q-switched laser pulses
JP2021150367A (en) Pulsed laser oscillator
Huang et al. Generation of Self-Q-Switching in a Diode-Pumped Monolithic Yb: KGW Laser