JPS5837576A - Pulse reflecting type range finder - Google Patents

Pulse reflecting type range finder

Info

Publication number
JPS5837576A
JPS5837576A JP56135566A JP13556681A JPS5837576A JP S5837576 A JPS5837576 A JP S5837576A JP 56135566 A JP56135566 A JP 56135566A JP 13556681 A JP13556681 A JP 13556681A JP S5837576 A JPS5837576 A JP S5837576A
Authority
JP
Japan
Prior art keywords
voltage
distance
pulse
time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56135566A
Other languages
Japanese (ja)
Other versions
JPS6312543B2 (en
Inventor
Kenjiyu Muraoka
村岡 建樹
Masahiko Ikeguchi
雅彦 池口
Ikuo Kataoka
片岡 幾雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Electric Works Co Ltd
Original Assignee
Nagoya Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Electric Works Co Ltd filed Critical Nagoya Electric Works Co Ltd
Priority to JP56135566A priority Critical patent/JPS5837576A/en
Publication of JPS5837576A publication Critical patent/JPS5837576A/en
Publication of JPS6312543B2 publication Critical patent/JPS6312543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Abstract

PURPOSE:To prevent the accuracy of the titled device from being reduced temperature by changing a standard voltage in the same manner as the change of range voltage in accordance with the temperature change. CONSTITUTION:The light from a laser diode 2 is directly led to a photodetector 7 reflected by an object to be measured and led to a photodetector 11. Outputs from these photodetectors 7, 11 are amplified by amplifiers 8, 12 and inputted to a voltage generating circuit 5 with constant gradient inclination through the processing such as differentiation and zero-cross detection. A sampling/holding circuit 6 holds the standard and range voltages and difference detecting circuits 22, 23 compares these voltages to calculate the distance. The culculated result is displayed on a distance display device 25 through an A/D converter 24.

Description

【発明の詳細な説明】 本発明は、電波又は光等の電磁波パルスの物体までの往
復時間により、その物体オでの距離を測定するパルス反
射型測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulse reflection type distance measuring device that measures the distance to an object based on the round trip time of electromagnetic wave pulses such as radio waves or light to the object.

従来、この種の装置としては、発射パルスと反射パルス
の時間間隔を、基準クロックパルスをカウントすること
によシ測定し、そのカウント量を距離に換算する第1の
方式、および発射パルスと反射パルスの時間間隔を電圧
に変換し、その電圧を距離に換算する第2の方式を採用
するものがあった。
Conventionally, this type of device has a first method in which the time interval between the emitted pulse and the reflected pulse is measured by counting reference clock pulses, and the counted amount is converted into distance; Some have adopted a second method in which the time interval between pulses is converted into voltage, and the voltage is converted into distance.

ところが、これらの方式は、取扱う電波や光の速度が3
 X 10  m/jと非常に速いため、時間処理の誤
差が精度に大きな影響を与え、例えば2/3×10  
秒の誤差が1mに相当する程である。
However, these methods handle radio waves and light at a speed of 3
Since it is extremely fast at x 10 m/j, errors in time processing have a large impact on accuracy, for example, 2/3 x 10 m/j.
The error in seconds is equivalent to 1 meter.

特に、第1の方式は、測定精度を上げるためには高周波
(例えば、+1tnの精度で150MH,)の基準クロ
ックパルスが必要となり、必然的にカウンタなども同様
に高速応答が要求されるため、回路構成が複雑となり、
非常に高価となる欠点がある。
In particular, the first method requires a high-frequency reference clock pulse (for example, 150 MHz with +1 tn accuracy) in order to improve measurement accuracy, and counters and the like are also required to have a high-speed response. The circuit configuration becomes complicated,
The disadvantage is that it is very expensive.

一方、第2の方式は、第1の方式に比べると高速応答部
分が少なくて済み、回路構成が簡単であるが、アナログ
電圧を扱うために、温度による影響が大きく、実用的な
精度の実現が困難で、実用化が不可能であった。
On the other hand, the second method requires fewer high-speed response parts and has a simpler circuit configuration than the first method, but because it handles analog voltages, it is greatly affected by temperature and cannot achieve practical accuracy. was difficult and impossible to put into practical use.

このため、車輌に搭載して車間距離を測定する装置とし
て使用する場合などのために、ある程度の精度(±1m
程度)が出、且つ安価な測距装置が望まれていた。
For this reason, it has a certain level of accuracy (±1m) when used as a device to measure the distance between vehicles when mounted on a vehicle.
There was a desire for an inexpensive distance measuring device that would provide accurate results.

本発明は、かかる従来の問題に鑑みてなされたものであ
り、時間間隔を電圧に変換する方式を採用しながらも、
温度などの環境条件の影響を受けないようKすることに
より、安価で精度の良い測距装置を提供することを目的
とするものである。
The present invention was made in view of such conventional problems, and while adopting a method of converting time intervals into voltage,
The object is to provide a distance measuring device that is inexpensive and has high accuracy by making it unaffected by environmental conditions such as temperature.

以下、本発明の実施例を図面と共に説明する。Embodiments of the present invention will be described below with reference to the drawings.

本実施例においては、時間間隔を距離電圧に変換するに
際して基準電圧を同一の変換手段により別のタイミング
で基準電圧に変換し比較を行うようにし、例え温度によ
って距離電圧が変化しても同時に基準電圧も変化する点
を利用し、その温度などによる影響を受けないようにな
っている。1だ、反射光の検出は、その反射パルスの中
心位首検知を行なうようにして、反射パルスの大小によ
る検出誤差を生じないようにすると共に尖鋭なパルスを
発射し、該パルスをそのま壕受光増幅する必要をなくし
高速応答部分を必要最小限に押えている。
In this embodiment, when converting a time interval to a distance voltage, the reference voltage is converted to the reference voltage at different timings by the same conversion means and compared, so that even if the distance voltage changes due to temperature, the reference voltage is It takes advantage of the fact that the voltage also changes, making it unaffected by temperature and other factors. 1. To detect the reflected light, detect the center position of the reflected pulse to avoid detection errors due to the size of the reflected pulse, and emit a sharp pulse and directly transmit the pulse. It eliminates the need to amplify the received light and keeps the high-speed response part to the necessary minimum.

第1図において、1は全体を制御するシーケンス制御回
路であり、レーザダイオード2を駆動する駆動回路3に
所定周期で駆動パルスILを送ると共に、その駆動パル
スaより約180度位相のずれたQm(最短距離)タイ
ミングパルスb IIMTo (後記する最大距離75
FF+を光が往復するに要する時間)の遅延回路4と定
勾配傾斜電圧発生回路5の動作スタート入力に送り、蔓
にサンプリングホールド回路6に対して、距離電圧ザン
プリングパルスdを駆動パルスaから時間T。以上遅れ
た時間Tc に出し、その後、定勾配傾斜電圧発生回路
をリセットし、r5mC1iA大距離)電圧サンプリン
グパルスdを更に遅れた時間TdK出し、0m電圧サン
プリングパルスeを更に遅れた時間T0に出す。
In FIG. 1, reference numeral 1 denotes a sequence control circuit that controls the entire system, and it sends a drive pulse IL at a predetermined period to a drive circuit 3 that drives a laser diode 2, and also sends a drive pulse IL with a phase shift of about 180 degrees from the drive pulse a. (Shortest distance) Timing pulse b IIMTo (Maximum distance 75 to be described later)
FF+ is sent to the delay circuit 4 (time required for light to travel back and forth) and the operation start input of the constant gradient ramp voltage generation circuit 5, and the distance voltage sampling pulse d is sent from the drive pulse a to the sampling hold circuit 6. Time T. After that, the constant gradient ramp voltage generating circuit is reset, the r5mC1iA long distance) voltage sampling pulse d is outputted at a further delayed time TdK, and the 0m voltage sampling pulse e is outputted at a further delayed time T0.

7はtg1受光素子であり、上記レーザダイオード2の
発光した光をグラスファイバーによって導いて直接(距
離Omで)受光するようになっている。そして、その出
力は参照基準増幅器8で増幅され、その増幅器8の出力
#−i第2図に示すようにピーク値をもつ波形の信号で
あるが、次段の微分回路9でピーク値の位置つまり中心
位置でゼロクロスする微分信号に変換され、その微分信
号から次段のゼロクロス検出回路1aによりゼロクロス
時点で立上るパルスが出て、遅延回路4に入力する。そ
して、遅延回路4で時間T。遅れた信号が定勾配#斜電
圧発生回路5の電圧上昇動作のストップ信号となる。
Reference numeral 7 denotes a tg1 light receiving element, which guides the light emitted by the laser diode 2 through a glass fiber and directly receives the light (at a distance Om). Then, the output is amplified by the reference standard amplifier 8, and the output #-i of the amplifier 8 is a waveform signal with a peak value as shown in FIG. That is, it is converted into a differential signal that crosses zero at the center position, and a pulse that rises at the time of zero cross is outputted from the differential signal by the next stage zero cross detection circuit 1a, and is input to the delay circuit 4. Then, the delay circuit 4 calculates the time T. The delayed signal becomes a stop signal for the voltage increasing operation of the constant slope #slant voltage generation circuit 5.

なお、上記微分回路9とゼロクロス検出回路10によっ
て増幅器8の出力波形の中心位置を検出するようにした
理由は次のとうりであり、本方式を採らない場合、レー
ザダイオードの出力波形は非常に細い方形波の必要があ
り、また受光素子、増幅器等もその波形を忠実に再現す
る素子を使用する必要がある。すなわち、一般に簡単な
レーザダイオードの駆動方式の場合、出力波形は方形波
ではなく山形状の波形で丸味をおびており、また第1受
光素子Tや増幅器8などの応答特性により更に丸味が増
える。一方第1受光素子Tに入射する光にはt43図に
示すようにランダム雑音が重畳しているために適当なレ
ベルのしきい値を設けて本。
The reason why the center position of the output waveform of the amplifier 8 is detected by the differentiating circuit 9 and the zero-cross detection circuit 10 is as follows. If this method is not adopted, the output waveform of the laser diode will be very A thin square wave is required, and it is also necessary to use a light receiving element, an amplifier, etc. that can faithfully reproduce the waveform. That is, in the case of a simple laser diode driving method, the output waveform is generally not a square wave but a mountain-shaped waveform with a rounded shape, and the response characteristics of the first light receiving element T, the amplifier 8, etc. make the output waveform even more rounded. On the other hand, since random noise is superimposed on the light incident on the first light-receiving element T, as shown in Figure t43, a threshold value of an appropriate level is set.

来の信号を検出する必要があるが、この場合丸味をおび
た波形の信号は、その大小によってしきい値からの立上
り時刻が異なり、この結果その立上りを検出すると信号
の大小によって検出時刻が異なり誤差が生じるようにな
る。しかし、波形の中心位置を検出するようにすれば、
波形の大小による時間誤差は生じない。
In this case, the rounded waveform signal has different rise times from the threshold depending on its size, and as a result, when the rising edge is detected, the detection time differs depending on the signal size. Errors will occur. However, if you detect the center position of the waveform,
No time error occurs due to the size of the waveform.

11はレーザダイオード2から放射され、且つ対象物体
に当って反射した光を受光する第2受光素子で、前記第
1受光素子Tと同一性能のものが使用される。そして、
この受光素子11の出力は前記参照基準増幅器8と同様
な受光増幅器12で増幅され、ゲート13を介して微分
回路14とピーク保持回路15に入力する。ゲート13
は対象物体の背景ノイズなどの受光素子11に入射する
ランダムノイズを除去するためのもので、7−ケンス制
御回路1によってレーザ光の発射される少し以前から前
記遅延時間τ。よりも若干長めの時間だけ開く。微分回
路14は次段のゼロクロス検出回路16とによって、前
記微分回路Sと前記ゼロックス検出回路10との組合せ
と同様に、丸味をおびた信号波形の中心位置を検出する
。そして、そのゼロクロス検出回路16の出力が、定勾
配傾斜電圧発生回路5の動作スタート入力に入っている
。ピーク保持回路15は、第4図に示すように、ゲート
13からの入力信号のピーク値を保持する回路であり、
次段の微分回路1Tによってその立上りエツジが微分さ
れ、ピーク値(中心位置)より時間的に若干早い微分パ
ルスが得られ、その微分パルスが次段の比較器18で比
較レベルと比較されることKより、上記ピーク値より時
間的に若干早い立上9エツジをもつ検出出力が得られ、
定勾配傾斜電圧発生回路5のリセット入力に入る。
Reference numeral 11 denotes a second light receiving element that receives the light emitted from the laser diode 2 and reflected by hitting the target object, which has the same performance as the first light receiving element T. and,
The output of this light-receiving element 11 is amplified by a light-receiving amplifier 12 similar to the reference amplifier 8, and is input to a differentiating circuit 14 and a peak holding circuit 15 via a gate 13. gate 13
is for removing random noise incident on the light-receiving element 11 such as background noise of the target object, and the delay time τ is set slightly before the laser beam is emitted by the control circuit 1. Open for a slightly longer period of time. The differentiating circuit 14 and the next-stage zero-cross detecting circuit 16 detect the center position of the rounded signal waveform, similar to the combination of the differentiating circuit S and the Xerox detecting circuit 10. The output of the zero cross detection circuit 16 is input to the operation start input of the constant slope ramp voltage generation circuit 5. The peak holding circuit 15 is a circuit that holds the peak value of the input signal from the gate 13, as shown in FIG.
The rising edge is differentiated by the next stage differentiating circuit 1T to obtain a differentiated pulse that is slightly earlier in time than the peak value (center position), and this differentiated pulse is compared with the comparison level by the next stage comparator 18. From K, a detection output with a rising 9 edge slightly earlier than the above peak value is obtained,
Enters the reset input of the constant slope ramp voltage generation circuit 5.

なお、ピーク保持回路15は、シーケンス制御回路1に
よって、距離電圧サンプリングパルス(C1が出る時の
タイミングでクリアされる。
Note that the peak holding circuit 15 is cleared by the sequence control circuit 1 at the timing when the distance voltage sampling pulse (C1) is output.

よって、この定勾配傾斜電圧発生回路5の出力側には、
比較器1日の出力パルスでリセットされて零となり、ゼ
ロクロス検出回路16の出力パルスで動作スタートして
一定勾配で増大する電圧出力が出る。この出力はゲート
13の出力パルスの内o最大パルス毎リセット・セット
され、鋸歯状波形となる。よって、最大値の1番大きな
反射信号でスタートされた後はリセットされない。そし
て、遅延回路4から時間τ。経過時にパルスが出ると、
定勾配傾斜電圧発生回路5の出力電圧は、その時の電圧
を保持する。その電圧は、その後所定時間すると内部リ
セツトされ零となる。
Therefore, on the output side of this constant slope ramp voltage generation circuit 5,
The comparator is reset to zero with the output pulse of the first day, and starts operating with the output pulse of the zero cross detection circuit 16, producing a voltage output that increases at a constant slope. This output is reset and set every o maximum pulses among the output pulses of the gate 13, and has a sawtooth waveform. Therefore, after starting with the largest reflected signal having the maximum value, it is not reset. Then, the time τ is output from the delay circuit 4. If a pulse appears when the time elapses,
The output voltage of the constant slope ramp voltage generation circuit 5 maintains the voltage at that time. The voltage is then internally reset to zero after a predetermined period of time.

サンプリングホールド回路6は、シーケンス制御回路1
からの距離電圧サンプリングパルスCを受けた時にその
時の定勾配傾斜電圧発生回路5の出力電圧(距離電圧v
x  )を出力端子6aに11」シ続け、またQmi圧
サンすリングパルスθを受けた時にその時の回路5の出
方電圧(Qm奄圧V。)を出力端子6bに出し続け、更
に75m’を圧サンプリングパルスdを受けた時にその
時の回路5の出力電圧C75mt圧v、5)を出力端子
601C出し続ける。そして、再度上記サンプリングパ
ルスc、e、dを受けることにより内容を更新する。
The sampling hold circuit 6 is connected to the sequence control circuit 1.
When receiving the distance voltage sampling pulse C from
x ) to the output terminal 6a for 11", and when receiving the Qmi pressure sampling pulse θ, continue to output the output voltage of the circuit 5 at that time (Qm pressure V.) to the output terminal 6b, and further 75m' When the voltage sampling pulse d is received, the output voltage C75mt pressure v, 5) of the circuit 5 at that time continues to be output from the output terminal 601C. Then, the contents are updated by receiving the sampling pulses c, e, and d again.

1″9〜21は次々に更新した距離電圧V工、Om電圧
V。、15m電圧V?5をレーザ発光パルスの10〜1
00発分平均化する平均化回路であり、これによって距
離電圧Vx、Qm電圧V6%75m電圧v0の精度向上
を図っている。
1''9~21 are the distance voltage V, Om voltage V., 15m voltage V?5 updated one after another, and 10~1 of the laser emission pulse.
This is an averaging circuit that averages 00 shots, thereby improving the accuracy of distance voltage Vx, Qm voltage V6%75m voltage v0.

なお、距離電圧v8はし〜ザ発光パルスの対象物体に対
する往復時間が長いほど低くなり、om電圧voは最大
電圧、y s rrr tFE ”/raは最小(零)
である。つまシ、vo>vx>v7ffの関係におる。
Note that the distance voltage v8 becomes lower as the round trip time of the light emitting pulse to the target object becomes longer; the om voltage vo is the maximum voltage, and the ys rrr tFE''/ra is the minimum (zero).
It is. The relationship is vo>vx>v7ff.

22は平均化回路2oの出方電圧VDと平均化回路19
の出力電圧V□との差V。−V工=voxを出力する第
1差分検出回路、23は平均化回路20の出力電圧v0
と平均化回路21の出方電圧v〒5トノ差V o  V
ys −VO?6  k 出力f ル第2差分検出回路
である。そして、これらの電圧voxとvol、は、A
/D変換器24において、 ”VO?5ノ比較が行なわ
れ、その、結果のアナログ電圧がデジタル信号に変換さ
れる。この場合電圧v0工は周囲温度などによって変化
するが、同時に電圧Woolも同じように変化するので
、””voysの値は温度などによっては変化しない。
22 is the output voltage VD of the averaging circuit 2o and the averaging circuit 19
The difference V from the output voltage V□. -V engineering=first difference detection circuit that outputs vox; 23 is the output voltage v0 of the averaging circuit 20;
and the output voltage of the averaging circuit 21 〒5 difference V o V
ys-VO? 6 k output f is the second difference detection circuit. And these voltages vox and vol are A
In the /D converter 24, a comparison of "VO?5" is performed, and the resulting analog voltage is converted into a digital signal.In this case, the voltage v0 varies depending on the ambient temperature, etc., but at the same time, the voltage Wool is also the same. Therefore, the value of ``voys'' does not change depending on the temperature or the like.

この””VO?6の値は対象物体までの距離に比例する
。そして変換したデジタル信号を距離表示器25に加え
て距離表示を行なう。また、検出すべき最小距離(例え
ば自動車における最小車間銀M1)の信号を比較基準と
して与えた比較器26に加えることにより、その最小距
離よりも知距離に対象物体が存在する場合には、その比
較器26から比較出力が出て、警報器2Tが動作する。
This “”VO? The value of 6 is proportional to the distance to the target object. The converted digital signal is then applied to the distance indicator 25 to display the distance. In addition, by adding a signal of the minimum distance to be detected (for example, the minimum inter-vehicle distance M1 in a car) to the comparator 26 provided as a comparison standard, if a target object exists at a known distance from the minimum distance, the signal can be detected. A comparison output is output from the comparator 26, and the alarm 2T is activated.

以上の動作の全体のタイミングチャートを第5図に示し
た。Txは発射パルスの対象物体までの往復時間である
A timing chart of the entire operation described above is shown in FIG. Tx is the round trip time of the firing pulse to the target object.

以上説明したように、本発明は電磁波パルスの対象物体
までの往り時間を変換手段にて第1のタイミングで変換
して距離電圧として保持し、且つ予しめ定めた基準時間
を上記変換手段にて別の第2のタイミングで変換して基
準電圧として保持し、上記距離電圧と上記基準電圧との
比較により距離検出を行なうようにしたことを要旨とす
るものである。
As explained above, the present invention converts the travel time of an electromagnetic wave pulse to a target object at a first timing using a converting means and holds it as a distance voltage, and converts a predetermined reference time to the converting means. The gist of the present invention is that the distance voltage is converted at another second timing and held as a reference voltage, and the distance is detected by comparing the distance voltage with the reference voltage.

よって本発明によれば、距離電圧と基準電圧が温度影響
を受けても同様に変化するので、その比較結果は変らず
、よって温度による悪影響は受けなくなる。
Therefore, according to the present invention, even if the distance voltage and the reference voltage are affected by temperature, they change in the same way, so the comparison result does not change, and therefore, there is no adverse effect due to temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置の回路図、第2図〜第
5図は動作説明のためのタイミングチャートである。 2・・・レーザダイオード 7・・・第1受光素子 8・・・参照光基準増幅器 11・・・第2受光素子 15・・・ピーク保持回路
FIG. 1 is a circuit diagram of an apparatus according to an embodiment of the present invention, and FIGS. 2 to 5 are timing charts for explaining the operation. 2... Laser diode 7... First light receiving element 8... Reference light reference amplifier 11... Second light receiving element 15... Peak holding circuit

Claims (1)

【特許請求の範囲】[Claims] 電磁波パルスを発射して対象物体までの該電磁波パルス
の往復時間を電圧信号に変換し、該電圧信号を上記対象
物体までの距離信号として検出するパルス反射型測距装
置において、上記電磁波パルスの往復時間を時間電圧変
換手段にて第1のタイミングで電圧に変換して距離電圧
として保持し、且つ予じめ定めた基準時間を上記時間電
圧変換手段にて別の第2のタイミングで電圧に変換して
基準電圧として保持し、上記距離電圧と上記基準電圧と
の比較により距離検出を行なうようKしたことを特徴と
するパルス反射型測距装置。
In a pulse reflection type ranging device that emits an electromagnetic wave pulse, converts the round trip time of the electromagnetic wave pulse to a target object into a voltage signal, and detects the voltage signal as a distance signal to the target object, the round trip time of the electromagnetic wave pulse Converting time into voltage at a first timing by the time-voltage converting means and holding it as a distance voltage, and converting the predetermined reference time into voltage at another second timing by the time-voltage converting means. A pulse reflection type distance measuring device, wherein the distance voltage is held as a reference voltage, and distance detection is performed by comparing the distance voltage with the reference voltage.
JP56135566A 1981-08-31 1981-08-31 Pulse reflecting type range finder Granted JPS5837576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135566A JPS5837576A (en) 1981-08-31 1981-08-31 Pulse reflecting type range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135566A JPS5837576A (en) 1981-08-31 1981-08-31 Pulse reflecting type range finder

Publications (2)

Publication Number Publication Date
JPS5837576A true JPS5837576A (en) 1983-03-04
JPS6312543B2 JPS6312543B2 (en) 1988-03-19

Family

ID=15154803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135566A Granted JPS5837576A (en) 1981-08-31 1981-08-31 Pulse reflecting type range finder

Country Status (1)

Country Link
JP (1) JPS5837576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187272A (en) * 1986-02-14 1987-08-15 Nec Home Electronics Ltd Pulse radar
JPS6381289A (en) * 1986-09-25 1988-04-12 Fujitsu Ten Ltd Distance measuring equipment
JP2008232830A (en) * 2007-03-20 2008-10-02 Denso Corp Interference determination method and fmcw radar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187272A (en) * 1986-02-14 1987-08-15 Nec Home Electronics Ltd Pulse radar
JPS6381289A (en) * 1986-09-25 1988-04-12 Fujitsu Ten Ltd Distance measuring equipment
JP2008232830A (en) * 2007-03-20 2008-10-02 Denso Corp Interference determination method and fmcw radar
US7728762B2 (en) 2007-03-20 2010-06-01 Denso Corporation Method for detecting interference in radar system and radar using the same
JP4492628B2 (en) * 2007-03-20 2010-06-30 株式会社デンソー Interference judgment method, FMCW radar

Also Published As

Publication number Publication date
JPS6312543B2 (en) 1988-03-19

Similar Documents

Publication Publication Date Title
US7212278B2 (en) Method and device for recording a three-dimensional distance-measuring image
JP3120202B2 (en) Pulse type lightwave distance meter
JPH1123709A (en) Distance-measuring device
CN106019300A (en) Laser ranging device and laser ranging method thereof
CN205992055U (en) A kind of laser ranging system
CN207601308U (en) A kind of laser ranging system
CN106054205A (en) Laser range finding device and laser range finding method thereof
JPH07234280A (en) Device and method for measuring visibility and present weather
JP2941593B2 (en) Distance measuring device
US6429941B1 (en) Distance measuring equipment and method
CN109870702A (en) A kind of distant-range high-precision laser ranging system and distance measuring method based on TDC
JP4334678B2 (en) Distance measuring device
US6717656B2 (en) Method and apparatus of a laser range detector
JPS5837576A (en) Pulse reflecting type range finder
JPH04145391A (en) Distance measuring device
JP3193148B2 (en) Distance detection device
JPH04145390A (en) Distance measuring device
JP2500733B2 (en) Laser distance measuring device
CN107272011A (en) Time point discrimination method, time point discriminator circuit system and LDMS
JPH07198846A (en) Distance measuring apparatus
JP2757638B2 (en) Inter-vehicle distance detection device
JPH08220214A (en) Radar device for vehicle
JPS6023739Y2 (en) light wave distance meter
JPH09197044A (en) Laser distance measuring device
JPH0381687A (en) Laser distance measuring instrument