JPS583744A - Recovered and reconditioned sand, microwave hardenable molding sand made of said sand and its production - Google Patents

Recovered and reconditioned sand, microwave hardenable molding sand made of said sand and its production

Info

Publication number
JPS583744A
JPS583744A JP10132581A JP10132581A JPS583744A JP S583744 A JPS583744 A JP S583744A JP 10132581 A JP10132581 A JP 10132581A JP 10132581 A JP10132581 A JP 10132581A JP S583744 A JPS583744 A JP S583744A
Authority
JP
Japan
Prior art keywords
sand
rotating container
recovered
microwave
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10132581A
Other languages
Japanese (ja)
Inventor
Takashi Tono
崇 東野
Akio Yamanishi
昭夫 山西
Kanichi Sato
寛一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP10132581A priority Critical patent/JPS583744A/en
Publication of JPS583744A publication Critical patent/JPS583744A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To produce molding sand of superior microwave curing performance inexpensively by dry washing recovered sand under application of impact and frictional effect by circulation of said sand in a rotary vessel then adding a thermosetting resin thereto and kneading these. CONSTITUTION:Recovered sand is charged from a hopper 6 into a rotary vessel 1, and under circulation by rotation of the vessel 1, it is scrubbed by the impact and frictional effect of a high speed revolving agitator 4. The impurities on the surfaces of the sand grains are moderately removed by this dry washing, and the sand contg. 0.5-6% clay components and 0.3-5% carbonaceous org. materials is reconditioned. The reconditioned sand is classified, and a thermosetting resin is added at 2-5% to 100pts.wt. reconditioned sand, then these are kneaded. In this way, a large amt. of the reusable reconditioned sand is obtained in a large amt. with low energy. From this reconditioned sand, the microwave curable molding sand having uniform and quick microwave curing performance and having sufficient shell strength without addition of dielectric materials such as carbon black is obtained.

Description

【発明の詳細な説明】 本発明は、鋳造工場で大量に発生する回収砂の再生処理
並びkそれKよって得られる回収再生砂を原料としたマ
イクロ波硬化性鋳物砂およびその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to recycling treatment of recovered sand generated in large quantities in foundries, microwave-curable foundry sand using the recovered recycled sand as a raw material, and a method for producing the same. be.

本出願人は、先に、鋳型材料にマイクロ波を照射して、
鋳型材料の自己発熱によって鋳型を製造する方法を提案
しており、その際に使用される鋳型材料として新砂、熱
硬化性樹脂(熱可塑性樹脂に硬化剤を配合して熱硬化性
としたものを 含む)および黒鉛等の誘電物質を混線し
てなるマイクロ波硬化性鋳物砂を提案している(%願昭
53−114046号)。
The applicant first irradiates the mold material with microwaves,
We are proposing a method of manufacturing molds using self-heating of the mold material, and the mold materials used in this process include fresh sand and thermosetting resin (a thermosetting resin made by blending a hardening agent with a thermoplastic resin). proposed a microwave-curable foundry sand made by mixing dielectric materials such as carbon fibers and graphite (% patent application No. 53-114046).

しかしながら、この鋳物砂は黒鉛等の材料費が高く、コ
スト面で問題があり、さらkこの鋳物砂を用いた場合に
は黒鉛の分離が起り易く、硬化ムラが出るなどの問題も
あった。
However, this foundry sand has problems in terms of cost due to the high cost of materials such as graphite, and when this foundry sand is used, there are also problems such as separation of graphite and uneven hardening.

上記の問題点を解消するため、本出願人はさらに、熱硬
化性樹脂と新砂に、マイクロ波に対する誘電物質として
の作用を有する炭化砂を混合したマイクロ波硬化性鋳物
砂を提案しているが(特願昭53−156924号)、
予め砂粒表面に樹脂をコーティングし、これを加熱して
樹脂を炭化させて炭化砂を得る場合にはその製造にコス
トがかかり、またシェルモールド等の造型ラインより発
生する炭化砂を使用する場合には、適度に炭化した原料
砂を大′IkK入手することが困難であるという問題が
ある。また、鋳型の抗折力を増大し硬化時間を短くする
ためには砂粒が炭化物で均一に被覆されていることが要
求されるが、その場合にはさらに炭化砂の表面調整処理
工程が付加され、処理コストの増加を来たす。さらに1
.炭化砂は誘電物質とし【新砂に混合して使用されるも
のであり、上記の如営問題点あるいはさらに品質の面か
ら原料砂に置き換えることは困難である。
In order to solve the above problems, the applicant has further proposed microwave-curable foundry sand, which is a mixture of thermosetting resin and fresh sand with carbonized sand that acts as a dielectric substance against microwaves. (Patent Application No. 53-156924),
If the surface of the sand grains is coated with resin in advance and then heated to carbonize the resin to obtain carbonized sand, manufacturing costs are high, and if carbonized sand generated from a molding line such as a shell mold is used, However, there is a problem in that it is difficult to obtain suitably carbonized raw material sand of large IkK. In addition, in order to increase the transverse rupture strength of the mold and shorten the curing time, it is required that the sand grains be uniformly coated with carbide, but in this case, an additional surface conditioning process for the carbonized sand is required. , resulting in an increase in processing costs. 1 more
.. Carbonized sand is used as a dielectric substance and is mixed with fresh sand, and it is difficult to replace it with raw sand due to the above-mentioned problems and quality issues.

ところで、鋳造工場では大量に発生する回収砂をマイク
ロ波硬化性鋳物砂の原料砂として再生使用できれば、製
造コストを大巾に低減できると共に生産性を増大できる
ので極めて有利であるが、鋳造工場で大量に発生する回
収砂は粘土質、微粉を多量に含み、粘結固化しているた
めそのままでは使用出来ず、また一般に古砂の再生回収
方法として知られている方法ではマイクロ波硬化性鋳物
砂の原料砂を得ることは不可能である。
By the way, it would be extremely advantageous if the recovered sand, which is generated in large quantities in foundries, could be recycled as raw material sand for microwave-curable foundry sand, as it would greatly reduce manufacturing costs and increase productivity. The recovered sand that is generated in large quantities contains a large amount of clay and fine powder, and has been caked and solidified, so it cannot be used as it is. It is impossible to obtain raw sand for this purpose.

すなわち、従来知られている再生回収方法は、造型(鋳
型)、溶湯注入、解枠(製品取出し)後の廃砂を磁選(
鉄片除去)、冷却、篩分け(さらに粗粒分を粉砕し、ガ
ラを除去した後篩分けする)して得られる回収砂を、水
洗し、乾燥した後冷却し、さらに分級して微粉抜きをす
る水洗方法、または上記のようKして得られた回収砂を
約800℃の高温で焙焼し、冷却した後遭尚な攪拌機等
により焙焼された砂粒表面をスクラビング(洗fIP)
シ1分級して微粉抜きをする焙焼スクラビング法がある
。しかしながら、このような方法で再生処理を施した場
合には、砂粒表面を被覆していた炭質有機物は、水洗方
法の場合は殆んど洗い流され、また焙焼スクラビング法
の場合は焼失してしまい、マイクロ波に対する誘電物質
としての炭質有機物が残存していない再生砂が得られる
。したがって、このような再生砂をマイクロ波硬化性鋳
物砂として使用する場合には、新たにカーボンブラック
、酸化鉄等の誘電物質を配合する必要があり、製造コス
トの低減という所期の目的を達成することはできない。
In other words, the conventionally known recycling and recovery method involves magnetic separation (
The recovered sand obtained by removing iron pieces), cooling, and sieving (further pulverizing coarse particles, removing glass, and sieving) is washed with water, dried, cooled, and further classified to remove fine particles. Alternatively, the recovered sand obtained by K as described above is roasted at a high temperature of about 800°C, and after cooling, the surface of the roasted sand grains is scrubbed with a stirrer or the like (washing fIP).
There is a roasting scrubbing method that classifies and removes fine powder. However, when regeneration treatment is performed using such a method, most of the carbonaceous organic matter that coats the surface of the sand grains is washed away when using the water washing method, or burnt out when using the roasting scrubbing method. , recycled sand is obtained in which no carbonaceous organic matter remains as a dielectric substance for microwaves. Therefore, when using such recycled sand as microwave-curable foundry sand, it is necessary to add dielectric substances such as carbon black and iron oxide, which makes it difficult to achieve the intended purpose of reducing manufacturing costs. I can't.

さらに、上記の各方法で得られる再生砂は、鋳型が溶湯
注入時に受ける熱衝撃を適度に緩和する後目を果たす粘
土分をも殆んど消失してしまうため、品質の点でも問題
がある。
Furthermore, the recycled sand obtained by each of the above methods also has a quality problem because most of the clay content, which acts as a backing layer to moderate the thermal shock that the mold receives when pouring molten metal, is also lost. .

したがって、本発明の目的は、鋳造工場で大の原料砂と
して使用できるように再生処理するととKある。同様に
、本発明の目的は、上記のマイク四波硬化用原料砂とし
てそのまま使用可能であり、かつ品質のよい再生砂を安
価kかつ大量に提供するととkある。
Therefore, an object of the present invention is to recycle the sand so that it can be used as raw material sand in foundries. Similarly, an object of the present invention is to provide recycled sand of good quality and in a large quantity at a low price, which can be used as it is as raw material sand for the above-mentioned microphone four-wave curing.

本発明のさらに他の目的は、−vイク四波硬化性および
シェル強度等の品質に優れたマイクロ波硬化性鋳物砂を
、安価Kまた生産性よく提供するととkある。
Still another object of the present invention is to provide microwave-curable foundry sand with excellent qualities such as four-wave hardenability and shell strength at a low cost and with good productivity.

上記本発明の目的は、回収砂の再生処理を、回転容器内
に収容した回収砂に回転容器の回転により循環運動を与
えると共に1回転容器内に配設されかつ該容器の回転方
向と対向方向に回転するアジテータ−の回転により、上
記循環運動状態の回収砂に衝撃摩擦作用を与え、回収砂
を乾式洗浄するととKよって達成される。
It is an object of the present invention to carry out the recycling treatment of recovered sand by giving circulation motion to the recovered sand stored in a rotating container by the rotation of the rotating container, and by disposing the recovered sand in a rotating container in a direction opposite to the rotating direction of the container. By the rotation of the agitator which rotates, an impact friction effect is applied to the recovered sand in the above-mentioned circulating motion state, and dry cleaning of the recovered sand is achieved.

このような本発明の乾式再生処理によって、粘土分0.
5〜6−1炭質有機物0.3〜5−を含有し、そのまま
マイクロ波硬化用原料砂として使用可能な再生砂が得ら
れ、またこの再生砂に対して熱硬化性樹脂を2〜5重量
慢混練するととによって、マイクル波硬化性に優れた鋳
物砂が得られる。
By such dry regeneration treatment of the present invention, the clay content is reduced to 0.
5-6-1 Recycled sand containing 0.3-5-5 carbonaceous organic matter and usable as raw material sand for microwave curing is obtained, and 2-5 weight of thermosetting resin is added to the recycled sand. By slow kneading, foundry sand with excellent microwave curability can be obtained.

詳細に説明する。Explain in detail.

まず、造型、溶湯注入、解枠後に発生する廃砂は、常法
に従って磁選、冷却、篩分けされ、回収砂が得られる。
First, the waste sand generated after molding, pouring molten metal, and breaking the frame is magnetically sorted, cooled, and sieved according to conventional methods to obtain recovered sand.

この回収砂は、ついで本発明に係る再生処理に付される
This recovered sand is then subjected to the regeneration treatment according to the present invention.

第1図および第2図は、本発明に係る再生処理を実施す
るための製電の一態様例を示す。
FIG. 1 and FIG. 2 show an example of an embodiment of electricity production for carrying out the regeneration process according to the present invention.

1は約15e′傾斜した回転容器であり、開閉自在な底
板3の周囲を駆動装置2によってfs2図に示す矢印方
向に約50〜100 rpmの中速度で回転される。該
回転容器1内には所定位置にアジテータ−4が配設され
、アジテータ−4は駆動装置5によって回転容il+の
回転方向と対向方向に約500〜2000 rpmの高
速度で回転される。
Reference numeral 1 denotes a rotating container inclined by about 15e', which is rotated by a drive device 2 around a bottom plate 3 which can be opened and closed at a medium speed of about 50 to 100 rpm in the direction of the arrow shown in Fig. fs2. An agitator 4 is disposed at a predetermined position within the rotating container 1, and the agitator 4 is rotated by a drive device 5 at a high speed of about 500 to 2000 rpm in a direction opposite to the rotational direction of the rotating container il+.

回転容器1の上部にはホッパー6およびダクト7がそれ
ぞれ所定位置に配設されている。なお、回収砂は粘土分
を含んでいるため回転容filの内壁に付着し島いので
、回転容器10底面および内周壁に付着した回収砂を剥
離するように、スクレーパー8を回転容器1の底面ある
いは内周壁に摺接するように配設す°ることが望まい・
A hopper 6 and a duct 7 are provided at predetermined positions in the upper part of the rotating container 1. In addition, since the recovered sand contains clay, it adheres to the inner wall of the rotating container 10 and forms islands. Alternatively, it is preferable to arrange it so that it slides into contact with the inner peripheral wall.
.

また1図に示すアジテータ−4は、周I81/c11数
の突部9を有する回転円板であり、また周辺部に上下に
複数のビンIOが固着された形状であるが、攪拌羽根の
形状は適宜設計変更可能である。
Further, the agitator 4 shown in Fig. 1 is a rotating disk having protrusions 9 with a circumference of I81/c11, and has a shape in which a plurality of bottles IO are fixed above and below the peripheral part, but the shape of the stirring blade is The design can be changed as appropriate.

ここで、回収砂はホッパー6から回転容器1内に投入さ
れ、回転容器10回転によって循環されながら、対向方
向に高速回転するアジテータ−4)(より衝撃摩擦作用
を受けてスクラビング処理される。再生処理は5〜15
分間行なわれ、砂粒表面の不純物が適度に除去される。
Here, the recovered sand is put into the rotating container 1 from the hopper 6, and is circulated by the rotating container 10 times, while being subjected to a scrubbing process by being subjected to impact friction (agitator 4) rotating at high speed in the opposite direction. Processing is 5-15
This process is carried out for several minutes, and impurities on the surface of the sand grains are appropriately removed.

再生処理後1回転容器1底−に配設されている底板3を
開鎗、再生砂を回収する。再生処理の関に微粉が発生す
るが、この微粉はダクト7から吸引除去される。なお1
図示するように、回転容器1がある称度傾斜している方
が、円周方向および半径方向に回収砂が複合循環運動す
るため、より効果的にスクラビング処理が行なわれるの
で好ましい。
After the recycling treatment, the bottom plate 3 disposed at the bottom of the one-rotation container is opened with a hammer to recover the recycled sand. Although fine powder is generated during the regeneration process, this fine powder is removed by suction from the duct 7. Note 1
As shown in the figure, it is preferable that the rotating container 1 is tilted to a certain degree because the recovered sand undergoes a combined circulation movement in the circumferential direction and the radial direction, so that the scrubbing process is performed more effectively.

また、図示するように、アジテータ−4の軸心が回転容
器IO中心から若干変位した位置に配置された場合には
、回収砂に対するスクラビング効果がより効果的である
Further, as shown in the figure, when the axis of the agitator 4 is disposed at a position slightly displaced from the center of the rotating container IO, the scrubbing effect on the recovered sand is more effective.

このように再生処理することにより、マイクロ波硬化用
原料砂として最適な性質を具備する再生砂が得られる。
By recycling in this manner, recycled sand having the optimum properties as raw material sand for microwave curing can be obtained.

次に、本発明に係る乾式再生処理によって得られた再生
砂の化学組成金第1表に、従来の再生毛]方法によつそ
得られる再生砂および新砂と比較して示す。なお、本発
明に係る再生処理には第1図および第2図に示す装置管
使用し、処理条件は、回転容器の傾斜角15°、回転容
器の回転速度77 r、p−rn sアジテータ−の回
転速度1500r、 p、m 、処理時間約10分で行
なった。
Next, Table 1 shows the chemical composition of the recycled sand obtained by the dry recycling treatment according to the present invention in comparison with the recycled sand and new sand obtained by the conventional recycled hair method. The apparatus shown in FIGS. 1 and 2 is used for the regeneration process according to the present invention, and the processing conditions are as follows. The rotation speed was 1500 r, p, m, and the processing time was about 10 minutes.

以下余白 第i表−化学組成(t4) *1000℃で1時間焼いたときの減量分を示す。Margin below Table i - Chemical composition (t4) *Indicates the amount of weight loss when baked at 1000℃ for 1 hour.

ところで、鋳物用けい砂の純度は化学成分で判別され、
S iO,が多いほど高純度で耐熱性が高いことはよく
知られている。しかし、鋳型に成型した場合、純度が高
過ぎると急熱膨張量が大きくなり(第3図参照)、鋳物
にペーニング、スフワレ、亀裂等の鋳造欠陥が多発する
ので好ましくなく、繰り返し使用する再生砂のSlへは
95〜97g6が最適範囲であることが確認された。従
って、第1表に示す本発明に係る再生処理によって得ら
れる再生砂は、上記範囲内にあるので、鋳造欠陥を生ず
ることなく繰り返し使用できる。本発明に係る再生処理
によれば、回転容器およびアジテータ−の回転速度、処
理時間等を前記した範囲内で適宜設定するととにより、
810mの割合を上記最適範囲内とすることができる。
By the way, the purity of foundry sand is determined by its chemical composition.
It is well known that the more SiO, the higher the purity and heat resistance. However, when molded into a mold, if the purity is too high, the amount of rapid thermal expansion will increase (see Figure 3), and casting defects such as paening, puffiness, and cracks will occur frequently in the casting, which is undesirable, and recycled sand is used repeatedly. It was confirmed that 95 to 97 g6 is the optimum range for Sl. Therefore, since the recycled sand obtained by the recycling treatment according to the present invention shown in Table 1 falls within the above range, it can be used repeatedly without causing casting defects. According to the regeneration process according to the present invention, by appropriately setting the rotational speed of the rotating container and the agitator, the processing time, etc. within the above-mentioned ranges,
The ratio of 810 m can be within the above optimal range.

また、ALIIO5、F6mOsもその上限が約2−で
あり、本発明に係る再生処理によればこの上限以下に抑
えられるので、充分に満足な品質の再生砂が得られる。
Further, the upper limit of ALIIO5 and F6mOs is about 2-, and the regeneration treatment according to the present invention can suppress the value to below this upper limit, so that recycled sand of sufficiently satisfactory quality can be obtained.

次に、第1表に示す各砂の粒度分布および粘土分を第2
表に示す。
Next, the particle size distribution and clay content of each sand shown in Table 1 were
Shown in the table.

以下除目 第2表から明らかなよ5に、本発明に係る乾式再生処理
により得られる再生砂の粒度は、従来法によって得られ
る再生砂および新砂とほぼ同程度である。
As is clear from Table 2 below, the particle size of the recycled sand obtained by the dry regeneration treatment according to the present invention is approximately the same as that of recycled sand and new sand obtained by the conventional method.

ところで、本発明に係る乾式再生処理によって得られる
再生砂は、第1表および第2表から明らかなように、若
干の粘土分と灼熱減量を含んでいることが特長である。
By the way, as is clear from Tables 1 and 2, the recycled sand obtained by the dry recycling treatment according to the present invention is characterized by containing some clay content and loss on ignition.

前記したように1粘土分は鋳型が溶湯注入時に受ける熱
衝撃を適度に緩和する役目を果たし、一方、灼熱減量は
主に炭質有機物であり、マイクロ波加熱に寄与する誘電
物質として有効な役割を果たす。したがって、本発明に
より得られる再生砂は、そのままマイクロ波硬化用原料
砂として使用できる。
As mentioned above, one clay content plays a role in moderately mitigating the thermal shock that the mold receives when pouring molten metal, while the ignition loss is mainly carbonaceous organic matter, which plays an effective role as a dielectric material that contributes to microwave heating. Fulfill. Therefore, the recycled sand obtained by the present invention can be used as it is as raw material sand for microwave curing.

以上のよ5Kt、て得られた再生砂は、ついで分級、必
要に応じて黴粉抜tをした後、再生砂に熱硬化性樹脂お
よび必要に応じて白灯油等の溶剤を添加して、適当な時
間混線機等により混練する。このようKして、iイクロ
波硬化性鋳物砂が得られる。
The recycled sand obtained with the above 5Kt is then classified and, if necessary, mold powder removed, and then a thermosetting resin and a solvent such as white kerosene are added to the recycled sand as necessary. Knead using a mixing machine etc. for an appropriate time. In this manner, microwave curable foundry sand is obtained.

熱硬化性樹脂としては、レゾール型フェノール樹脂、レ
ゾール型子ノボラック型混合Oフェノール樹脂、ノボ2
ツク型フエノール樹脂(但し、この樹脂は熱可塑性であ
るためへキサメチレンテトラミン等の硬化剤を通常10
〜15%程度含有させ熱硬化性とすることが必要である
)が最も好適に使用され、そ。の他フラン樹脂等の熱硬
化性樹脂も使用できる。これらの熱硬化性樹脂は、一般
に新砂に混合される場合には2〜71添加されるが、本
発明により得られる再生砂の場合は、再生砂100重量
部に対し2〜5重量部で充分である。また、樹脂は粉末
および液状のいずれの形態でも使用可能である。
Thermosetting resins include resol type phenolic resin, resol type novolak type mixed O phenol resin, and Novo 2.
Tsuku-type phenolic resin (However, since this resin is thermoplastic, a curing agent such as hexamethylenetetramine is usually added to
It is necessary to contain about 15% to make it thermosetting). Other thermosetting resins such as furan resin can also be used. Generally, 2 to 71 parts of these thermosetting resins are added when mixed with new sand, but in the case of recycled sand obtained by the present invention, 2 to 5 parts by weight per 100 parts by weight of recycled sand is sufficient. It is. Furthermore, the resin can be used in either powder or liquid form.

以下に、マイクロ波硬化性鋳物砂の調製例を示してその
時性について説明する。
Below, an example of the preparation of microwave-curable foundry sand will be shown and its properties will be explained.

マイクロ波硬化性鋳物砂の調製 前記第1表に示す再生砂100重量部に粉末フェノール
樹脂(ヘキサメチレンテトツζンを樹脂に対し15チ含
有、融点70〜97℃、ゲルタイ^35〜67秒/15
0℃)3重量部および線処理し、マイクロ波硬化性鋳物
砂を得た。比較のために、従来法による再生砂および新
砂についても、上記と同様にマイクロ波硬化性鋳物砂を
調整した。ただし、この場合には誘電物質としてカーボ
ンブラックを添加した。
Preparation of microwave-curable foundry sand 100 parts by weight of recycled sand shown in Table 1 above was mixed with a powdered phenol resin (containing 15 g of hexamethylenetetratin per resin, melting point 70-97°C, gel tie^35-67 seconds/ 15
3 parts by weight (0°C) and line treatment to obtain microwave-curable foundry sand. For comparison, microwave-curable foundry sand was prepared in the same manner as above using reclaimed sand and new sand produced by the conventional method. However, in this case, carbon black was added as a dielectric substance.

得られた各鋳物砂についての配合比およびシェル 強度
を第3表に示し、また加熱時間に対する急熱膨張量の変
化(試験片寸法2 g、sl’xs。
Table 3 shows the blending ratio and shell strength of each of the foundry sands obtained, and the change in rapid thermal expansion with respect to heating time (specimen size: 2 g, sl'xs).

■、加熱炉温度++SO℃)を第3図に示す。(2) heating furnace temperature ++SO°C) is shown in Fig. 3.

以下除重 上記本発明に係るマイクロ波硬化性鋳物砂(A)および
新砂100 fiを配合したマイクロ波硬化性鋳物砂(
D)を鋳鉄部品中子に使用したところ、鋳物砂りの場合
にはスフワレ及びペーニングの欠陥が生じたが、鋳物砂
Aの場合にはこのような欠陥は生じなかった。
The following is weight reduction: Microwave-curable foundry sand (A) according to the present invention and microwave-curable foundry sand containing 100 fi new sand (
When D) was used for the core of cast iron parts, defects such as swelling and panning occurred in the case of the foundry sand, but such defects did not occur in the case of the foundry sand A.

以上のように、本発明に係る再生処理は、従来法のよう
に水洗、乾燥処理あるいは高温焙焼処理を必要とせず、
乾式スクラビング処理のみで再使用可能な品質の再生砂
が大量に得られるので、再生に要するエネルギー費が節
減でき、再生コストは従来法の約半分に低減される。ま
た、本発明に利用可能な高砂は、シェル毫−ルドを含む
各種有機物粘結鋳屋、水ガラス系粘結鋳涙、生型等の運
屋ラインより排出される全ての高砂が活用できるので、
省資源の一点からも有利である。
As described above, the regeneration treatment according to the present invention does not require water washing, drying treatment, or high temperature roasting treatment unlike conventional methods,
Since a large amount of recycled sand of reusable quality can be obtained through dry scrubbing alone, the energy costs required for recycling can be reduced, and the recycling cost is reduced to about half that of conventional methods. In addition, the Takasand that can be used in the present invention can be any Takasand discharged from various organic caking casting factories including shell mold, water glass caking casting lacrimation, raw mold, etc. ,
It is also advantageous in terms of resource saving.

さらに、本発明に係る再生砂からは第3表から明らかな
ように、カーボンブラック等の誘電物質の添加なしで、
迅速かつ均一なマイクロ波硬化性を有し、かつ従来法に
よる再生砂と同等の充分なシェル強度を有するマイクロ
波硬化性鋳物砂を安価に得ることができる。 特に、そ
の急熱膨張量は、第3図から明らかなように、新砂また
は従来法による再生砂を使用した場合に比ベン以下であ
り、鋳物のスフワレ、ベーニング、亀裂等の欠陥防止に
顕著な効果が期待できる。
Furthermore, as is clear from Table 3, the recycled sand according to the present invention does not contain dielectric substances such as carbon black.
It is possible to obtain microwave-curable foundry sand at a low cost, which has rapid and uniform microwave curing properties and has sufficient shell strength equivalent to that of recycled sand produced by conventional methods. In particular, as is clear from Figure 3, its rapid thermal expansion is less than the Ben ratio when new sand or sand recycled by the conventional method is used, which is significant in preventing defects such as puffiness, veining, and cracks in castings. You can expect good results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る乾式再生処理を行なうための装置
の一態様の概略を示す部分断面図であり、第2図は第1
図のt’−を矢視図、第3図は各種砂の加熱時間に対す
る急熱膨張量の変化を示すグラフである。 1は回転容器、4はアジテータ−16はホッパー、7は
ダクト、8はスクレーパー。 出願人 株式会社 小松製作所 代理人  弁理士 米 原 正 章 弁珊士浜本 忠 ¥41図 第2図 手続補正書(自発) 昭和56年8月19日 特許庁長官 島 1)*  樹 殿 1事件の表示  特願昭 56− 101325号2発
明の名称 回収再生砂およびそれを原料としたマイクロ波硬化性鋳
物砂並びにそれらの製造方法3 補正をする者 事件との関係 特許出願人 住所  東京都港区赤坂2丁目3番6号名称 (123
)株式会社小松製作所
FIG. 1 is a partial sectional view schematically showing one embodiment of a device for performing dry regeneration processing according to the present invention, and FIG.
3 is a graph showing changes in the amount of rapid thermal expansion of various types of sand with respect to heating time. 1 is a rotating container, 4 is an agitator, 16 is a hopper, 7 is a duct, and 8 is a scraper. Applicant Komatsu Ltd. Representative Patent Attorney Tadashi Yonehara Patent Attorney Tadashi Hamamoto ¥41 Figure 2 Procedural Amendment (voluntary) August 19, 1980 Commissioner of the Japan Patent Office Shima 1) * Itsuki Tono 1 Case Indication Japanese Patent Application No. 101325/1982 2 Name of the invention Recovered recycled sand, microwave-curable foundry sand using it as raw material, and method for producing the same 3 Relationship with the case of the person making the amendment Address of the patent applicant Akasaka, Minato-ku, Tokyo 2-3-6 Name (123
) Komatsu Ltd.

Claims (1)

【特許請求の範囲】 L 粘土分0.5〜6sおよび炭質有機物0.3〜5−
を含有する乾式再生砂100重量部に対し、熱硬化性樹
脂(熱可塑性樹脂に硬化剤を配合して、熱硬化性とした
ものを含む)2〜5重量部を含有してなるマイクロ波硬
化性鋳物砂。 東 回転容器内に収容した回収砂に回転容器の回転によ
り循環運動を与えると共に、回転容器内に配役されかつ
蚊容器の回転方向と対向方向に回転するアジテータ−の
回転により、上記循環運動状態の回収砂IC1i撃摩擦
作用を与え1回収砂を乾式洗浄することを特徴とするマ
イクロ波硬化性鋳物砂製造用の乾式再生砂の製造方法。 8、回転容器が傾斜回転容器であり、・該傾斜回転容器
の回転により回収砂に複合循環運動を与えることを特徴
とする特許請求の範囲第2項に記載の方法。 表 回収砂を乾式洗浄すると同時に生成する微粉を吸引
除去することを特徴とする特許請求の範囲第2項または
第3項に記載の方法。 a 回転容器内に収容した回収砂に回転容器の回転によ
り循環運動を与えると共に、回転容器内に配設されかつ
該容器の回転方向と対向方向に回転するアジテータ−の
回転に゛より、上記循環運動状態の回収砂に衝撃摩擦作
用を与えることによって回収砂を所定時間乾式洗浄し、
分級および微粉除去をした後、とのよ5に再生処理され
た回収砂に熱硬化性樹脂(熱可塑性樹脂に硬化剤を配合
して熱硬化性としたものを含む)を添加混練することを
特徴とするマイクロ波硬化性鋳物砂の製造方法。 a 回転容器が傾斜回転容器であり、鋏傾斜回転容器の
回転により回収砂に複合循環運動を与えることを特徴と
する特許請求の範囲第5項に記載の方法。 フ、 微粉除去を、回収砂の乾式洗浄の際に行なうこと
を特徴とする特許請求の範囲第5項または第6項に記載
の方法。
[Claims] L Clay content: 0.5-6s and carbonaceous organic matter: 0.3-5-
A microwave cured product containing 2 to 5 parts by weight of a thermosetting resin (including those made thermosetting by blending a curing agent with a thermoplastic resin) per 100 parts by weight of dry recycled sand containing Sex foundry sand. East: The rotation of the rotating container gives the recovered sand stored in the rotating container a circular motion, and the rotation of an agitator placed in the rotating container and rotating in a direction opposite to the direction of rotation of the mosquito container allows the above-mentioned circulating motion state to be achieved. 1. A method for producing dry reclaimed sand for producing microwave-curable foundry sand, characterized in that recovered sand IC1i is given an impact friction effect and recovered sand is dry washed. 8. The method according to claim 2, wherein the rotating container is a tilting rotating container, and the rotation of the tilting rotating container imparts a compound circulation movement to the recovered sand. The method according to claim 2 or 3, characterized in that the fine powder generated is removed by suction at the same time as the recovered sand is dry washed. a Circulating motion is given to the recovered sand contained in the rotating container by the rotation of the rotating container, and the above-mentioned circulation is achieved by the rotation of an agitator that is disposed inside the rotating container and rotates in a direction opposite to the rotational direction of the container. The recovered sand is dry washed for a predetermined period of time by applying an impact friction effect to the recovered sand in a state of motion.
After classification and removal of fine particles, a thermosetting resin (including thermosetting resin made by blending a curing agent with a thermoplastic resin) is added and kneaded to the recovered sand recycled in Tonoyo 5. Features: A method for producing microwave-curable foundry sand. 6. The method according to claim 5, wherein the rotating container is a tilting rotating container, and the rotation of the scissors tilting rotating container imparts a compound circulation movement to the recovered sand. 6. The method according to claim 5 or 6, wherein the removal of fine powder is carried out during dry washing of the recovered sand.
JP10132581A 1981-07-01 1981-07-01 Recovered and reconditioned sand, microwave hardenable molding sand made of said sand and its production Pending JPS583744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10132581A JPS583744A (en) 1981-07-01 1981-07-01 Recovered and reconditioned sand, microwave hardenable molding sand made of said sand and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10132581A JPS583744A (en) 1981-07-01 1981-07-01 Recovered and reconditioned sand, microwave hardenable molding sand made of said sand and its production

Publications (1)

Publication Number Publication Date
JPS583744A true JPS583744A (en) 1983-01-10

Family

ID=14297662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10132581A Pending JPS583744A (en) 1981-07-01 1981-07-01 Recovered and reconditioned sand, microwave hardenable molding sand made of said sand and its production

Country Status (1)

Country Link
JP (1) JPS583744A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140823A (en) * 1975-05-30 1976-12-04 Komatsu Mfg Co Ltd Method of regenerating and processing casting sand
JPS5414326A (en) * 1977-07-04 1979-02-02 Matsuzaka Boeki Kk Regenerating of shell mold at room temperature
JPS5584244A (en) * 1978-12-21 1980-06-25 Komatsu Ltd Microwave hardening casting sand

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140823A (en) * 1975-05-30 1976-12-04 Komatsu Mfg Co Ltd Method of regenerating and processing casting sand
JPS5414326A (en) * 1977-07-04 1979-02-02 Matsuzaka Boeki Kk Regenerating of shell mold at room temperature
JPS5584244A (en) * 1978-12-21 1980-06-25 Komatsu Ltd Microwave hardening casting sand

Similar Documents

Publication Publication Date Title
CN110421113A (en) A kind of ceramsite sand prepared by regenerating used waste and the precoated sand prepared by the ceramsite sand
Zanetti et al. Foundry processes: the recovery of green moulding sands for core operations
EP0608926B1 (en) Core for casting process
CN1921969B (en) Process for producing cast item
JP4607698B2 (en) How to recycle waste green sand
CN113426942B (en) Method for preparing precoated sand for cast steel from recycled material
US1662354A (en) Process of coating molds and product thereof
US3433284A (en) Method of casting a pitted surface
US4535831A (en) Pattern for producing a mold and method for manufacture of the pattern
CN105964900A (en) Casting precoated sand recycling technology
JPS583744A (en) Recovered and reconditioned sand, microwave hardenable molding sand made of said sand and its production
CA1050209A (en) Sand reclamation and purification
EP0006721B1 (en) Foundry sand binder compositions
KR100824100B1 (en) A method for making sand covered with bentonite, the sand, and a method for recycling molding sand for a mold using the sand covered by bentonite
CA1049251A (en) Products having a ferrimagnetic lossy additive for microwave energy curing
JP3162218B2 (en) Casting sand recycling method
JP2021102216A (en) Mold reconditioned sand, resin coated sand and mold
US4130436A (en) Process for reclaiming foundry sand wastes
CN109822041A (en) A kind of inorganic antiquated sand regeneration method
JPS61169127A (en) Production of resin coated sand for shell mold
JPS58145330A (en) Mold coating material for casting mold having microwave hardenability
JPS5919558A (en) Method of regenerating and treating mold recovery sand
JPS59133933A (en) Production of molding sand curable by microwave heating
JPH01297134A (en) Manufacture of resin coated powder and manufacturing device
JP2003094146A (en) Recycling method for molding sand for casting mold