JPS5837417A - Purification of combustion exhaust smoke - Google Patents

Purification of combustion exhaust smoke

Info

Publication number
JPS5837417A
JPS5837417A JP56130691A JP13069181A JPS5837417A JP S5837417 A JPS5837417 A JP S5837417A JP 56130691 A JP56130691 A JP 56130691A JP 13069181 A JP13069181 A JP 13069181A JP S5837417 A JPS5837417 A JP S5837417A
Authority
JP
Japan
Prior art keywords
combustion
soot
smoke
removal layer
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56130691A
Other languages
Japanese (ja)
Inventor
Yoshiro Morita
森田 義郎
Susumu Komatsu
小松 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP56130691A priority Critical patent/JPS5837417A/en
Publication of JPS5837417A publication Critical patent/JPS5837417A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire

Abstract

PURPOSE:To burn the smoke completely and consequently remove soot and carbon monoxide by a structure wherein combustion improver, which mainly consists of two constituents of CaO and Fe2O3 or three or four constituents of above-mentioned two constituents and MgO or/and Al2O3, is arranged in the neighborhood of the outlet of the combustion chamber of a furnace as smoke removal layers. CONSTITUTION:CaO type raw material such as limestone, dolomite or the like is blended with Fe2O3 type raw material such as limonite, magnetite of the like and, after being mixed and kneaded, molded and baked into clinker, which is milled again, molded again into the predetermined form and baked again in order to get combustion improver. In this case, when heat resisting property is required, MgO is added. Al2O3 is added for stabilizing CaO and at the same time for improving heat resisting property. By piling up said combustion improver in layers in the neighborhood of the outlet of the combustion chamber of the combustion furnace as smoke removal layers, the smoke is completely burnt, resulting in enabling to remove soot and carbon monoxide.

Description

【発明の詳細な説明】 本発明は、石脚や残油などの劣質な燃料又は合成樹脂屑
や古タイヤなどの難燃性の塵芥などを燃焼する炉の燃焼
室出口付近に、主としてCaO。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly uses CaO in the vicinity of the combustion chamber outlet of a furnace that burns inferior fuel such as stone legs and residual oil, or flame-retardant garbage such as synthetic resin scraps and old tires.

Fe2O3の2成分か、又はこれにMgO又は/及びA
hO5を加えた5成分又は4成分よシなる燃焼促進剤、
更に必要に応じて、この燃焼促進剤に酸化鋼、酸化クロ
ム、酸化コバμトなどの燃焼触媒として有効な金属酸化
物の少くとも1種以上を2〜1〇−添加したものからな
る燃焼促進剤を煤煙除去層として設置し、煤煙をこの層
で完全燃焼させて煤及び−酸化次素を除去し、更に仁の
層の手前にアンモニアを吹込み、煤煙中の窒素酸化物を
この層によシ還元除去して、燃焼排煙を浄化する方法に
関するものである、 最近、相次ぐ石油危機以来、省エネルギーの推進が叫ば
れるとともに石油に替る代替エネμギーとして石炭が再
び見直され、既に火力発電所のボイラーの燃料は次々と
石油から石灰に代りつつあり、更に輸入原油の重質化に
伴い、工業炉の燃料は軽質の良好な燃料から重質の劣質
な燃料に変更せざるを得ない状況となυつつあるが、こ
れら石灰や重質油の劣質な燃料、又は塵芥焼却炉などで
焼却される合成樹脂屑や古タイヤなどの難燃性の塵芥な
どは、燃焼の際、これらを完全燃焼をさせるためには1
500℃程度0高温が必要であシ、昇温時などの低温状
態においては燃焼効率が低く、煤の発生を避けることが
できないため、排煙中に煤が混入して公害の原因となり
、また、ひどい時には煙道中に煤が詰tシ、煙の流通を
妨けて燃焼効率を更に低下させ、加えて公害の元となる
電素酸化物の含有量を増加させるなどの諸問題を有して
いる。
Two components of Fe2O3 or MgO or/and A
A 5-component or 4-component combustion accelerator with hO5 added,
Furthermore, if necessary, a combustion accelerator consisting of at least one metal oxide effective as a combustion catalyst, such as steel oxide, chromium oxide, and cobalt oxide, is added to the combustion accelerator. The agent is installed as a soot removal layer, and the soot and smoke are completely combusted in this layer to remove soot and hypoxic oxide. Furthermore, ammonia is injected in front of the keratin layer to remove nitrogen oxides in the soot and smoke into this layer. Recently, since the successive oil crises, the promotion of energy conservation has been called for, and coal has been reconsidered as an alternative energy source to replace petroleum, and coal has already been used for thermal power generation. The fuel for boilers in industrial plants is gradually replacing petroleum with lime, and as imported crude oil becomes heavier, the fuel for industrial furnaces has to change from light, good fuel to heavy, inferior fuel. However, these inferior fuels such as lime and heavy oil, as well as flame-retardant garbage such as synthetic resin waste and old tires incinerated in garbage incinerators, must be used when burning. For complete combustion, 1
A high temperature of about 500°C is required, and combustion efficiency is low in low temperature conditions such as when the temperature rises, and the generation of soot cannot be avoided, so soot gets mixed into the flue gas and causes pollution. In severe cases, the flue becomes clogged with soot, which obstructs the flow of smoke and further reduces combustion efficiency, and also increases the content of electrolyte oxides, which cause pollution. ing.

本発明者らは、上記の諸問題に着眼し、これらの問題を
解決するために種々研究した結果、炉の燃焼室出口付近
に、主成分としてCaO、Fe2O3の2成分か、又は
MgO又は/及びAlhOs  を加えた3成分または
4成分からなる燃焼促進剤をfX煙除去層として設置し
、更にこの層の手前にアンモニアを吹込むなどの処理を
施すことで、これらの諸問題が完全に解決されることを
見出し、本発明を完成するに至ったものである。
The present inventors focused on the above-mentioned problems, and as a result of conducting various researches to solve these problems, the inventors found that two components, CaO and Fe2O3 as main components, or MgO or These problems can be completely resolved by installing a combustion accelerator consisting of 3 or 4 components containing 2 and AlhOs as an fX smoke removal layer, and by injecting ammonia in front of this layer. The present invention has been completed based on this discovery.

CaO、MgO系鉱物にFe2O5を添加したものが、
残油の燃焼促進剤及びアンモニアによるNoXの還元触
媒として効果のあることは、発明者の1人森田らが燃料
温会誌第59巻第660号(1980年)416〜42
1 頁に報告したように既に公知であるが、これは流動
層燃焼において流動材として本燃焼促進剤を用いたもの
であり、本発明のように燃焼促進剤を成形体として燃焼
室出口に積重ねて煤煙除去層として用いたものではない
。したがって、この方法は流動層炉以外の炉には適用で
きないが、本発明のようにして燃焼促進剤を用いれば、
極めて効果的に排煙が浄化されるばかシでなく、流動層
炉以外の炉にも特別に炉の設計変更を要しないで既存の
炉に直接適用できるなど、あらゆる炉に極めて容易に適
用できる利点を有しているものであり、また、このよう
な方法による排煙の浄化法は未だない。
CaO, MgO minerals with Fe2O5 added,
One of the inventors, Morita et al., reported that it is effective as a combustion accelerator for residual oil and as a catalyst for reducing NoX using ammonia.
As reported on page 1, this is already known, but this combustion accelerator is used as a fluidized material in fluidized bed combustion, and as in the present invention, the combustion accelerator is formed into a molded body and stacked at the outlet of the combustion chamber. It is not used as a soot removal layer. Therefore, this method cannot be applied to furnaces other than fluidized bed furnaces, but if a combustion accelerator is used as in the present invention,
It is not only an extremely effective way to purify flue gas, but it can also be applied directly to existing furnaces other than fluidized bed furnaces without requiring special furnace design changes, making it extremely easy to apply to all types of furnaces. This has advantages, and there is still no method for purifying flue gas using such a method.

本発明に用いる燃焼促進剤は、石灰石、ドロマイト鉱な
どのCaO系原料に、磁鉄鉱、磁鉄鉱などの]” e 
205 系原料を所定の割合に配合し、混合混練後成形
して1000〜1300tに焼成してクリンカーとした
ものを再度粉砕し所定の形状に成形して、クリンカ焼成
温度と同程度か、や\低目の温度−r:再焼成して得ら
れるもので、この際、焼き上った成品中のOaOが遊離
の状態で大気に直接触れると、大気中の水蒸気や尿酸ガ
スと反応して水酸化力/L/Vウムや尿酸力μシウムと
なって膨張して粉化崩壊する性質を有しているため、C
aOId、鉄、アルミナなどと結合するか、又はこれら
やマグネシアなどで表面を被覆し、遊離のCaOが直接
大気に触れないようにすることが必要条件である。
The combustion accelerator used in the present invention is a CaO-based raw material such as limestone or dolomite ore, and a combination of magnetite, magnetite, etc.
205-based raw materials are blended in a predetermined ratio, mixed, kneaded, molded, and fired to 1000 to 1300 tons to form clinker, which is then ground again and molded into a predetermined shape to produce clinker at a temperature similar to that of the clinker firing temperature. Low temperature -r: Obtained by re-firing. At this time, if the OaO in the baked product comes into direct contact with the atmosphere in a free state, it will react with water vapor and uric acid gas in the atmosphere and turn into water. C
It is necessary to bind aOId, iron, alumina, etc., or to coat the surface with these or magnesia, so that free CaO does not come into direct contact with the atmosphere.

したがって、Fe2O3の配合量が少ない場合は、Ca
O粒子の表面にpe2o5  の粉末をまぶすようにし
て成形したものを焼成してクリンカーを製造する必要が
ある。また、セ゛0203  を多量に配合する場合は
、予めCaO原料を900℃付近で仮焼したものにFe
2O3を加え、ターμなどの水以外の液体を添加して混
練し、所定の形状に成形してクリンカーを経ることなく
直接所定温度で焼成して製造してもよい。艶に、CaO
原料にi”−e205を加えて焼成しアルミン酸力μシ
ウムを形成させたものに、硝酸鉄水溶液のような鉄の無
機酸塩及び有機酸塩の水溶液を含浸させて仮焼し、所定
麓の鉄を担持させて製造してもよい。
Therefore, when the amount of Fe2O3 blended is small, Ca
It is necessary to manufacture clinker by sprinkling the surface of O particles with pe2o5 powder and then molding the product and firing it. In addition, when blending a large amount of CaO203, add Fe to the CaO raw material pre-calcined at around 900°C.
It may also be produced by adding 2O3, adding a liquid other than water such as terμ, kneading, molding into a predetermined shape, and directly firing at a predetermined temperature without passing through a clinker. Glossy, CaO
i''-e205 is added to the raw material and calcined to form μsium aluminate, which is then impregnated with an aqueous solution of iron inorganic and organic acid salts such as an aqueous iron nitrate solution, calcined, and then calcined at a specified base. It may also be produced by supporting iron.

(lao  に対するに”e205  の配合割合は6
0〜97:5〜40で、好ましくは70〜95:5〜5
0である。Fe2O3量が3悌以下では十分な燃焼効率
を得ることができず、またCaOを完全に2 ca。
(The blending ratio of e205 to lao is 6
0-97:5-40, preferably 70-95:5-5
It is 0. If the amount of Fe2O3 is less than 3 ca, sufficient combustion efficiency cannot be obtained, and CaO is completely reduced to 2 ca.

・Fe2O3で被覆することができないため、安定した
燃焼促進剤を得ることができない。また、Fe2O3量
が40%を越しても燃焼効率に差はなく、向上が認めら
れないのみならず、燃焼促進剤の耐熱性を損ねるため好
ましくない。
・Since it cannot be coated with Fe2O3, a stable combustion accelerator cannot be obtained. Further, even if the amount of Fe2O3 exceeds 40%, there is no difference in combustion efficiency, and not only no improvement is observed, but also the heat resistance of the combustion accelerator is impaired, which is not preferable.

CaO原料としては前記の石灰石、ドロマイト鉱以外に
硝石灰、生石灰などが用いられ、更にアルミナセメント
などからも供給し得る。
In addition to the above-mentioned limestone and dolomite ore, nitrate lime, quicklime, etc. can be used as CaO raw materials, and it can also be supplied from alumina cement.

Fe2O3原料としては、前記の褐鉄鉱、磁鉄鉱以外に
、赤鉄鉱などの鉄の酸化物又は水酸化物が適当であり、
更に含浸用の原料として鉄の無機酸塩及び有機酸塩の水
溶液などが用いられる。
In addition to the above-mentioned limonite and magnetite, iron oxides or hydroxides such as hematite are suitable as Fe2O3 raw materials,
Furthermore, aqueous solutions of inorganic and organic acid salts of iron are used as raw materials for impregnation.

MgOは・燃焼促進剤に特に耐熱性が要求される場合に
添加されるもので、その配合量は燃焼促進剤全体の50
wt%以下である。配合量が50襲を越えると燃焼効率
が極端に低下するだめ好ましくない。原料としては、C
aO原料としてドロマイト鉱を用いた場合には、MgO
が必然的にドロマイト鉱より供給されるが、これ以外の
原料の場合は、マグネサイト、海水マグネシア、水酸化
マグネシウムなどが用いられる。
MgO is added when heat resistance is particularly required for the combustion accelerator, and its blending amount accounts for 50% of the total combustion accelerator.
wt% or less. If the blending amount exceeds 50, the combustion efficiency will be extremely reduced, which is not preferable. As a raw material, C
When dolomite ore is used as the aO raw material, MgO
is necessarily supplied from dolomite ore, but in the case of other raw materials, magnesite, seawater magnesia, magnesium hydroxide, etc. are used.

Al2O3はCaOの安定化と耐熱性の向′上のために
用いられるもので、これの含有量はCaO含有量と同量
以下、即ちCaOに対しk120. は1:1以下であ
る。この量が1:1以上になると燃焼効率を低下させる
ため好ましくない。原料としては、CaO原料としてア
ルミナセメントを用いた場合は、A120g  は必然
的にアルミナセメント中よシ供給されるが、このほかボ
ーキサイト、パイヤーアμミナ、酸化アルミニウム、水
酸化アルミニウム、電融コランダムなどが用いられる。
Al2O3 is used to stabilize CaO and improve heat resistance, and its content is equal to or less than the CaO content, that is, k120. is less than 1:1. If this ratio exceeds 1:1, it is not preferable because it reduces combustion efficiency. As raw materials, when alumina cement is used as a CaO raw material, 120g of A is inevitably supplied in the alumina cement, but other materials such as bauxite, payer alumina, aluminum oxide, aluminum hydroxide, and fused corundum are also available. used.

酸化鋼、酸化クロム、酸化コバルト、酸化ニッケμ、酸
化バナジウムなどの燃焼触媒金属酸化物は、特に燃焼効
率の高い燃焼促進剤が要求される場合に添加され、難燃
性燃料、例えば古タイヤなどを燃焼する炉に用いれば効
果がある。これの添加量は、燃焼促進剤全体に対して2
〜10%の範囲であシ、それ以下では効果が少く、10
襲以上添加してもその効果は変らない。原料としてはこ
れらの金属の無機酸塩または有機酸塩であシ、含浸法に
よって担持すると効果を発揮する。
Combustion catalytic metal oxides such as steel oxide, chromium oxide, cobalt oxide, nickel oxide, and vanadium oxide are added when a combustion promoter with particularly high combustion efficiency is required, and is used for flame-retardant fuels such as old tires. It is effective if used in a furnace that burns. The amount of this added is 2
-10% range, less effective, less than 10%
The effect does not change even if more than 100% is added. Inorganic or organic acid salts of these metals can be used as raw materials, and are effective when supported by an impregnation method.

燃焼促進剤の形状と、しては、れんが状、ギツクー状、
チェッカー状、ハニカム状、ラシッヒリング状、球状な
ど全ての形状のもの、又は気孔剤を混合して多孔質にし
たものなど適宜採用し得る。
The shape of the combustion accelerator is brick-like, gitsu-like,
Any shape such as a checker, honeycomb, Raschig ring, or spherical shape, or one made porous by mixing a pore agent can be used as appropriate.

以上のようにして製造した燃焼促進剤を燃焼炉の燃焼室
の出口付近に層状に積重ねて煤煙除去層として設置すれ
ば、設置しない場合の燃焼効率が95〜96−程度のも
のを98〜99襲程度迄引上ることができ、煤煙除去層
が700℃付近の低温でも燃焼効率は97襲以上の値を
示すため、昇温中の低温時でも排煙中あるいは煙道中の
煤は殆んど認められなくなる。更に、炉内の煤煙除去層
の手前付近にアン七ニアを吹込むことによシ、煙道出口
の窒素酸化物の濃度を約50憾程度減少させることがで
きた。
If the combustion accelerator produced as described above is stacked in layers near the outlet of the combustion chamber of a combustion furnace and installed as a soot removal layer, the combustion efficiency will be 98-98 compared to 95-96 when not installed. Even when the soot removal layer is at a low temperature of around 700℃, the combustion efficiency shows a value of 97 degrees or higher, so even at low temperatures during temperature rise, almost no soot is left in the flue gas or flue. It will no longer be recognized. Furthermore, by injecting annealing into the vicinity of the soot removal layer in the furnace, it was possible to reduce the concentration of nitrogen oxides at the flue outlet by about 50%.

この燃焼促進剤の最適使用温度範囲は800〜1050
℃であシ、燃焼効率の向上を考慮すれば使用温度は高い
程好ましいが、燃焼促進剤の耐熱性を考慮すれば、この
程度に抑えた温度範囲とするのが妥当である。また、燃
焼の際の過剰空気率は20%付近が燃焼効率向上のため
には最適であるが、脱硝率は過剰空気が増加するにつれ
て減少する傾向を示すため、適当な過剰空気率は10〜
25襲程度の範囲が妥当である。
The optimum operating temperature range for this combustion accelerator is 800-1050.
C. If the improvement in combustion efficiency is taken into consideration, a higher operating temperature is preferable, but if the heat resistance of the combustion promoter is considered, it is appropriate to keep the temperature within this range. In addition, an excess air ratio of around 20% during combustion is optimal for improving combustion efficiency, but the denitrification rate tends to decrease as the excess air increases, so an appropriate excess air ratio is 10 to 10%.
A range of about 25 attacks is appropriate.

次に実施例を挙げて本発明の方法を更に具体的に説明す
る。
Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 aO: Fe2O3= 7 : 2になるように計算し
て、石灰石と褐鉄鉱を粉砕して配合し、混練後並形れん
が大に成形した後1200℃に焼成してタリン力−を製
造した。このタリンカーを再粉砕して外径50M、内径
10B、高さ30fiのラシツヒリング状に成形して1
150tに焼成し、燃焼促進剤を製造した。この燃焼促
進剤を燃焼炉の燃焼室出口の排熱ボイラーの手前位置に
ラシッヒリングの穴が排煙の流通方向に平行になるよう
に17て、並べて積み上げて煤煙除去層を設置し、試験
に供した。
Example 1 Limestone and limonite were crushed and blended, calculated so that aO: Fe2O3 = 7:2, and after kneading, the mixture was molded into the size of a regular brick and fired at 1200°C to produce Talin force. . This Talinker is re-pulverized and formed into a Rashitz ring shape with an outer diameter of 50M, an inner diameter of 10B, and a height of 30fi.
It was fired to 150 tons to produce a combustion accelerator. This combustion accelerator was placed in front of the exhaust heat boiler at the exit of the combustion chamber of the combustion furnace, with the Raschig ring holes parallel to the exhaust smoke flow direction, stacked side by side, and a soot removal layer was installed, and used for the test. did.

使用した燃料は、次に示すような性状を有するアラビア
ンライト減圧残油である。
The fuel used was Arabian Light vacuum residue having the following properties.

燃料の性状:比重to11s 15/4℃、C85,5
wt%、u10.6wtチ、S3.87wt%、CCR
17,67wt多、飽和物28.3wt%、 H/C1
,49アンモニアは炉の外側から炉内の燃焼室出口の手
前にノズ〃を挿入して所定量吹込み脱硝試験を行った。
Fuel properties: Specific gravity to11s 15/4℃, C85.5
wt%, u10.6wtchi, S3.87wt%, CCR
17.67wt poly, saturates 28.3wt%, H/C1
, 49 ammonia was subjected to a denitration test by inserting a nozzle into the furnace from outside the furnace in front of the combustion chamber outlet and blowing a specified amount of ammonia into the furnace.

結果は表1に示すように燃焼効率、脱硝率ともに良好な
成績が得られた。なお、燃焼効率とNOxの減少率は次
式によシ算出した。
As shown in Table 1, good results were obtained in both combustion efficiency and denitrification rate. The combustion efficiency and NOx reduction rate were calculated using the following formula.

ただし、(A):  NH3を添加しない時の出口のN
Ox濃度(B):  NHsを添加した時の出口のNO
x濃度実施例2 実施例1のクリンカー70部に海水マグネシアクリンカ
−30部を配合し実施例1と態様に処理し1350℃に
焼成して燃焼促進剤を製造した。この燃焼促進剤を使用
して、実施例1と同様に炉の燃焼室出口に煤煙除去層を
設置し、実施例1と同様の燃料(以下全実施例に本燃料
使用)を使用して試験した。但し、この場合の煤煙除去
層の温度を900℃に昇温して行った。結果は表1に示
すように燃焼効率は99チを示し、脱硝率も一段と良好
な結果が得られた。
However, (A): N at the outlet when NH3 is not added
Ox concentration (B): NO at the outlet when adding NHs
x Concentration Example 2 70 parts of the clinker of Example 1 was mixed with 30 parts of seawater magnesia clinker, treated in the same manner as in Example 1, and fired at 1350°C to produce a combustion accelerator. Using this combustion accelerator, a soot removal layer was installed at the outlet of the combustion chamber of the furnace in the same manner as in Example 1, and a test was conducted using the same fuel as in Example 1 (this fuel was used in all examples below). did. However, in this case, the temperature of the soot removal layer was raised to 900°C. As shown in Table 1, the combustion efficiency was 99 cm, and the denitrification rate was even better.

実施例3 石灰石、60部にパイヤーア!ミナ40部を配合し、亜
型れんが大に成形してから1650℃に焼成じて、アμ
ミン酸力μシウムよりなるクリンカーを装造した。この
クリンカーを再粉砕して実施例1のラシツヒリング状に
成形し、1300 tUに焼成した焼結体に硝酸鉄水溶
液を含浸させて府811Iの鉄を担持させて900℃に
仮焼し、燃焼促進剤を製造した。この゛燃焼促進剤を一
使用し、実施例1と同様に煤煙除去層を設置し、試験に
供した。結果は表1に示すように好結果が得られた。
Example 3 Limestone, 60 parts and paya! 40 parts of mina was mixed, molded into the size of a sub-mold brick, and fired at 1650°C.
A clinker made of μsium chloride was installed. This clinker was re-pulverized and formed into the Rashitz ring shape of Example 1, and the sintered body was fired to 1300 tU. The sintered body was impregnated with an aqueous iron nitrate solution to support 811I iron, and calcined at 900°C to promote combustion. The drug was manufactured. This combustion accelerator was used, a soot removal layer was installed in the same manner as in Example 1, and the test was conducted. As shown in Table 1, good results were obtained.

実施例4〜6 実施例4は、実施例3のアルミン酸力pンウムクリンカ
ー75部に海水マグネシアクリンカ−25部を配合して
1600℃に焼成して作成した焼結体に、実施例3と同
様に処理してFe2O2を約6哄含浸担持させそ製造し
たもので煤煙除去層を形成した。
Examples 4 to 6 In Example 4, 75 parts of the aluminic acid clinker of Example 3 was mixed with 25 parts of seawater magnesia clinker and fired at 1600°C. A soot removal layer was formed by impregnating and supporting about 6 volumes of Fe2O2 in the same manner as above.

実施例5は、実施例1の燃焼促進剤に硝酸銅水溶液を含
浸させ、CuOを約6慢担持させて、燃焼効率と脱硝率
の向上をはかった煤煙除去層を用いた。
In Example 5, a soot removal layer was used in which the combustion accelerator of Example 1 was impregnated with an aqueous copper nitrate solution and CuO was supported for about 6 hours to improve combustion efficiency and denitrification rate.

実施例6は、CaO原料に葛生産ドロマイト鉱を使用し
、これの粉砕物87部に磁鉄鉱13部を配合し、成形後
1200℃に焼成してクリンカーを製造し、これを実施
例1と同様に処理して製造した煤煙除去層であ〕、これ
ら実施例4〜6のいずれの燃焼促進剤も、表1に示すよ
う′に燃焼効率脱硝率ともに良好な成績を示しておυ、
特に実施例5のCwOを担持させたものは優れた成績が
得られた。
In Example 6, kudzu-produced dolomite ore was used as the CaO raw material, 13 parts of magnetite was blended with 87 parts of the crushed product, and after molding, the clinker was fired at 1200°C to produce clinker. As shown in Table 1, all of the combustion promoters of Examples 4 to 6 showed good results in both combustion efficiency and denitrification rate.
In particular, excellent results were obtained in Example 5, in which CwO was supported.

比較例 比較例は、珪石質のギツターれんがを使用して煤煙除去
層を設置した炉に実施例と14様の燃料を使用して試験
を行ったものであシ、結果は表1に示すように、燃焼率
、脱硝率の何れも低く、本発明の方法の有効性を示して
いる。
Comparative Example In the comparative example, a test was conducted using the fuels of Example and 14 in a furnace made of silica Gitzter bricks and equipped with a soot removal layer.The results are shown in Table 1. In addition, both the combustion rate and the denitrification rate were low, demonstrating the effectiveness of the method of the present invention.

以下企白 手続補正書(自険) 昭和57年10月6日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和56年 特 許 願第1306’1号3、 補正を
する者 事件との関係 特許出願人 4、代  理  人  〒710 住 所  倉敷市大島505番地の14(1)明則訂の
発明の詳細な説明の欄 8、補正の内容 別紙のとおり 別   紙 1)明細書簡8頁8行目 「酸化コバルト」と「酸化ニラjの間に「酸化カリウム
、酸化ナトリウム」を挿入する。
The following is a written amendment to the proposed procedure (self-insurance) dated October 6, 1980 Kazuo Wakasugi, Commissioner of the Patent Office, 1. Indication of the case, 1988 Patent Application No. 1306'1 No. 3, Relationship with the person making the amendment Patent Applicant 4, Agent Address: 14 (1) 505 Oshima, Kurashiki City, 710 Column 8 of Detailed explanation of the invention as revised by the Meiji provisions, Attachment 1) Specification letter page 8, line 8 Insert ``potassium oxide, sodium oxide'' between ``cobalt oxide'' and ``chive oxide.''

2)同第9頁5行目 「95〜96%」と「程度」の間に「特に劣質な、燃料
を使用した場合は85〜90%」を挿入する。
2) Insert "85-90% when using especially poor quality fuel" between "95-96%" and "degree" on page 9, line 5.

以  上that's all

Claims (1)

【特許請求の範囲】 1 炉の燃焼室出口付近に、主としてOaO。 Fe2O3の2成分か、又はこれにMgO又は/及び1
!20s  を加えた3成分又は4成分よシなる燃焼促
進剤からなる煤煙除去層を設置し、該煤煙除去層によシ
煤煙を燃焼浄化することを特徴とする燃焼排煙の浄化方
法。 2 炉の燃焼室出口付近に、主としてOaO。 F e 205 の2成分か、又はこれにMgo又は/
及びAlhOs  を加えた5成分又は4成分よシなる
燃焼促進剤と、酸化銅、酸化クロム、酸化コバμトなど
の金属酸化物よシなる燃焼触媒とからなる煤煙除去層を
設置し、該煤煙除去層によシ煤煙を燃焼浄化することを
特徴とする燃焼排煙の浄化方法。 3 炉の燃焼室出口付近に、主としてCaO。 Fe2O3の2成分か、又はこれにMgO又は/及びk
l1203  を加えた3成分又゛は4成分よシなる燃
焼促進剤、あるいは該燃焼促進剤と酸化鋼、酸化クロム
、酸化コバμトなどの金属酸化物よシなる燃焼触媒とか
らなる煤煙除去層を設置し、かつ該煤煙除去層の手前か
らアンモニアを吹込み、煤煙を燃焼浄化すると共に排煙
中の窒素酸化物を還元除去することを特徴とする燃焼排
煙の浄化方法。
[Claims] 1. Mainly OaO near the exit of the combustion chamber of the furnace. Two components of Fe2O3 or MgO or/and 1
! A method for purifying combustion exhaust smoke, which comprises installing a soot removal layer made of a three-component or four-component combustion accelerator with 20s added thereto, and burning and purifying the soot and smoke through the soot removal layer. 2 Mainly OaO near the exit of the combustion chamber of the furnace. Two components of Fe 205 or this with Mgo or/
A soot removal layer consisting of a five-component or four-component combustion accelerator containing AlhOs and a combustion catalyst such as a metal oxide such as copper oxide, chromium oxide, or cobalt oxide is installed, and the soot and smoke are removed. A method for purifying combustion exhaust smoke characterized by burning and purifying soot and smoke in a removal layer. 3 Mainly CaO near the exit of the combustion chamber of the furnace. Two components of Fe2O3 or MgO or/and k
A soot removal layer consisting of a three-component or four-component combustion accelerator, or a combustion accelerator and a combustion catalyst such as a metal oxide such as oxidized steel, chromium oxide, or cobalt oxide. A method for purifying combustion flue gas, characterized in that ammonia is blown in from before the soot removal layer to burn and purify the soot and reduce and remove nitrogen oxides in the flue gas.
JP56130691A 1981-08-19 1981-08-19 Purification of combustion exhaust smoke Pending JPS5837417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130691A JPS5837417A (en) 1981-08-19 1981-08-19 Purification of combustion exhaust smoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130691A JPS5837417A (en) 1981-08-19 1981-08-19 Purification of combustion exhaust smoke

Publications (1)

Publication Number Publication Date
JPS5837417A true JPS5837417A (en) 1983-03-04

Family

ID=15040307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130691A Pending JPS5837417A (en) 1981-08-19 1981-08-19 Purification of combustion exhaust smoke

Country Status (1)

Country Link
JP (1) JPS5837417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3502866A1 (en) * 1984-09-19 1986-03-20 Klaus Prof. Dr.rer.nat. 4430 Steinfurt Mangold Two-stage process and apparatus for purifying combustion gases
JPS6241335A (en) * 1985-08-15 1987-02-23 ユニチカ株式会社 Crimped processed yarn

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3502866A1 (en) * 1984-09-19 1986-03-20 Klaus Prof. Dr.rer.nat. 4430 Steinfurt Mangold Two-stage process and apparatus for purifying combustion gases
JPS6241335A (en) * 1985-08-15 1987-02-23 ユニチカ株式会社 Crimped processed yarn

Similar Documents

Publication Publication Date Title
CN103194292B (en) Boiler coal combustion-improving desulfurizing and denitrifying agent composition and preparation method thereof
Cheng et al. Sulfur removal at high temperature during coal combustion in furnaces: a review
CN100387693C (en) Formulation and preparation method of desulfurization agent for assisting combustion of fire coal
Gong et al. Recycling and utilization of calcium carbide slag-current status and new opportunities
CN107236580A (en) A kind of solid sulfur catalysis composition of coal high-efficiency
CN106800959B (en) Combustion-supporting sulfur-fixing agent for coal
CN103194294A (en) Boiler coal combustion-improving desulfurizing agent composition and preparation method thereof
KR102332238B1 (en) Fluidized-bed boiler interior and tube surface slagging or fouling combustion additives using lime and biomass as fuel
CN101531942B (en) Additive having functions of combustion supporting of coal, desulphurizing and denitrifying and preparation method
CN102408934A (en) Composite combustion improver capable of removing sulfur and saltpeter
KR101542076B1 (en) Composite for combusition of solide fuel and methode for using the same
CN105733728A (en) Magnetite composite additive for reducing ignition temperature of civilian coke, preparation method and application
JPS5837417A (en) Purification of combustion exhaust smoke
CN104845698A (en) Boiler chromium-based decoking and coal saving agent composition and preparation method thereof
US8048243B2 (en) Combustion catalyst
CN101429014B (en) Inorganic salt/ceramic based composite heat-storing material produced with waste chromic hydroxide and producing method thereof
CN102585968B (en) Nanometer composite coal-economizing agent for power plant boiler
US5487762A (en) Method of minimizing deposits when firing tire derived fuels
Zhou et al. Experimental research on two-stage desulfurization technology in traveling grate boilers
CN105733737A (en) Copper slag composite additive for reducing ignition temperature of civilian coke, preparation method and application
CN1109092C (en) Briquette additive for preparing active slag
CN104862028A (en) Chromium-based coke removal and ash removal coal saving agent composition for boiler and preparation method for composition
CN1056172C (en) Energy-saving desulfurizing decontaminating agent for coal
WO2022224986A1 (en) Unburnt carbon reduction method and heating method using ferric oxide
JPH0312926B2 (en)