JPS5837404A - Method of controlling boiler - Google Patents

Method of controlling boiler

Info

Publication number
JPS5837404A
JPS5837404A JP13509881A JP13509881A JPS5837404A JP S5837404 A JPS5837404 A JP S5837404A JP 13509881 A JP13509881 A JP 13509881A JP 13509881 A JP13509881 A JP 13509881A JP S5837404 A JPS5837404 A JP S5837404A
Authority
JP
Japan
Prior art keywords
output
main steam
signal
dynamic compensation
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13509881A
Other languages
Japanese (ja)
Other versions
JPH02601B2 (en
Inventor
宇野 英太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP13509881A priority Critical patent/JPS5837404A/en
Publication of JPS5837404A publication Critical patent/JPS5837404A/en
Publication of JPH02601B2 publication Critical patent/JPH02601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ボイラ等の制御系において、過渡的外乱によ
る制御系への影響を低減するだめの動的補償方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic compensation method for reducing the influence of transient disturbances on a control system of a boiler or the like.

ボイラ等の制御系において、蒸気温度調節系(以下単に
STC,系と略す)は基本的にはフィードバック回路と
負荷インデックスによるフィードフォワード回路で構成
され、更には動的補償回路が付加されたものもある。動
的補償は、負荷変化時の0ver Firing + 
hるいはUnder Firingによる過渡的外乱を
吸収するために用いられる。従来の過渡的外乱時におけ
る動的補償方法としては、発電量、主蒸気流量、燃料流
量、空気流量等の負荷信号の微分信号を動的補償信号と
して用いる方法や、燃料流量と主蒸気流量の差もしくは
比を動的補償信号として用いる方法等がある。
In the control system of boilers, etc., the steam temperature control system (hereinafter simply referred to as the STC system) basically consists of a feedback circuit and a feedforward circuit using a load index, and may also have a dynamic compensation circuit added. be. Dynamic compensation is 0ver Firing + when load changes.
The filter is used to absorb transient disturbances caused by under-firing. Conventional dynamic compensation methods during transient disturbances include methods that use differential signals of load signals such as power generation, main steam flow rate, fuel flow rate, and air flow rate as dynamic compensation signals, and methods that use differential signals of load signals such as power generation amount, main steam flow rate, fuel flow rate, and air flow rate, and There are methods of using a difference or a ratio as a dynamic compensation signal.

しかしながら、前者による方法の場合いずれの信号も流
量信号であるためノイズを有している。
However, in the case of the former method, both signals are flow rate signals and therefore contain noise.

従って、これらの信号を微分してSTC系に加算する場
合、水噴射系には用いることが可能であるがGRFダン
パ系やバーナチルト系の制御には用いることが難しい。
Therefore, when these signals are differentiated and added to the STC system, it can be used for the water injection system, but it is difficult to use it for controlling the GRF damper system or burner tilt system.

また、後者による方法の場合、燃料流量信号には流量信
号特有のノイズがあり、また、バーナ点火時には突変が
あるため(4?に軽負荷時に大)、この信号と主蒸気流
量の差若しくは比を動的補償信号として用いることは他
の系へ外乱を与えることKなり適当ではない。
In addition, in the case of the latter method, the fuel flow rate signal has noise peculiar to the flow rate signal, and there is a sudden change at the time of burner ignition (4? is large at light load), so the difference between this signal and the main steam flow rate or It is not appropriate to use the ratio as a dynamic compensation signal because it causes disturbance to other systems.

本発明は、このような点に鑑みてなされたもので、主蒸
気圧力調節計出力を動的補償信号として用いるようKし
て、ボイラのSTC系の過渡的外乱による影響を取り除
くことができるボイラの制御方法を実現したものである
。以下、図面を参照して本発明の詳細な説明する。
The present invention has been made in view of these points, and provides a boiler that can remove the influence of transient disturbances in the STC system of the boiler by using the output of the main steam pressure regulator as a dynamic compensation signal. This control method has been realized. Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、静特性に対して負荷変化時の最適応答を得る
ための各制御要素の応答を示す図である。
FIG. 1 is a diagram showing the response of each control element to obtain the optimum response when the load changes with respect to static characteristics.

同図(1)は減温器出力温度を、同図(b)は水口噴射
量を、同図(C)はGRFコントロールダンパー開度を
それぞれ示している。横軸はいずれも負荷の量を示す。
Figure (1) shows the desuperheater output temperature, Figure (b) shows the water inlet injection amount, and Figure (C) shows the GRF control damper opening degree. Both horizontal axes indicate the amount of load.

同図において、破線と実線の差が動的補償の要求量であ
る。同図に示すように6系の応答が変動する主たる原因
は、負荷変動時の0ver FiringとUnder
 Firingである。この0ver Firlngあ
るいはUnder Firlng量は、負荷信号(通常
主蒸気流量)と燃料流量の差とみなすことができる〇こ
こで、燃量流量要求信号(以下単にBM倍信号略す)に
注目する。第2図は、BM信号発生回路の一実施例を示
す電気的接続図である。同図において、1は主蒸気圧力
と設定圧力との差を出力する減算器である。2は、該減
算器の出力にある定数Kを乗する倍率器である。3は、
主蒸気圧力と設定圧力の差を積分する主蒸気圧力調節計
である。
In the figure, the difference between the broken line and the solid line is the required amount of dynamic compensation. As shown in the figure, the main causes of fluctuations in the response of system 6 are 0ver firing and under firing during load fluctuations.
Firing. This 0ver Fillng or Under Fillng amount can be regarded as the difference between the load signal (usually the main steam flow rate) and the fuel flow rate.Here, attention is paid to the fuel flow rate request signal (hereinafter simply referred to as the BM double signal). FIG. 2 is an electrical connection diagram showing one embodiment of the BM signal generation circuit. In the figure, 1 is a subtracter that outputs the difference between the main steam pressure and the set pressure. 2 is a multiplier that multiplies the output of the subtracter by a certain constant K. 3 is
This is a main steam pressure regulator that integrates the difference between the main steam pressure and the set pressure.

4は、主蒸気流量を受けてゲイン補償出力を得るゲイン
補償設定器である。5は、前記倍率器2の出力と該補償
設定器の出力を乗算する乗算器である。6は、主蒸気圧
力調節計3、ゲイン補償設定器4、乗算器5及び主蒸気
流量出力を受け、これらの加算値を出力する加算器であ
る。
4 is a gain compensation setting device which receives the main steam flow rate and obtains a gain compensation output. 5 is a multiplier that multiplies the output of the multiplier 2 and the output of the compensation setting device. 6 is an adder that receives the main steam pressure regulator 3, gain compensation setter 4, multiplier 5, and main steam flow rate output, and outputs the summed value thereof.

加算器6の出力が前記BM倍信号なる。即ち、BM倍信
号主蒸気圧力調節計出力と主蒸気流量の和になる。かつ
、とのBM出力はP工制御された出力となっている。こ
こで−、主蒸気圧力調節計3の出力について静的にみる
と、その出力はほぼ50%程度で、負荷による変動分を
含めても50%±2%以内に収まっている。そこで、こ
の出力の50%±2%からの変化分を過渡的0ver 
FiringあるいはUnder Firing要求量
とみなすことができ、主蒸気圧力調節計5の出力を動的
補償信号として用いることができる。
The output of the adder 6 becomes the BM multiplied signal. That is, the BM double signal is the sum of the main steam pressure controller output and the main steam flow rate. The BM outputs of and and are P-controlled outputs. Here, if we look at the output of the main steam pressure controller 3 statically, the output is approximately 50%, and even if fluctuations due to load are included, it is within 50%±2%. Therefore, the change from 50% ± 2% of this output is calculated as a transient 0ver.
It can be regarded as a Firing or Under Firing request amount, and the output of the main steam pressure controller 5 can be used as a dynamic compensation signal.

この動的補償信号をSTC系に導き、負荷変動による過
渡的外乱を打消す向きに加えてやれば過渡的外乱の影響
を取り除くことができる。
The influence of transient disturbances can be removed by introducing this dynamic compensation signal to the STC system and adding it in a direction that cancels out transient disturbances due to load fluctuations.

第3図は、BM信号発生回路の他の実施例を示す電気的
接続図である。同図において、10は主蒸気圧力と設定
圧力の差を定数倍し積分する主蒸気圧力調節計である。
FIG. 3 is an electrical connection diagram showing another embodiment of the BM signal generation circuit. In the figure, 10 is a main steam pressure regulator that multiplies the difference between the main steam pressure and the set pressure by a constant and integrates it.

11は、該主蒸気圧力調節計出力と主蒸気流量を加算し
て出力する加算器である。
Reference numeral 11 denotes an adder that adds the output of the main steam pressure regulator and the main steam flow rate and outputs the result.

該加算器の出力がBM倍信号なる。このBM倍信号PI
制御された出力となっている。同図に示す回路において
も、主蒸気圧力調節計10の出力を第2図の場合と同様
、動的補償信号として利用することができる。
The output of the adder becomes the BM multiplied signal. This BM double signal PI
It has a controlled output. In the circuit shown in the figure as well, the output of the main steam pressure regulator 10 can be used as a dynamic compensation signal as in the case of FIG.

第2図、第5図に示す実施例の場合、主蒸気圧力調節計
の出力は50%程度であり、この出力を受ける受信側で
当該出力を増幅しようとするとオフセットのために出力
が飽和してしまう場合がある。
In the case of the embodiments shown in Figures 2 and 5, the output of the main steam pressure controller is approximately 50%, and if the receiver side that receives this output attempts to amplify the output, the output will become saturated due to the offset. There are cases where this happens.

このような不都合を避けるためには、主蒸気圧力調節計
の出力からオフセット分を差引き、変動分のみを受信側
に伝えるようKすればよい。
In order to avoid such inconvenience, it is sufficient to subtract the offset from the output of the main steam pressure regulator and transmit only the variation to the receiving side.

上述したように、主蒸気圧力調節計の出力を動的補償信
号として用いると流量ノイズ等の影響のない安定した信
号を得ゐことができる。また、その出力は積分された一
次遅れ要素を含むため、突発性の急激な負荷変動に対し
ても安定な動的補償を行うことができる。
As mentioned above, if the output of the main steam pressure controller is used as a dynamic compensation signal, a stable signal that is not affected by flow noise or the like can be obtained. Furthermore, since the output includes an integrated first-order lag element, stable dynamic compensation can be performed even for sudden sudden load changes.

第4図乃至第6図は、動的補償信号をSTC系へ応用し
た例を示す電気的接続図である。第4図は、主蒸気温度
調節用制御系に応用した例、第5図は主蒸気温度III
IIs計出力を減現出力口温度調節計へカスケード接続
した制御系へ応用した例、第6図は再熱蒸気温度調節用
制御系へ応用した例をそれぞれ示す0第4図において、
20は主蒸気温度と設定温度との差を定数倍し、微分し
、積分する主蒸気温度調節計である。21は、負荷信号
を受けてゲイン補償出力を得るゲイン補償設定器である
022は、主蒸気圧力調節計20、ゲイン補償設定器2
1及び動的補償信号の各出力を受けてこれらを加算して
出力する加算器である。該加算器の出力は、水噴射コン
トロールバルブに導かれパルプの開度が調節される。
FIGS. 4 to 6 are electrical connection diagrams showing examples of applying dynamic compensation signals to an STC system. Figure 4 shows an example of application to a control system for controlling main steam temperature, and Figure 5 shows main steam temperature III.
Figure 4 shows an example in which the IIs meter output is applied to a control system connected in cascade to a reduction output port temperature controller, and Figure 6 shows an example in which it is applied to a control system for reheating steam temperature adjustment.
20 is a main steam temperature controller that multiplies the difference between the main steam temperature and the set temperature by a constant, differentiates it, and integrates it. 21 is a gain compensation setting device which receives a load signal and obtains a gain compensation output; 022 is a main steam pressure controller 20; a gain compensation setting device 2;
This is an adder that receives the respective outputs of 1 and the dynamic compensation signal, adds them together, and outputs the result. The output of the adder is guided to a water injection control valve to adjust the opening degree of the pulp.

第5図において、30は主蒸気温度と設定温度との差を
定数倍し、微分し、積分する主蒸気温度調節計である。
In FIG. 5, 30 is a main steam temperature controller that multiplies the difference between the main steam temperature and the set temperature by a constant, differentiates it, and integrates it.

31は、負荷信号を受けてゲイン補償出力を得るゲイン
補償設定器である。32は、該補償設定器出力と主蒸気
温度調節計30及び動的補償信号を受けて、これらの信
号の和を出力する加算器である。33は、減温器出口の
温度と加算器32の出力の差を定数倍し積分する減温器
出口温度調節計である。該温度調節計の出力は、水噴射
コントロールパルプに導かれパルプの開度が調節される
31 is a gain compensation setting device that receives a load signal and obtains a gain compensation output. 32 is an adder that receives the output of the compensation setter, the main steam temperature controller 30, and the dynamic compensation signal, and outputs the sum of these signals. 33 is a desuperheater outlet temperature controller that multiplies the difference between the temperature at the desuperheater outlet and the output of the adder 32 by a constant and integrates the result. The output of the temperature controller is guided to the water injection control pulp to adjust the opening degree of the pulp.

第6図において、40は再熱蒸気温度と設定温度との差
を定数倍し、微分し、積分する再熱蒸気温度調節計であ
る。41は、該調節計出力と動的補償信号及びゲイン補
償設定器44の出力を受けて、これらの信号の和を出力
する加算器である。42は、該加算器の出力とゲイン補
償設定器45の出力を受ける上限リミッタである。43
は、該上限リミ、りとゲイン補償設定器46の出力を受
ける下限リミッタである。これら上下限リミッタは、操
作部等に過大な入力を与えないように上下限値を一定に
クリ、プするものである。下限リミ、り43の出力は、
GRFコントロールドライブに導かれダンパーの開度が
調節される。
In FIG. 6, 40 is a reheat steam temperature controller that multiplies the difference between the reheat steam temperature and the set temperature by a constant, differentiates it, and integrates it. Reference numeral 41 denotes an adder that receives the output of the controller, the dynamic compensation signal, and the output of the gain compensation setter 44, and outputs the sum of these signals. 42 is an upper limiter that receives the output of the adder and the output of the gain compensation setter 45. 43
is a lower limiter which receives the output of the upper limit and the gain compensation setter 46. These upper and lower limit limiters keep the upper and lower limit values constant so as not to apply excessive input to the operating section or the like. The output of lower limit 43 is:
The damper opening is adjusted by the GRF control drive.

以上、第4図乃至第6図の何れの場合も動的補償信号が
フィードフォワード的に付加され、負荷変動による過渡
的外乱の影響を打消すことができる。なお、動的補償信
号の要求量は、負荷の変動量により変化する。従って、
場合によっては主蒸気圧力調節計出力にゲイン補償設定
器の出力を乗算したものを動的補償信号とする場合があ
る。
As described above, in any of the cases shown in FIGS. 4 to 6, the dynamic compensation signal is added in a feedforward manner, and the influence of transient disturbances due to load fluctuations can be canceled. Note that the required amount of the dynamic compensation signal changes depending on the amount of load fluctuation. Therefore,
In some cases, the dynamic compensation signal may be obtained by multiplying the output of the main steam pressure controller by the output of the gain compensation setter.

以上、詳細に説明したように、本発明によれば主蒸気圧
力調節計出力を動的補償信号として用いるようにして、
ボイラのSTC系の過渡的外乱による影響を取り除くこ
とができるボイラの制御方法を実現することができる。
As described above in detail, according to the present invention, the main steam pressure regulator output is used as a dynamic compensation signal,
It is possible to realize a boiler control method that can eliminate the influence of transient disturbances on the STC system of the boiler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各制御要素の応答を示す図である。 第2図、第5図社動的補償信号発生回路の実施例を示す
電気的接続図である。第4乃至第6図は動的補償信号の
応用例を示す図である0 1・・・減算器、2・・・倍率器、3.10・・・主蒸
気圧力調節計、4・・・ゲイン補償設定器、5・・・乗
算器、6,11・・・加算器、20.30・・・主蒸気
温度調節計、40・・・再熱蒸気温度調節計。 代理人   弁理士  小 沢 信(゛・にr″□・、
。 一−′ 不1図 (a)        (b)       (c)第
2図
FIG. 1 is a diagram showing the response of each control element. FIGS. 2 and 5 are electrical connection diagrams showing an embodiment of the dynamic compensation signal generation circuit. 4 to 6 are diagrams showing application examples of dynamic compensation signals. 0 1... Subtractor, 2... Multiplier, 3.10... Main steam pressure controller, 4... Gain compensation setter, 5... Multiplier, 6, 11... Adder, 20.30... Main steam temperature controller, 40... Reheat steam temperature controller. Agent: Patent Attorney Makoto Ozawa (゛・nir″□・,
. 1-' Figure 2 (a) (b) (c)

Claims (1)

【特許請求の範囲】[Claims] フィードバック制御等に外乱による過渡現象を吸収する
ための動的補償を組合せたボイラ制御系で蒸気温度を制
御する場合において、主蒸気圧力調節計出力を動的補償
信号として用いるようにしたことを特徴とするボイラの
制御方法。
When controlling steam temperature with a boiler control system that combines feedback control with dynamic compensation to absorb transient phenomena caused by disturbances, the main steam pressure controller output is used as a dynamic compensation signal. Boiler control method.
JP13509881A 1981-08-28 1981-08-28 Method of controlling boiler Granted JPS5837404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13509881A JPS5837404A (en) 1981-08-28 1981-08-28 Method of controlling boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13509881A JPS5837404A (en) 1981-08-28 1981-08-28 Method of controlling boiler

Publications (2)

Publication Number Publication Date
JPS5837404A true JPS5837404A (en) 1983-03-04
JPH02601B2 JPH02601B2 (en) 1990-01-08

Family

ID=15143783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13509881A Granted JPS5837404A (en) 1981-08-28 1981-08-28 Method of controlling boiler

Country Status (1)

Country Link
JP (1) JPS5837404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140975A (en) * 2014-01-29 2015-08-03 三浦工業株式会社 boiler system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496041A (en) * 1972-05-09 1974-01-19
JPS56142302A (en) * 1980-04-08 1981-11-06 Mitsubishi Heavy Ind Ltd Steam pressure controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496041A (en) * 1972-05-09 1974-01-19
JPS56142302A (en) * 1980-04-08 1981-11-06 Mitsubishi Heavy Ind Ltd Steam pressure controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140975A (en) * 2014-01-29 2015-08-03 三浦工業株式会社 boiler system

Also Published As

Publication number Publication date
JPH02601B2 (en) 1990-01-08

Similar Documents

Publication Publication Date Title
JPS60243402A (en) Maximum efficiency steam temperature controller
JPS5837404A (en) Method of controlling boiler
JPS6391402A (en) Boiler controller
JPS63286614A (en) Combustion control of boller
JPS58179702A (en) Drum type boiler load follow-up controller
JPS6069215A (en) Apparatus for controlling steam pressure at inlet side of turbine
JP2975064B2 (en) Boiler air flow control method
JPS6176810A (en) Controller for temperature of boiler steam
JPS60218106A (en) Control device
JPS58205005A (en) Controller for drum level of waste heat boiler
JPS5822804A (en) Controller for temperature of steam in case of pressure change operation
JP2749588B2 (en) Fuel control method for coal-fired boiler
JPH0364681B2 (en)
JPS60245905A (en) Controller for steam temperature of boiler
JPS63204003A (en) Steam generation plant output controller
JPH0160723B2 (en)
JPS639638B2 (en)
JPS6091111A (en) Controller for temperature of steam of boiler
JPS622201B2 (en)
JPS62238908A (en) Steam temperature controller for boiler
JPS6010303A (en) Temperature controller
JPS6136605A (en) Boiler controller
JPS58145803A (en) Controller for drum level of waste-heat boiler
JPS61243202A (en) Method and device for controlling boiler
JPS588902A (en) Controller for coal burning thermoelectric power plant