JPS5837398A - Diagnosis of condition of pipe line - Google Patents

Diagnosis of condition of pipe line

Info

Publication number
JPS5837398A
JPS5837398A JP13570081A JP13570081A JPS5837398A JP S5837398 A JPS5837398 A JP S5837398A JP 13570081 A JP13570081 A JP 13570081A JP 13570081 A JP13570081 A JP 13570081A JP S5837398 A JPS5837398 A JP S5837398A
Authority
JP
Japan
Prior art keywords
pipe line
pipe
condition
designates
items
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13570081A
Other languages
Japanese (ja)
Other versions
JPS6321080B2 (en
Inventor
Hiroshi Miyamoto
宏 宮本
Tadao Yamaji
山路 忠雄
Ei Nakajima
中島 鋭
Yoshiki Sakurai
桜井 祥己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13570081A priority Critical patent/JPS5837398A/en
Publication of JPS5837398A publication Critical patent/JPS5837398A/en
Publication of JPS6321080B2 publication Critical patent/JPS6321080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pipeline Systems (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To grasp the condition of pipe line burried underground by a statistical technique by a method wherein in case where the condition of pipe line is diagnosed, data such as the lowest limit of water pressure used on the pipe line, the number of years for which the pipe line has been burried, the method by which the pipe was manufactured, the surface load applied on the pipe line, the rigidity of the pipe and the nature of the ground are used as explanatory variables and are introduced into an equation expressing as an objective variable the condition of the pipe line obtained by quantitative theoretical engineering. CONSTITUTION:In the equation yi is supposed (wherein y designates an objective variable and x(j) designates an explanatory variable). Then the explanatory variable x(j) is divided into several items x(j, k) and the weight of each of the items is calculated in such a manner that the error (e) between the actual measured value and the calculated value of the item becomes minimum. Note that in the equation, (i) designates a sample number, (j) designates an explanatory variable and (k) designates an item number. The items to be introduced into the equation at least include the water pressure used on the pipe line, the number of years for which the pipe line has been burried, the method by which the pipe was manufactured, the surface load applied on the pipe line, the rigidity of the pipe and the nature of the ground and the objective variable is obtained on the bases of these items.

Description

【発明の詳細な説明】 本発明は埋設管路の状態を統計的手法によシ間接的に診
断する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for indirectly diagnosing the condition of a buried pipeline using statistical techniques.

既設埋設管路の現在の状態がどの様なものであるかを把
握する方法として、従来は管の応力状鞄や腐食状況を直
接的に把握する方法が採られていたが、手鞠がかかるた
め実際には特殊な事情がない限り実施されていなかった
。しかし、事故を未然に防ぐためには大体であっても管
路の状態を把握しておく必要があり、簡単な方法で管路
の状態を把握する方法の囲発が望まれでいた。また、管
路の状態を把握できれば、その管路が今後何年稈使用口
」能か、またどの程度の使用条件まで耐乏られるかの把
握もqtとなる。
Conventionally, the method of grasping the current state of existing buried pipelines was to directly grasp the stress state and corrosion status of the pipes, but this method is difficult to determine. In reality, it was not implemented unless there were special circumstances. However, in order to prevent accidents, it is necessary to know the condition of the pipeline even if only in general, and it has been desired to develop a simple method for understanding the condition of the pipeline. In addition, if the condition of the pipeline can be ascertained, it will also be possible to determine how many years the pipeline will remain in use, and to what extent it can withstand usage conditions.

本発明は、かかる観点から統計的手法により簡単に管路
診断を行う方法の提供を目的とするものである。
From this point of view, the present invention aims to provide a method for easily diagnosing pipes using statistical methods.

統計的手法により管路診断を行うための統計データとし
て入手容易なものハ憂政管に関するデータでるるか、こ
れよシ得られるデータは事故の状況、埋設条件、腐食状
況等であり、これらの中には比較的数値化が難しいもの
が多く含まれている。
Easily obtainable statistical data for conducting pipe diagnosis using statistical methods is data related to government control, and the data that can be obtained from this includes accident situations, burial conditions, corrosion conditions, etc. There are many things that are relatively difficult to quantify.

そのため、定性的な現象を赦蓋的に把握できる手法を採
用する必要があり、本発明では管路の診wiに過当と思
われる数鷺化理論■類を採用している。
Therefore, it is necessary to adopt a method that allows qualitative phenomena to be grasped in a comprehensive manner, and the present invention employs a number theory (2) that is considered to be inappropriate for diagnosis of pipelines.

政緘化理論■類は、(1)式の如く重回帰分析と同様に
目的変数yと複数の説明変数x(j)(以下アイテムと
呼ぶ)の−次式を仮定し、説明変数をさらに数個の項目
X  (以下カテゴリーと呼ぶ)にCj、k) 分類し、実測値と計神愉との間で誤差eを最小にする様
に各カテゴリーのウェイ)Wを計算するものである。
Similar to multiple regression analysis, the political blitz theory type (1) assumes the following equation of the objective variable y and multiple explanatory variables x(j) (hereinafter referred to as items), and further sets the explanatory variables. This method classifies Cj, k) into several items

カテゴリーNo、であり、そのアイテムNo、とカテゴ
リーNo、 K属するものF′ix、(j、に−)=1
、属さないものはxi(j、 &) ” 0とすること
によって説明変数Xけ重回帰分析と途って数値でなくて
もよく、定性的な変改を用い得るのである。
Category No., and its item No. and category No. K belong to F'ix, (j, -) = 1
, those that do not belong to xi(j, &)'' are set to 0, so that the explanatory variable does not have to be a numerical value in the multiple regression analysis of X, and a qualitative modification can be used.

次に本発明方法の一実施例を説明する。使用したサンプ
ル#i甜細書の末尾に添付した表IK示す。
Next, one embodiment of the method of the present invention will be described. Table IK attached at the end of the sample #i specification used is shown.

なお、第1表において、土質の(1)は、(2) +3
) (4)に分類できない土質を分類した。また、土壌
の腐食性はANSIの土質評価基!$によっており、数
値が大きくなるほど腐食性が大である。又、目的変数の
算定は、ヅ故の発生が予想される状態と事故の大きさを
主眼において次の様な基準に基づいて行った。すなわち
、管路の状態の評価を基本点と補足点と腐食点に分け、
それらの評価点の加算によつ■ 基本点 la)  事故があった場合       75点(似
し、工1(等により外力が作用 して発生した場合は除く) fb)  管路に漏水が発生している場合5,0点(c
l  事故、漏水のない場合     1)点(2)補
足点 faJ  管にわれが発生していた場合  10点(b
l  管に小さなりラックが発生じていた場合    
        8点(c)  継手から漏水していた
場合   8点(d)  継手の胴付が大きくなってい
た場合             6点 (e)  漏水は非常に小さいが何箇所も発生していた
場合         4点げ)継手及びその付属品に
腐食が発 生していた場合         2点(g)  管体
・紬手Km食以外の異常がない場合         
   0点(3)   腐鉢、白 (、I)  管に貝通穴があった場合    lOα(
b)  内・外面の最大孔食深さを加算すると管厚の 75%以りの場合       8点 75〜50%の場合       6点150〜25%
の場合       4点25〜5%の場合     
  2点 5〜O%の場合       1煮 貝Hの条件に基づいて大型計算機によって上記の叩く計
算を行なって求められたモデル式を次の(2)式に示す
。なお、計薄過程において、影響の小さいアイテムを順
次省いて計算を行なった。まt(、当?n、土壌の腐食
性#−1(r)〜(4)のカテゴリーで計算を行なった
が、(1)のカテゴリーウェイト:A; (2)より小
さな値となったため、(1)<2)を1つのカテゴ1ノ
ーとした。
In addition, in Table 1, soil quality (1) is (2) +3
) Soil types that cannot be classified into (4) were classified. Also, soil corrosivity is based on ANSI soil quality evaluation standards! The value is determined by $, and the higher the value, the more corrosive it is. In addition, the objective variables were calculated based on the following criteria, focusing on the expected occurrence of the accident and the magnitude of the accident. In other words, the evaluation of the condition of the pipeline is divided into basic points, supplementary points, and corrosion points.
Based on the addition of those evaluation points, ■ Basic points la) If there is an accident, 75 points (similarly, excluding cases where the accident occurred due to external force due to work 1 (fb)) If a leak occurs in the pipe. 5,0 points (c
l If there is no accident or water leakage 1) points (2) Supplementary points faJ If cracks have occurred in the pipe 10 points (b
l If a small rack has occurred in the pipe
8 points (c) If water leaks from the joint 8 points (d) If the joint has a large body 6 points (e) If the water leaks are very small but occurs in many places 4 points) If corrosion has occurred in the fitting and its accessories 2 points (g) If there is no abnormality other than corrosion of the pipe body or pongee Km
0 points (3) Rotten pot, white (, I) If the pipe has a shell hole, lOα (
b) If the maximum pitting depth on the inner and outer surfaces is 75% or more of the pipe thickness: 8 points: 75-50% 6 points: 150-25%
In case of 4 points 25-5%
In the case of 2 points of 5 to 0%, the model formula obtained by performing the above-mentioned calculation using a large computer based on the conditions of 1 boiled shellfish H is shown in the following formula (2). In addition, in the calculation process, items with a small influence were sequentially omitted in the calculation. Calculation was performed using the categories of soil corrosivity #-1(r) to (4), and the category weight of (1) was A; the value was smaller than that of (2). (1)<2) was set as one category 1 no.

y(推定値)= (2テx、、+ 25.78’x1□+232fyx 
13 + 28.63’x14 )+ (1)−X、2
.+06(?x22+0.42・X23)+(0−X3
、+0.57・X32) +(0・% 41 3.22 X42)1−(0・X5
1−1.29・X52−5.36・X53)+(0’X
61−0.07・X61  z2o・X63)−+−(
1,96−’X7、+0−X7□−0,02−X73−
1.35−X74)+(o・xgl  3.16−X8
2−5.95−X838.20・X64)ト(0・’x
、1−3.o6・xg2−4.o2・xg3)+ (”
”101−14s・xl(123,29・Xl。3)+
(0”111 3.84・x1L2 1.94・XH3
)十(−0’ X 121 +1.08 ・X 122
 )”(0’X131−080’X132−119・X
133)−−−+2+また、この(2)式で与えられる
各アイテムのカテゴリーウェイトの最大値と最小値の差
、すなわちカテゴリーウェイトのバンド幅は一&2のf
il くなる。
y (estimated value) = (2tx,, + 25.78'x1□+232fyx
13 + 28.63'x14 ) + (1) - X, 2
.. +06(?x22+0.42・X23)+(0-X3
, +0.57・X32) +(0・% 41 3.22 X42) 1−(0・X5
1-1.29・X52-5.36・X53)+(0'X
61-0.07・X61 z2o・X63)−+−(
1,96-'X7, +0-X7□-0,02-X73-
1.35-X74)+(o・xgl 3.16-X8
2-5.95-X838.20・X64)to(0・'x
, 1-3. o6・xg2-4. o2・xg3)+(”
”101-14s・xl (123,29・Xl.3)+
(0”111 3.84・x1L2 1.94・XH3
) ten (-0' X 121 +1.08 ・X 122
)"(0'X131-080'X132-119・X
133)---+2+Also, the difference between the maximum and minimum category weights of each item given by this formula (2), that is, the category weight bandwidth, is 1 & 2 f
It becomes il.

表     2 この各アイテムのカテゴリーのバンド幅は各アイテムの
目的変数への影響度を示すものであり、バンド幅の大き
いものをアイテムとして採用することにより管路の正し
b診断が可能となる。バンド幅の大きいものから順に表
示すると、使用水圧、埋設年数、製造法、路面荷重、管
体の硬度、土質・・・ということになり、管路診断にお
いては少くともこれらのアイテムを採用する必要がある
。たソし、これらのアイテムのバンド幅の値や順序及び
各カテゴリーのウェイト等はサンプルの種類や故、カテ
ゴリーの選定、目的変数の算定基準を設定する考え方等
によって変動する。しかし、管路診断を行うものである
限り、上記アイテムを採用することね必須と思われる。
Table 2 The band width of each item category indicates the degree of influence of each item on the objective variable, and by adopting items with large bandwidths as items, it becomes possible to correctly diagnose the conduit. Displayed in descending order of band width, water pressure used, years of burial, manufacturing method, road load, pipe hardness, soil quality, etc. At least these items must be adopted in pipe diagnosis. There is. However, the value and order of the bandwidth of these items, the weight of each category, etc. vary depending on the type of sample, the selection of categories, the concept of setting the calculation criteria for the objective variable, etc. However, as long as pipe diagnosis is to be performed, it seems essential to adopt the above items.

また上記計算結果の重相関係数Rは8832%寄与半7
800%であった。、従って説明変数によって目的*故
を説明できると考えられる。$N頭に実測値すなわち上
記各サンプルの実際の状態について一ヒ記算定基準によ
り求められた目的変数と、推定値すなわち各サンプルの
説明変数に基づいて(2)式により計算され推定目的変
数の関係を示す、第1図において、′f11.猟は45
°線に対17て士fy(実測値の分散値)で、一点鎖線
は士tyfV”;’で引いている。ここでeは実測値と
推定値の単相関係数である。これから目安として次のこ
とが考えられる。実測値が正規分布に従うと仮定すると
、n個の実測値の内±Byの間に入る゛確率はα68n
個であり、又σy「は推定値の誤差の分散を支えるから
、実測値に対する推定値の誤差は、68%の確率で士t
;y 任=ア=±3.16の範囲内にあると考えられる
。サンプル以外の事故例について推定値を計算したとこ
ろ、実測値と90%程度の率で一致した。
In addition, the multiple correlation coefficient R of the above calculation result is 8832% contribution half 7
It was 800%. , Therefore, it is considered that the objective can be explained by the explanatory variables. $N First, the actual measured value, that is, the objective variable calculated using the calculation criteria described above for the actual state of each sample, and the estimated value, that is, the estimated objective variable calculated by equation (2) based on the explanatory variables of each sample. In FIG. 1, which shows the relationship, 'f11. Hunting is 45
The line is drawn at 17 t fy (dispersion value of the actual measured values), and the dashed-dotted line is drawn at t ty fV'';'.Here, e is the simple correlation coefficient between the actual measured value and the estimated value. The following can be considered.Assuming that the measured values follow a normal distribution, the probability of falling between ±By among n measured values is α68n
, and since σy' supports the variance of the error in the estimated value, the error in the estimated value relative to the actual measured value has a probability of 68%.
;y is considered to be within the range of +/-3.16. When estimated values were calculated for accident cases other than the sample, they matched the actual values at a rate of about 90%.

以上の計算結果の実際の管路診断への適用に当っては、
次め基準によって管路の状態を判定することができる。
When applying the above calculation results to actual pipeline diagnosis,
The condition of the conduit can be determined according to the following criteria:

(a)  15±3以上は大きな事故が発生する可能性
が考えられる範囲。
(a) 15±3 or more is the range where a major accident may occur.

(b)  15±3〜7±3で事故の発生する可能性が
考えられる範囲。
(b) The range in which the possibility of an accident occurring is considered to be between 15±3 and 7±3.

(c)7±3以下で事故の発生する可能性が少ない範囲
(c) 7±3 or less, a range where the possibility of an accident occurring is low.

なお、前記目的変数の算定基準は、この様な判定基準を
与えることができかつ計算結果の重相関係数を最大なら
しめる様に、計算を繰り返して選定されたものであり、
また力デゴリーの選定も゛できるだけ多数に分類して計
算した後影響の小さいものを省略して再計算するという
操作を繰り返して選定されたものである。たソ、上記実
施例で採用されたサンプルは、本発明方法の確立のため
に必要なデータを集めたものでなく、過去の限られた事
故記録に記載されている限りのデータを用いているので
、さらにサンプルが増え、データが精緻になることによ
ってより正確な判定が可能となると思われる。しかし、
本発明方法は統計的手法によって作られたモデルによる
診断方法であって、個々の管路について絶対的な判定を
下せるものではなく、管路の状態を大きく捉えるもので
あることには!わりない。
Note that the calculation criteria for the objective variables were selected through repeated calculations so as to be able to provide such judgment criteria and to maximize the multiple correlation coefficient of the calculation results.
In addition, the force degree was selected by repeating the process of classifying the force into as many categories as possible, calculating them, and then omitting those that have a small effect and recalculating them. However, the samples adopted in the above examples are not a collection of data necessary for establishing the method of the present invention, but use only the data recorded in limited past accident records. Therefore, as the number of samples increases and the data becomes more precise, more accurate judgments will become possible. but,
The method of the present invention is a diagnostic method using a model created using a statistical method, and cannot make absolute judgments about individual pipes, but rather grasps the condition of the pipes as a whole! It doesn't matter.

不発Elljの管W、診断方法によれば、以上の説明か
ら明らかな様に、使用水圧、埋設年数等の比較的簡単に
知り得るデータを用いて計算することにより管路の状態
を統計的な客観的根拠をもって推定することができ、埋
設管路の事故発生の防止に寄与すること極めて犬である
According to the method of diagnosing the unexploded Ellj pipe W, as is clear from the above explanation, the condition of the pipe can be statistically evaluated by calculating using data that can be obtained relatively easily, such as the water pressure used and the number of years it has been buried. It is extremely important that this can be estimated based on objective evidence and contributes to the prevention of accidents involving buried pipelines.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の管路診断方法における目的変数の実計1
餡と推定値の関係を示すグラフである。 代理人   森  本  義  弘
The drawing shows the actual total number 1 of objective variables in the pipeline diagnosis method of the present invention.
It is a graph showing the relationship between bean paste and estimated values. Agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] l 少くとも使用水圧、埋設年数、管体の製造法、路面
荷重、管体の硬度及び土質を説明変数として採用して敗
鰍化理論■類により求められた管路の状態を目的変数と
して数値化して表す計算式に診断すべき管路のデータを
入れて該管路の状態を推定することを特徴とする管路診
断方法。
l Use at least the water pressure used, the number of years buried, the manufacturing method of the pipe body, the road surface load, the hardness of the pipe body, and the soil quality as explanatory variables, and use the condition of the pipe line determined by the failure theory ■ as the objective variable. 1. A method for diagnosing pipes, which comprises estimating the condition of the pipe by inputting data of the pipe to be diagnosed into a calculation formula expressed as
JP13570081A 1981-08-28 1981-08-28 Diagnosis of condition of pipe line Granted JPS5837398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13570081A JPS5837398A (en) 1981-08-28 1981-08-28 Diagnosis of condition of pipe line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13570081A JPS5837398A (en) 1981-08-28 1981-08-28 Diagnosis of condition of pipe line

Publications (2)

Publication Number Publication Date
JPS5837398A true JPS5837398A (en) 1983-03-04
JPS6321080B2 JPS6321080B2 (en) 1988-05-02

Family

ID=15157846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13570081A Granted JPS5837398A (en) 1981-08-28 1981-08-28 Diagnosis of condition of pipe line

Country Status (1)

Country Link
JP (1) JPS5837398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070706A1 (en) * 2019-09-30 2022-04-07 株式会社クボタ Buried piping replacement period prediction device, buried piping replacement period prediction method, program, and computer-readable recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070706A1 (en) * 2019-09-30 2022-04-07 株式会社クボタ Buried piping replacement period prediction device, buried piping replacement period prediction method, program, and computer-readable recording medium

Also Published As

Publication number Publication date
JPS6321080B2 (en) 1988-05-02

Similar Documents

Publication Publication Date Title
US20220281034A1 (en) Unified Fatigue Life Evaluation Method For Welded Structures
CN109890526B (en) Crushing strength prediction method
US6512982B2 (en) Methods and systems for evaluating defects in metals
Chin et al. Failure pressure prediction of pipeline with single corrosion defect using artificial neural network
JP7468724B2 (en) Piping diagnosis device, piping diagnosis method, and program
CN110702782A (en) Nondestructive testing system for petroleum pipeline and testing method thereof
CN109815940B (en) Wavelet packet energy spectrum damage identification method
Rosenfeld et al. Strain estimation using Vetco deformation tool data
CN112329590B (en) Pipeline assembly detection system and detection method
CN117634938A (en) Production quality detection method and system for seamless steel pipe
JPS5837398A (en) Diagnosis of condition of pipe line
DE112008000585T5 (en) Protective elements for piping interrogators
CN107784148A (en) A kind of gathering line crash rate appraisal procedure and device
Dasgupta et al. Looking beyond audit-oriented evaluation of gauge repeatability and reproducibility: a case study
Dutta et al. A modified damage potential to predict crack initiation: theory and experimental verification
Ergezinger et al. Application of Noise Filtering Techniques for the Quantification of Uncertainty in Dent Strain Calculations
Bushinskaya et al. Description of the degradation process for defective thin-walled pipeline systems by the Markovian model of pure destruction
Lindstedt Weak interactions between objects in the signal‐based and parametric diagnostics of transport‐dedicated complex engineering systems
Tinacos et al. ILI based dent screening and strain based analysis
Worthingham et al. Analysis of corrosion rates on a gas transmission pipeline
Zhu et al. Analytic prediction of plastic collapse failure pressure of line pipes
CN114444368B (en) Pipeline integrity evaluation method and device and electronic equipment
Lockey et al. Modelling shallow dents using local regression methods and finite element analysis
Nahal et al. Mechanical reliability analysis of tubes intended for hydrocarbons
JP7478000B2 (en) 3D image data analysis device