JPS5837245B2 - sulfur sulfur sulfur - Google Patents

sulfur sulfur sulfur

Info

Publication number
JPS5837245B2
JPS5837245B2 JP49033920A JP3392074A JPS5837245B2 JP S5837245 B2 JPS5837245 B2 JP S5837245B2 JP 49033920 A JP49033920 A JP 49033920A JP 3392074 A JP3392074 A JP 3392074A JP S5837245 B2 JPS5837245 B2 JP S5837245B2
Authority
JP
Japan
Prior art keywords
gas
sulfur
hydrogen sulfide
reactor
auxiliary fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49033920A
Other languages
Japanese (ja)
Other versions
JPS50127891A (en
Inventor
晃 本池
信夫 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP49033920A priority Critical patent/JPS5837245B2/en
Publication of JPS50127891A publication Critical patent/JPS50127891A/ja
Publication of JPS5837245B2 publication Critical patent/JPS5837245B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明{ま硫化水素の含有量が60容量%以下でアンモ
ニア及び/又はシアン化水素を含む、低濃度の硫化水素
含有ガスから、スムースに元素硫黄の回収を打能にした
新規な硫黄回収方法に関するものである。
[Detailed Description of the Invention] The present invention enables the smooth recovery of elemental sulfur from a low concentration hydrogen sulfide-containing gas containing ammonia and/or hydrogen cyanide with a hydrogen sulfide content of 60% by volume or less. This paper relates to a new sulfur recovery method.

従来石油精製工場から発生する硫化水素含有ガスはアシ
ツドガスと云いH2Sを90%以上含んでおり、此を所
詣るクラウス反応による硫黄回収装置にかけて元素硫黄
を回収している。
Conventionally, hydrogen sulfide-containing gas generated from petroleum refineries is called acid gas and contains 90% or more of H2S, and elemental sulfur is recovered by passing this gas through a sulfur recovery device based on the Claus reaction.

この場合H2Sの1/3を燃焼して、SO2を作り残余
の2/3のH2Sと次の如く反,応させて硫黄を製造す
ることはクラウス反応として周く知られている。
In this case, combusting 1/3 of H2S to produce SO2 and reacting with the remaining 2/3 H2S as follows to produce sulfur is well known as the Claus reaction.

硫化水素 亜硫酸ガス 硫黄 クラウス反応 2H2S + SO2 →3S水蒸気 +2H O ・・・・・・・・・・・・・・・・・・
・・・ ・・・(1)2 此の場合H2Sの濃度が高いと反応に必要な熱は、硫化
水素の173が燃焼する際lこ発生する熱を以って賄う
事が出来るが、硫化水素の濃度が低くなると、硫化水素
の含有量の1/3を燃やした丈では熱量が不足し温度が
上らずクラウス反応がスムースに進まず終局には硫黄の
回収率も低下を来すこととなる。
Hydrogen sulfide Sulfur dioxide gas Sulfur Claus reaction 2H2S + SO2 →3S water vapor + 2H O ・・・・・・・・・・・・・・・・・・
... ...(1)2 In this case, if the concentration of H2S is high, the heat required for the reaction can be covered by the heat generated when hydrogen sulfide 173 burns, but When the concentration of hydrogen decreases, even if 1/3 of the hydrogen sulfide content is burned, there will be insufficient heat, the temperature will not rise, the Claus reaction will not proceed smoothly, and the sulfur recovery rate will eventually decrease. becomes.

其処でH2Sの含量が60容量%以下ともなると此の熱
量を補う為、天然ガスとかオフガス或はコークス炉ガス
等を補助燃料として使用し此を燃焼し、此の燃焼ガスを
反応ガスと一緒にして反応ガスの温度を上げる事が普通
行われている。
When the H2S content is less than 60% by volume, natural gas, off-gas, or coke oven gas is used as an auxiliary fuel to compensate for this amount of heat, and this is combusted, and this combustion gas is combined with the reaction gas. It is common practice to raise the temperature of the reactant gas.

然し、此の低濃度硫化水素ガス中には、往々にしてNH
3,HCNの如き窒素化合物が混入する事があり、此の
ものは、燃焼温度が低いとNH3は分解せずHCNは加
水分解してNH3となり此が工程の途中で生或するSO
3と化合し酸性硫酸アンモン(NH4HSO4)或は硫
安( ( NH4 )2 SO4 )の結晶が生じ、触
媒層やコンデンサー等を閉塞し、触媒の活畦度を低下さ
せるとか、装置の内部抵抗を増加させる等の困難を与え
ることとなり結局装置の長期運転を不可能にした。
However, this low concentration hydrogen sulfide gas often contains NH.
3. Nitrogen compounds such as HCN may be mixed in, and if the combustion temperature is low, NH3 will not decompose, but HCN will hydrolyze to become NH3, which will be produced during the process and become SO.
3, crystals of acidic ammonium sulfate (NH4HSO4) or ammonium sulfate ((NH4)2SO4) are formed, which clog the catalyst layer and condenser, reducing the activity of the catalyst and increasing the internal resistance of the device. In the end, this made long-term operation of the device impossible.

此の欠点を克服する為には、燃焼ガスの温度を反応炉内
で1300〜1400℃に上げ、総てのNH3とHCN
をH20とN2とCO2に分解してしまう必要がある。
In order to overcome this drawback, the temperature of the combustion gas should be raised to 1300-1400℃ in the reactor, so that all NH3 and HCN
It is necessary to decompose it into H20, N2 and CO2.

此の為に本願発明人等は、反応炉の構造ならひに操業方
法を次の如く改めた。
For this reason, the inventors of the present application modified the structure of the reactor and the operating method as follows.

(1)反応炉を、補助燃料燃焼室と硫化水素燃焼室と熱
交換室の3つに区分けした。
(1) The reactor was divided into three parts: an auxiliary fuel combustion chamber, a hydrogen sulfide combustion chamber, and a heat exchange chamber.

(2)補助燃料及び硫化水素の一部は第1室で過剰の空
気で完全に燃焼させ、第2室では残余の空気で加えた全
硫化水素の1/3丈が反応炉で燃焼する様に残余の硫化
水素を燃焼した。
(2) Part of the auxiliary fuel and hydrogen sulfide is completely combusted in the first chamber with excess air, and in the second chamber, the remaining air is used so that 1/3 of the total hydrogen sulfide added is combusted in the reactor. The remaining hydrogen sulfide was burned off.

(3)尚補助燃料を少くし、しかも装置効率を高めるた
め予め、原料硫化水素含有ガスと、補助燃料と硫化水素
の1/3を燃やすに必要な空気を約4 0 0 ゜Cに
予熱して反応炉に加えること。
(3) In order to reduce the amount of auxiliary fuel and increase the efficiency of the device, the raw material hydrogen sulfide-containing gas and the air necessary to burn 1/3 of the auxiliary fuel and hydrogen sulfide are preheated to approximately 400°C. Add to the reactor.

以上を行う事に依一つで反応炉内温度を1300〜14
00℃に上げる事が可能となり含有NH3,HCNは殆
んど総てH20,N2とCO2になるので後段に於ける
硫安や酸性硫酸アンモンの結晶による閉塞は皆無となっ
た。
By doing the above, the temperature inside the reactor can be raised to 1300-1400℃.
It became possible to raise the temperature to 00°C, and almost all of the NH3 and HCN contained became H20, N2 and CO2, so there was no blockage due to ammonium sulfate or acidic ammonium sulfate crystals in the subsequent stage.

今図南に基き本発明を詳,細に説明しよう。The present invention will now be explained in detail based on Figure South.

第1図は硫′ヒ水素を含有するガスから硫黄を回収する
クラウス式硫黄回収設備のフローシートの1例で、此の
前半が本発明による装置ならびに方法の1例を示してい
る。
FIG. 1 is an example of a flow sheet of a Claus-type sulfur recovery facility for recovering sulfur from gas containing sulfur and arsenic, and the first half of the flow sheet shows an example of the apparatus and method according to the present invention.

第2図は補助燃料燃焼室の従断面図、第3図は第2図の
A−A視園である。
FIG. 2 is a cross-sectional view of the auxiliary fuel combustion chamber, and FIG. 3 is a view taken along line AA in FIG.

(1)からH2Sを60容量%以丁含んだ所謂るアシツ
ドガスが導入され、6の予熱器(普通ソルトバスが使わ
れる。
From (1), so-called acid gas containing 60% by volume or more of H2S is introduced, and No. 6 preheater (normally a salt bath is used).

)を通って、約400℃に予熱され、導管24を経゛C
反応炉1の硫化水素燃焼室9へ(一部は補助燃料燃焼室
へ)導かれる。
), preheated to approximately 400°C, and passed through conduit 24 to approximately 400°C.
It is led to the hydrogen sulfide combustion chamber 9 of the reactor 1 (partly to the auxiliary fuel combustion chamber).

一方(2)から補助燃料例えば天然ガス或はオフガス或
はコークス炉ガスの様な完全燃焼し易いガスが、導管1
9を通って、反応炉Tの補助燃料燃焼室8へ送られる。
On the other hand, from (2) auxiliary fuel, such as natural gas, off-gas or coke oven gas, which is easily combustible, is supplied to conduit 1.
9 to the auxiliary fuel combustion chamber 8 of the reactor T.

18はバーナーで送られた補助燃料並びにアシツドガス
の一部が、(3)からファン4を経″C6の予熱器で約
400℃の温度に予熱された後導管1Tを通って送入さ
れる空気で噴射されて完全燃焼され燃焼生成ガスは約1
200℃〜1300℃の温度になって次の室の硫化水素
燃焼室9へ送られる。
18 is the air in which part of the auxiliary fuel and acid gas sent by the burner is sent from (3) through the fan 4 and after being preheated to a temperature of about 400°C in the preheater C6, it is sent through the conduit 1T. It is injected and completely combusted, and the combustion generated gas is approximately 1
The temperature reaches a temperature of 200°C to 1300°C and is sent to the next chamber, the hydrogen sulfide combustion chamber 9.

1γの導管から送られる空気量は、補助燃料を燃やすに
必要な空気の外:こ、導管24並びに24′から、硫・
イヒ水素燃焼室9並びに補助燃料燃焼室8へ送られる硫
化水素の1/3の量を、次の弐で亜硫酸ガスにするのに
必要な空気量の合計緻となる様調節される。
In addition to the air needed to burn the auxiliary fuel, the amount of air sent through the 1γ conduit is
The amount of 1/3 of the hydrogen sulfide sent to the hydrogen combustion chamber 9 and the auxiliary fuel combustion chamber 8 is adjusted so as to be the total amount of air required to convert it into sulfur dioxide gas in the next step.

硫化水素 酸素 亜硫酸ガス 水蒸気H2S+′!
/202→SO2+H20 それ故、補助燃料燃焼室8での補助燃料の燃焼は、空気
が過剰に吹き込まれ、又特殊なバーナー(過剰な空気が
空気混合室18に切線方向に入る構造)を使うので、補
助燃料は煤の発生もなく完全燃焼し燃焼ガスは所定の温
度となる。
Hydrogen sulfide Oxygen Sulfur dioxide gas Water vapor H2S+'!
/202→SO2+H20 Therefore, in the combustion of the auxiliary fuel in the auxiliary fuel combustion chamber 8, excessive air is blown in and a special burner (structure in which excess air enters the air mixing chamber 18 in the tangential direction) is used. The auxiliary fuel is completely combusted without generating soot, and the combustion gas reaches a predetermined temperature.

バーナー18には予熱された燃焼空気の一部が導管11
から分れて一次空気として導管11′から送風される。
A portion of the preheated combustion air is passed through the conduit 11 to the burner 18.
The air is separated from the primary air and blown from the conduit 11' as primary air.

(1)から送られる硫化水素の濃度が非常に薄い時は補
助燃料も、アシツドガスや所要空気と同様予熱する事も
可能である。
When the concentration of hydrogen sulfide sent from (1) is very low, it is possible to preheat the auxiliary fuel as well as the acid gas and the required air.

9の硫化水素燃焼室では、8の補助燃料燃焼室から来る
熱ガス中に含まれる余剰酸素で、装置へ送られる硫化水
素の1/3量が亜硫酸ガスとなるように燃焼され、その
際発生する熱量を加えて全体としての勺゛ス巖度は13
00〜1400℃に上昇する。
In the hydrogen sulfide combustion chamber 9, the excess oxygen contained in the hot gas coming from the auxiliary fuel combustion chamber 8 is combusted so that 1/3 of the hydrogen sulfide sent to the device becomes sulfur dioxide gas. Adding the amount of heat generated, the overall strength is 13
The temperature rises to 00-1400°C.

それに従い原料アシツドガス中に含まれるアンモニア(
NH3)とかシアン化水素カス(HCN)は総てH20
,N2及びCO2とに分解されてしまい、後工程に於で
トラブルを起すことは全くない。
According to this, ammonia (
NH3) and hydrogen cyanide scum (HCN) are all H20
, N2 and CO2, and no trouble will occur in subsequent processes.

補助燃料燃焼室8と硫化水素燃焼室9の境は、耐火煉瓦
が格子状に形成され或は又、中央に適宜通路を有するも
のでもよい。
The boundary between the auxiliary fuel combustion chamber 8 and the hydrogen sulfide combustion chamber 9 may be formed of refractory bricks in the form of a grid, or may have an appropriate passage in the center.

補助燃料を別途に完全燃焼させる為に設けたものである
This is provided to completely burn the auxiliary fuel separately.

次にH2S:SO2−2:1の比になったガスを含みN
H3やHCN等を含まない燃焼生成ガスは、次の熱交換
室10(普通反応炉ボイラーと謂われている。
Next, N containing gas with a ratio of H2S:SO2-2:1
The combustion generated gas that does not contain H3, HCN, etc. is transferred to the next heat exchange chamber 10 (usually called a reactor boiler).

)に入る。此処では、ボイラー給水が26から導入され
、硫化水素燃焼室9から人って来る生成ガスと熱交換が
行われると同時1こ、クラウス反応の1部が行われる。
)to go into. Here, boiler feed water is introduced from 26, heat exchanges with the generated gas coming from the hydrogen sulfide combustion chamber 9, and at the same time, part of the Claus reaction takes place.

熱交換器で発生した熱を蒸気27に変えたガスは、導管
21から外部へ排出され反応炉Tでクラウス反応で生或
した硫黄蒸気ならびに水蒸気はクーラー12で冷却され
、導管20で溶融硫藏貯槽13へ導かれる。
The heat generated in the heat exchanger is converted into steam 27, and the gas is discharged to the outside through a conduit 21. The sulfur vapor and water vapor generated by the Claus reaction in the reactor T are cooled in the cooler 12, and then converted into molten sulfur in the conduit 20. It is guided to the storage tank 13.

下方未反応ガスは導管21を経て、ラインバーナー14
(補助加熱装置→でクラウス反応の適温(約200℃運
どなる様温度を調節した後、反応器11の前段11′へ
導かれる。
The lower unreacted gas passes through the conduit 21 to the line burner 14.
(After adjusting the temperature to an appropriate temperature for the Claus reaction (approximately 200°C) using an auxiliary heating device, the reactor is led to the front stage 11' of the reactor 11.

反応器11の棚にはアルミナ系の触媒が充填されており
、此処でH2S:SO2−2二1の害u合のガスは20
0〜250℃の温度で(1)式のクラウス反応が行われ
硫黄蒸気と水蒸気が発生する。
The shelf of the reactor 11 is filled with an alumina-based catalyst, and here the harmful gas of H2S:SO2-221 is 20
The Claus reaction of formula (1) is carried out at a temperature of 0 to 250°C, and sulfur vapor and water vapor are generated.

クラウス反応は反応炉了と第1段反応器11′で90%
が完了する。
The Claus reaction is 90% in the reactor end and first stage reactor 11'.
is completed.

ガスは第1クーラー12′で140℃位に冷却され、硫
黄を凝縮し、溶融硫黄は導管23′を経て溶融硫黄貯槽
13へ貯蔵される。
The gas is cooled to about 140° C. in the first cooler 12' to condense the sulfur, and the molten sulfur is stored in the molten sulfur storage tank 13 via the conduit 23'.

尚未反応ガスは再び、導管22を経てラインノくーナー
14’で適当な温度に再加熱され第2段反応器11“へ
導かれ綜合反応率95%で、反応が行われ第1段と同様
クーラー12“を経て、生成硫黄は13の溶融硫黄貯槽
へ未反応ガスは導管16を経てインシネレーター(焼却
器)又はテールガス処理設備(共に図示せず)へ送られ
る。
The unreacted gas is again reheated to an appropriate temperature in the line heater 14' via the conduit 22, and guided to the second stage reactor 11'', where the reaction is carried out at a total reaction rate of 95%. 12'', the produced sulfur is sent to a molten sulfur storage tank 13, and the unreacted gas is sent via conduit 16 to an incinerator or tail gas treatment facility (both not shown).

尚、(1)の原ガス中にNH3とかHCNを含んでいて
反応炉T中の温度が1 200℃位に留っていると、さ
きにも述べた様に、酸性硫酸アンモンや硫安の結晶が反
応器11の触媒層上に沈積したり又クーラー12,12
’ ,12“内で結晶が析出し反応器内の抵抗を高めた
り、生成する硫黄の純度を低下させるのである。
Furthermore, if the raw gas in (1) contains NH3 or HCN and the temperature in the reactor T remains at around 1,200°C, as mentioned earlier, crystals of acidic ammonium sulfate and ammonium sulfate will form. may be deposited on the catalyst layer of the reactor 11 or the coolers 12, 12.
Crystals precipitate within the reactor, increasing the resistance inside the reactor and reducing the purity of the sulfur produced.

本発明は上記の困難骨0アシツ を克服したもので次にその実際の状況を実施例を以って
示そう。
The present invention overcomes the above-mentioned difficulties, and the actual situation thereof will now be illustrated with examples.

実施例 0実施した装置 8旭/日クラウス式硫黄回収装置 但しA例は本発明の反応炉を3 室に区分した場合。Example 0 Equipment used 8 Asahi/Japan Claus type sulfur recovery equipment However, in Example A, the reactor of the present invention was When divided into rooms.

B例は従来の如く反応炉を燃焼室と熱交換 室の2室に区分の場合。Example B uses heat exchange between the reactor and the combustion chamber as before. If the room is divided into two rooms.

ドガスの組成 Oアシツドガス処理量 7 3 4 Nrn’/ h
r○補助燃料としてアシツドガスがコークス炉ガスの
精製から発生せる場合なのでコークス炉ガスを使用した
Acid gas composition O Acid gas processing amount 7 3 4 Nrn'/h
r○ Coke oven gas was used as the auxiliary fuel since the acid gas is generated from refining coke oven gas.

コークス炉ガス使用量 116Nmンhrこの楊合、ア
シツドガスと所要空気(1155Nrrr’/hr )
を350℃に予熱した場合と然らざる場合について比較
した例を次に示す。
Coke oven gas usage: 116Nmhr, acid gas and air required (1155Nrrr'/hr)
The following is an example comparing the case where the sample was preheated to 350°C and the case where it was not preheated.

以上の様な結果で(〜の反応炉を3室に分けアシツドガ
スと所要空気を約350℃に予熱する時は綜合して次の
効果がある事が判った。
From the above results, it was found that when the reactor (~) is divided into three chambers and the acid gas and the required air are preheated to about 350°C, the following effects can be obtained.

(1) アシツドガス中にNH3やHCNガスが含ま
れていても、工程内で酸性硫酸アンモンや硫安の結晶の
析出は全くなく、長期連続運転が可能である。
(1) Even if the acid gas contains NH3 or HCN gas, there is no precipitation of acidic ammonium sulfate or ammonium sulfate crystals during the process, and long-term continuous operation is possible.

(2)クラウス反応による硫化水素の硫黄への転化率が
従来94%であったものが95%へ上昇した。
(2) The conversion rate of hydrogen sulfide to sulfur by the Claus reaction has increased from 94% to 95%.

(1%の上昇でもテールガス処理等で著しく手数かはふ
ける) (3) CB)を09と同様な炉内温度にする為には
補助燃料及び硫安空気を更に追加せねばならず、勢い設
備は、膨大となり且つ又反応成分が稀釈され..(有効
成分分圧低トのため)転化率が低下する。
(Even with a 1% increase, it will take a considerable amount of time to process the tail gas, etc.) In order to bring the furnace temperature in (3) CB) to the same temperature as in 09, it is necessary to further add auxiliary fuel and ammonium sulfate air, and the momentum equipment is , the amount becomes huge and the reaction components are diluted. .. Conversion rate decreases (due to low active ingredient partial pressure).

本発明方法に依れば此の心配が全くない。According to the method of the present invention, there is no need to worry about this at all.

(4)異状な結晶等の生或がなく、補助燃料は完全燃焼
するので煤等の発生がないから、製品硫黄は純粋な黄白
色を呈しその純度は99.9%以上である。
(4) There is no formation of abnormal crystals, etc., and the auxiliary fuel is completely combusted, so there is no generation of soot, etc., so the product sulfur has a pure yellow-white color and its purity is 99.9% or more.

以上の様に例えば重油の脱硫等から発生するアシツドガ
ス(此のものには住,々にしてNH3やHCNを含んで
いるが)又コ・−クス炉ガスの脱硫から発生するアンツ
ドガスは多量のCO2と少量のH C Nを含んでいる
のでH2Sの濃度は稀0)。
As mentioned above, for example, the acid gas generated from the desulfurization of heavy oil (which generally contains NH3 and HCN) and the acid gas generated from the desulfurization of coke oven gas contain a large amount of CO2. Since it contains a small amount of HCN, the concentration of H2S is rarely 0).

本発明方法は比の様な低濃度のアシツドガスから、スム
ースに長期連続して運転町能な硫黄回収方法を与えるも
ので、大気汚染防止、有用資源回収の立場からその効果
は極めて犬なるものがあると考えられる。
The method of the present invention provides a method for recovering sulfur from low-concentration acid gas, which can be operated smoothly and continuously over a long period of time.The method of the present invention is extremely effective from the standpoint of preventing air pollution and recovering useful resources. It is believed that there is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1例を示すフローシ一トである。 第2図は補助燃料燃焼室の縦断面図、第3図は第2図人
−A視図である。 7は反応炉、8は補助燃料燃焼室、6は予熱器、9は硫
化水素燃焼室、10は熱交換室、12,12′,12“
はクーラー、11は反応器、11′,11“はそれぞれ
第1段第2段反応器、13は溶融硫黄貯槽、14,14
’はラインバーナー。
FIG. 1 is a flow sheet showing one example of the method of the present invention. FIG. 2 is a longitudinal sectional view of the auxiliary fuel combustion chamber, and FIG. 3 is a view taken along line A in FIG. 7 is a reactor, 8 is an auxiliary fuel combustion chamber, 6 is a preheater, 9 is a hydrogen sulfide combustion chamber, 10 is a heat exchange chamber, 12, 12', 12''
is a cooler, 11 is a reactor, 11' and 11'' are first and second stage reactors, respectively, 13 is a molten sulfur storage tank, 14, 14
' is a line burner.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物としてアンモニア及び/又はシアン化水素ガ
スを含み、硫化水素が容量で60%以下の低濃度硫化水
素含有ガスから元素硫黄を回収するに当り、反応炉Tを
過剰空気が空気混合室8′に切線方向に入るバーナー1
8を備えた補助燃料燃焼室8、硫化水素燃焼室9及び熱
交換室10の3つに分け、原料硫化水素含有ガスならび
に所要空気を予熱したる後、反応炉Tに加えることを特
徴とする低濃度硫化水素含有ガスから硫黄の回収方法。
1. When recovering elemental sulfur from a gas containing ammonia and/or hydrogen cyanide gas as impurities and containing a low concentration of hydrogen sulfide, in which hydrogen sulfide is less than 60% by volume, excess air flows through the reactor T into the air mixing chamber 8'. Burner 1 entering the direction
8, a hydrogen sulfide combustion chamber 9, and a heat exchange chamber 10, and the hydrogen sulfide-containing raw material gas and the required air are preheated and then added to the reactor T. A method for recovering sulfur from gas containing low concentration hydrogen sulfide.
JP49033920A 1974-03-28 1974-03-28 sulfur sulfur sulfur Expired JPS5837245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49033920A JPS5837245B2 (en) 1974-03-28 1974-03-28 sulfur sulfur sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49033920A JPS5837245B2 (en) 1974-03-28 1974-03-28 sulfur sulfur sulfur

Publications (2)

Publication Number Publication Date
JPS50127891A JPS50127891A (en) 1975-10-08
JPS5837245B2 true JPS5837245B2 (en) 1983-08-15

Family

ID=12399942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49033920A Expired JPS5837245B2 (en) 1974-03-28 1974-03-28 sulfur sulfur sulfur

Country Status (1)

Country Link
JP (1) JPS5837245B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511360A (en) * 1974-06-25 1976-01-08 Nippon Mining Co Anmonia oyobi ryukasuisooganjusuru gasunoshoriho
DE3311372C2 (en) * 1983-03-29 1986-07-10 Carl Still Gmbh & Co Kg, 4350 Recklinghausen Process for the production of sulfur by the Claus process from coke oven gas
WO2010115871A1 (en) * 2009-04-08 2010-10-14 Shell Internationale Research Maatschappij B.V. Method of treating an off-gas stream and an apparatus therefor

Also Published As

Publication number Publication date
JPS50127891A (en) 1975-10-08

Similar Documents

Publication Publication Date Title
US4395390A (en) Process to produce sulphur from two acid gases, both containing hydrogen sulphide and one of which contains ammonia
JP3434313B2 (en) Processing of gas streams
US4826670A (en) Oxygen enriched claus system with sulfuric acid injection
KR20030059127A (en) Process and apparatus for recovering sulphur from a gas stream containing sulphide
CN103822217A (en) Acidic gas pretreatment process
CA1327266C (en) Treatment of gases
EP3472096B1 (en) Integrated process for the production of sulphuric acid and sulphur
US2889207A (en) Method for recovery of sulfur from hydrogen sulfide-containing gases
US4780305A (en) Dual combustion oxygen-enriched claus sulfur plant
US4447333A (en) Process for the elimination of ammonia in coke plant waste waters
US5139764A (en) Sulfur recovery process for ammonia-containing feed gas
JP3884382B2 (en) Burner and partial oxidation methods for gas streams containing hydrogen sulfide and ammonia
US4632043A (en) Method of treating low-quality acid gas and furnace therefor
US3592602A (en) High turn-down ratio design for sulfur plants
US7250149B1 (en) Sulfur gas treatment process
JPS5837245B2 (en) sulfur sulfur sulfur
JPS58167405A (en) Manufacture of sulfur from hydrogen sulfide of coke oven gas
TW201408588A (en) Method for controlling the temperature in the combustion furnace of a Claus plant
JPH0377408B2 (en)
US4101642A (en) Method for converting the ammonia and hydrogen sulfide contained in coke-oven gases into nitrogen and water and sulfur respectively
EP0252497A2 (en) Sulfor dioxide injection for claus furnace temperature moderation
US20060153767A1 (en) Steam modified Claus process
EP0325286A2 (en) Sulfur recovery process for ammonia-containing feed gas
US3988428A (en) Sulfur-producing process and system for producing sulfur dioxide
US2102081A (en) Process for the reduction of sulphur dioxide to elemental sulphur by means of carbon