JPS5837200A - Removing method for oxide on metallic surface - Google Patents

Removing method for oxide on metallic surface

Info

Publication number
JPS5837200A
JPS5837200A JP13272281A JP13272281A JPS5837200A JP S5837200 A JPS5837200 A JP S5837200A JP 13272281 A JP13272281 A JP 13272281A JP 13272281 A JP13272281 A JP 13272281A JP S5837200 A JPS5837200 A JP S5837200A
Authority
JP
Japan
Prior art keywords
oxide
corrosion
water
base metal
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13272281A
Other languages
Japanese (ja)
Inventor
Nobuo Sumida
修生 澄田
Takashi Saito
隆 斉藤
Hisao Ito
久雄 伊藤
Masato Kobayashi
小林 政人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP13272281A priority Critical patent/JPS5837200A/en
Publication of JPS5837200A publication Critical patent/JPS5837200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To dissolve away the oxide grown or stuck on the surface of a base metal and to suppress the corrosion of the base metal by bringing said oxide into contact with electrolytically reduced water particularly in the presence of gasesus H2. CONSTITUTION:The above-described oxide (alphaFe2O3 and Fe3O4) on the surface of a base metal consisting of Fe is brought into contact with electrolytically reduced water particularly under blowing of gaseous H2. As a result, the dissolution of the above-described oxide is accelerated and the corrosion and damage of the base metal are suppressed by the combination of decrease in the concn. of the dissolved O2 in the water on the cathode in the electrolytic cell and the dissolution of the gaseous H2. In other words, according to said method, the oxide is dissolved away without using chemical which may induce corrosion when allowed to remain after the treatment. Such method is adaptable to suppression of corrosion on the inside surfaces of the apparatus and pipings installed particularly in nuclear power plants, etc. in contacting with fluid.

Description

【発明の詳細な説明】 金属表面に成長又は付着した酸化物の除去に係シ、特に
母材である金属の腐食損傷を防止するのに好適な金属表
面酸化物の除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the removal of oxides grown or attached to metal surfaces, and particularly to a method for removing oxides from metal surfaces suitable for preventing corrosion damage to base metals.

火力発電プラント、原子力発電プラントおよび化学プラ
ント等のプラントに設置されている機器および配管の流
体と接触する内面には、プラントの稼動年数の増加に伴
って酸化物が付着、又は成長する。このような酸化物は
、機器および配管の機能を阻害する危険性があるので、
これを除去することが望まれる。
Oxides adhere to or grow on the inner surfaces of equipment and piping installed in plants such as thermal power plants, nuclear power plants, chemical plants, etc. that come into contact with fluid as the number of years the plants have been in operation increases. Such oxides have the risk of interfering with the functionality of equipment and piping, so
It is desirable to remove this.

特に原子力発電プラントにおいては、原子力発電プラン
ト内を流動する冷却水中の放射性イオン等が、原子力発
電プラントの機器および配管の内面に付着する酸化物に
付着したり、又は機器および配管の内面に酸化物が形成
されるときに酸化物に取り込まれる。この結果、機器、
及び配管の表面線量率が増加するので機器、及び配管の
保守点検作業に支障をきたし、作業に要する時間が著し
する必要がある。
Particularly in nuclear power plants, radioactive ions, etc. in the cooling water flowing through the nuclear power plant may adhere to oxides on the inside surfaces of the equipment and piping of the nuclear power plant, or is incorporated into the oxide when it is formed. As a result, equipment,
Since the surface dose rate of the pipes and pipes increases, maintenance and inspection work on equipment and pipes becomes difficult, and the time required for the work becomes significant.

従来よ〈実施されている金属表面から酸化物を除去する
方法は、特公昭53−731号公報、及び特公昭53−
20252号公報に記載されているように、酸、錆化剤
、及び還元剤を混合した溶液を用いるものである。この
ような方法を用いた場合、除去作業時に、母材金属が腐
食していた。
Conventional methods for removing oxides from metal surfaces are described in Japanese Patent Publication No. 53-731 and Japanese Patent Publication No. 53-731.
As described in Japanese Patent No. 20252, a solution containing an acid, a rusting agent, and a reducing agent is used. When such a method was used, the base metal was corroded during the removal work.

このような化学薬品を用いた場合、除去作業後プラント
の隙間構造部とが停滞部に化学薬品が残留することは不
可避である。このために、除去作業後でも母材金属が腐
食する危険性がある。
When such chemicals are used, it is inevitable that the chemicals remain in the interstitial and stagnant parts of the plant after removal work. For this reason, there is a risk that the base metal will corrode even after the removal work.

原子力発電プラントでは、特に安全性が重要視されるた
めに除去作業後の残−留化学薬品による金属母材の腐食
は問題となる。従って、化学薬品を用いないで、放射性
酸化物除去方法が必要となる。
In nuclear power plants, where safety is particularly important, corrosion of the metal base material by residual chemicals after removal work becomes a problem. Therefore, a method for removing radioactive oxides without using chemicals is needed.

本発明の目的は、酸化物除去時及び除去後において母材
金属の腐食損傷を抑制できるように化学薬品を用いるこ
となく酸化物を除去することにある。
An object of the present invention is to remove oxides without using chemicals so that corrosion damage to the base metal can be suppressed during and after oxide removal.

酸化物の溶解現象は、金属−水系において、酸化物の熱
力学的安定性の概念と関連している。以下で鉄と水の系
を取シ上げて説明する。酸化物の熱力学的安定性を説明
する場合、第1図のプールベダイヤグラムが便利である
。第1図の電位の単位に表示されているSHEは標準水
素電極電位を示す。以下で用いる電位の表示は、SHE
で示す。
The phenomenon of oxide dissolution is related to the concept of thermodynamic stability of oxides in metal-water systems. The iron and water system will be explained below. When explaining the thermodynamic stability of oxides, the Pourbaix diagram in FIG. 1 is useful. SHE displayed in the unit of potential in FIG. 1 indicates the standard hydrogen electrode potential. The display of potential used below is SHE
Indicated by

この図において領域1は金属鉄が熱力学的に安定な領域
である。領域2は鉄酸・化物であるF’e、O。
In this figure, region 1 is a region where metallic iron is thermodynamically stable. Region 2 is F'e, O, which is an iron oxide/oxide.

が熱力学的に安定な領域でアシ、領域3は鉄酸化物であ
るαpe、Q、が熱力学的に安定な状態になる領域であ
る。領域4はFe”(オンが安定な領域であり1更に領
域5はp e S +イオンが熱力学的に安定な領域で
ある。次に破線60条件になると、1気圧の水素ガスが
発生する。又、破線7の条件になると、1気圧の酸素が
発生する。
is a thermodynamically stable region, and region 3 is a region where αpe, Q, which is an iron oxide, is thermodynamically stable. Region 4 is a region where Fe" (on is stable, and region 5 is a region where p e S + ions are thermodynamically stable. Next, when the broken line 60 condition is reached, hydrogen gas of 1 atm is generated. .Furthermore, when the condition of the broken line 7 is reached, 1 atmosphere of oxygen is generated.

第1図かられかるように酸化物には安定な領域があり、
この領域のなかでは、酸化物は水に殆ど溶解しない。見
方を変えると、酸化物を熱力学的に不安定な状態にした
とき、酸化物の溶解が促進されることになる。
As shown in Figure 1, oxides have stable regions,
Within this region, the oxide hardly dissolves in water. From a different perspective, when an oxide is made thermodynamically unstable, its dissolution is promoted.

通常の大気飽和の水を用いたとき、電位は、αFe、0
.が安定となる領域3に落ち着く。本発明では、金属鉄
の腐食を抑制する目的をも考慮して、電位を卑の方向に
移動させ、酸化物を熱力学的に不安定な状態にすること
により酸化物を溶解させる。
When using normal atmospheric saturated water, the potential is αFe, 0
.. It settles in region 3 where it is stable. In the present invention, taking into account the purpose of suppressing corrosion of metallic iron, the oxide is dissolved by moving the potential in a less noble direction and making the oxide thermodynamically unstable.

電位を卑の方向に移動させるだめの一つの方法として、
本発明では、溶存酸素濃度を下げることと水素ガスを溶
解させることの組み合せを用いる。
One way to move the potential in the direction of base is to
The present invention uses a combination of lowering the dissolved oxygen concentration and dissolving hydrogen gas.

本発明で用いているように水を電解還元するとカフード
極上で次の反応 02+46−+4H” −+2H20 が起υ、溶存酸素濃度が減少する。
When water is electrolytically reduced as used in the present invention, the following reaction 02+46-+4H"-+2H20 takes place on the top of the cup hood, and the dissolved oxygen concentration decreases.

本発明の効果を次に述べる実験により確認した。The effect of the present invention was confirmed by the experiment described below.

第2図に実験装置の概略を示す。本装置に関し、水を電
解還元する槽は、カソード室8とアノ、=ド室9とにカ
チオン交換膜10により仕切られている。各々の室には
、電極11AおよびIIBが挿入され、これらの電極に
は外部電源12を接続する。
Figure 2 shows an outline of the experimental apparatus. In this device, a tank for electrolytically reducing water is partitioned into a cathode chamber 8 and an anode chamber 9 by a cation exchange membrane 10. Electrodes 11A and IIB are inserted into each chamber, and an external power source 12 is connected to these electrodes.

カソード室8には、アルゴンボンベ13−!たは水素ボ
ンベ14から吹込口16および17を通してアルゴンガ
ス又は水素ガスを吹き込むことができる。
In the cathode chamber 8, there is an argon cylinder 13-! Alternatively, argon gas or hydrogen gas can be blown from a hydrogen cylinder 14 through the blowing ports 16 and 17.

カソード室8には蒸留水を1を入れ、アノード室9には
、0.5M/lの蓚酸水溶液を14入れる。
The cathode chamber 8 is filled with 1 portion of distilled water, and the anode chamber 9 is filled with 0.5 M/l oxalic acid aqueous solution.

カソード室に入れる溶解実験用の酸化物ベレット15と
して、市販のape、Q、及びF e、04粉末を直径
約14ymのペレット状に成形した後、約1200Cで
約1時間焼成したものを用いた。
As the oxide pellet 15 for dissolution experiments to be placed in the cathode chamber, commercially available ape, Q, and Fe, 04 powders were molded into pellets with a diameter of about 14 ym, and then fired at about 1200 C for about 1 hour. .

αFe、0.、又はFe30a 酸化物から溶出した鉄
成分濃度は次のようにして求めた。まず、所定の時間、
カソード室8で酸化物を溶解させた後に、酸化物を除去
する。この残留液に濃塩酸を10づ加える。原子吸光測
定装置を用いて、この水溶液を定量して、鉄成分濃度を
決めた。
αFe, 0. , or Fe30a The concentration of the iron component eluted from the oxide was determined as follows. First, for a given time,
After the oxide is dissolved in the cathode chamber 8, the oxide is removed. Add 10 portions of concentrated hydrochloric acid to this residual solution. This aqueous solution was quantitatively determined using an atomic absorption spectrometer to determine the iron component concentration.

以上の装置及び手法を用いて0.2アンペアの電流を通
電しながら5時間αF e t O、とFe50+を溶
解させたときの結果を表1に示す。
Table 1 shows the results when αF e t O and Fe50+ were dissolved for 5 hours while applying a current of 0.2 ampere using the above apparatus and method.

表  1 この表1かられかるように、水の電解還元及び脱気を行
わないとき、並びにアルゴン脱気のみを行ない溶存酸素
濃度を約200ppbに下げたときにαFe2O3、及
びFe3O4から溶出する鉄成分濃度は検出限度以下で
あった。
Table 1 As can be seen from Table 1, iron components eluted from αFe2O3 and Fe3O4 when electrolytic reduction and deaeration of water are not performed, and when only argon deaeration is performed and the dissolved oxygen concentration is lowered to approximately 200 ppb. The concentration was below the detection limit.

ところが、アルゴンガスで脱気しながら0.2アンペア
で電解還元を実施したとき、αFe2O3、及びFe、
04から溶出した鉄成分濃度は、各々0.8と0.1p
I)mに増加した。更に水素ガスを吹き込みながら水を
電界還元した場合に、αFe、o3からの溶出鉄成分濃
度は5.61)I)mに、又、Fe、O,からの溶出鉄
成分濃度は、o、7ppmに増加した。
However, when electrolytic reduction was carried out at 0.2 ampere while degassing with argon gas, αFe2O3 and Fe,
The concentrations of iron components eluted from 04 were 0.8 and 0.1p, respectively.
I) increased to m. Furthermore, when water is subjected to electric field reduction while blowing hydrogen gas, the concentration of iron components eluted from αFe, o3 becomes 5.61)I)m, and the concentration of iron components eluted from Fe, O, becomes o, 7 ppm. increased to

゛ 以上の水素ガスを吹き込みながら水を電解還元した
ときのαpe2o、から溶出する鉄成分濃度の時間変化
は第3図における一曲線Aのようになった。
゛ When water was electrolytically reduced while blowing in the above hydrogen gas, the time change in the concentration of iron components eluted from αpe2o was as shown by the curve A in FIG. 3.

この曲線Aかられかるように、実験開始後、初期段階の
溶出速度は小さいけれども、時間の経過と共に溶出速度
は大きくなる。このことは溶出鉄イオンが酸化物の溶解
を促進していることを示す。
As can be seen from this curve A, the elution rate is small in the initial stage after the start of the experiment, but the elution rate increases as time passes. This indicates that eluted iron ions promote the dissolution of oxides.

つ−!シ、溶出したF e”イオン又はFe■イオンが
カソード電極表面でp c24p又はpe  に還元さ
れ、これらの還元された鉄成分がαFe2O3の還元溶
解を促進する。このことは、事前に2ppmの鉄成分を
添加して溶解実験を行なって得だ溶出鉄成分濃度の時間
変化を表わす曲線Bから確認される。つまりこの場合曲
線Bから実験初期の段階から鉄成分溶出速度は大きい。
Tsu-! The eluted Fe'' ions or Fe■ ions are reduced to p c24p or pe on the surface of the cathode electrode, and these reduced iron components promote the reductive dissolution of αFe2O3. This is confirmed from curve B, which represents the time change in the iron component concentration obtained by adding the components and performing a dissolution experiment.In other words, in this case, curve B shows that the rate of iron component elution is high from the initial stage of the experiment.

以上の結果から、本発明を用いると酸化物の溶解を促進
できることが実証された。
The above results demonstrate that the use of the present invention can promote the dissolution of oxides.

次に本発明により腐食が抑制されることを説明する。こ
の場合腐食電位を測定するために、カソード室の蒸留水
に0.OIM/lの濃度になるように硫酸ナトリウム(
N a 2804 )を加えておく。水の電解還元及び
アルゴン脱気を行なわないとき炭素鋼の腐食電位は約+
0.2VC/5HE)であった。次にアルゴンガスで脱
気して、溶存酸素濃度を約200ppbに下げたとき、
腐食電位は約−〇、4VC/5HE)に下がった。この
電位は公知のように炭素鋼が全面腐食するときの電位で
ある(松林光男他、高純度水中における炭素鋼の腐食に
及ぼす溶存酸素の影響、防食技術28巻、32  ・頁
(1979年))。
Next, it will be explained that corrosion is suppressed by the present invention. In this case, to measure the corrosion potential, add 0.0% to distilled water in the cathode chamber. Sodium sulfate (
Add Na 2804). The corrosion potential of carbon steel is approximately + without electrolytic reduction of water and argon degassing.
0.2VC/5HE). Next, when degassing with argon gas and reducing the dissolved oxygen concentration to about 200 ppb,
The corrosion potential decreased to approximately -0.4VC/5HE). As is well known, this potential is the potential at which carbon steel fully corrodes (Mitsuo Matsubayashi et al., Effect of Dissolved Oxygen on Corrosion of Carbon Steel in High Purity Water, Corrosion Prevention Technology Vol. 28, p. 32 (1979)) ).

ところが、水素ガスを吹き込みながら水を電解還元した
場合、腐食電位は、−0,56V[/8HE)に下がっ
た。この電位は公知の炭素鋼のカソード防^電位である
−0.53 ’Vよりも卑な電位である。
However, when water was electrolytically reduced while blowing hydrogen gas, the corrosion potential dropped to -0.56V [/8HE). This potential is less noble than -0.53'V, which is the cathode protection potential of known carbon steel.

つまりこのことは、炭素鋼の腐食が抑制されていること
を示す。
In other words, this shows that corrosion of carbon steel is suppressed.

以上の結果から、水の電解還元と水素ガスの吹き込みを
組み合せると、金属母材の腐食を抑制しながら、表面の
酸化物を溶解除去することができる。更に、この方法で
は、化学薬品を用いていないので、残留化学薬品による
腐食の危険性は皆無である。つまり本発明は、原子力発
電プラントにおける機器、及び配管表面から放射性核種
を含有する酸化物を除去する方法として有望である。
From the above results, when electrolytic reduction of water is combined with blowing hydrogen gas, oxides on the surface can be dissolved and removed while suppressing corrosion of the metal base material. Furthermore, since no chemicals are used in this method, there is no risk of corrosion due to residual chemicals. In other words, the present invention is promising as a method for removing oxides containing radionuclides from equipment and piping surfaces in nuclear power plants.

BWR型原子力発電プラントにおける原子炉冷却材浄化
系(CUW系)に本発明を適用するケースを第4図を用
いて説明する。CUW系は、主に循環ポンプ18、再生
熱交換器19、非再生熱交換器20、フィルタ21、イ
オン交換樹脂を充填しだ脱塩器22から構成されている
。CUW系の配管23の入口側は、原子炉圧力容器に接
続される再循環系配管に取付けられ、配管23の出口側
は原子炉圧力容器に接続される給水配管に取付けられる
A case in which the present invention is applied to a reactor coolant purification system (CUW system) in a BWR type nuclear power plant will be explained using FIG. 4. The CUW system mainly includes a circulation pump 18, a regenerative heat exchanger 19, a non-regenerative heat exchanger 20, a filter 21, and a demineralizer 22 filled with ion exchange resin. The inlet side of the CUW system piping 23 is attached to a recirculation system piping connected to the reactor pressure vessel, and the outlet side of the piping 23 is attached to a water supply piping connected to the reactor pressure vessel.

原子炉圧力容器内の冷却水は、再循環配管より配管23
内に流入し、配管23内を通って浄化された後、給水配
管を通って原子炉圧力容器内に戻される。この冷却水は
、配管23内を通る間に、再生熱交換器19および非再
生熱交換器20で冷却された後、フィルタ21および脱
塩器22に送られ、そこで浄化される。脱塩器22から
流出した冷却水は、再生熱交換器19で加熱された後、
給水配管へと導かれる。
Cooling water in the reactor pressure vessel is routed from recirculation piping to piping 23.
After passing through the piping 23 and being purified, it is returned to the reactor pressure vessel through the water supply piping. While passing through the pipe 23, this cooling water is cooled by the regenerative heat exchanger 19 and the non-regenerative heat exchanger 20, and then sent to the filter 21 and the demineralizer 22, where it is purified. The cooling water flowing out from the demineralizer 22 is heated in the regenerative heat exchanger 19, and then
You will be guided to the water supply pipes.

このCUW系の機器および配管内表面から放射性酸化物
を除去する場合には、次に挙げる設備を設置する。まず
CUW系の配管23の入口部と出口部に仮設配管24を
設けて、冷却水を循環できるようにする。次に脱塩器2
2の出口部に仮設の電解装置25、バイパス配管26、
循壌ポンプ27を設ける。電解装置25は、第2図に示
すように、カチオン交換膜10で仕切られたカソード室
8およびアノード室9を有している。更に効率よく酸化
物を除去するとき、水素ガス吹込み用タンク28および
水素ボンベ29を追加する。又このとき水素ガス発生源
として、水素ボンベ29の代りに電解装置30を用いて
も良い。この電解装置30は電解装置25と同様にカチ
オン交換膜に1リアノード室とカソード室に分離されて
いるが、水素ガスの発生効率を上げるためにカソード室
には濃厚な酸を入れておく。又必要に応じて、仮設のフ
ィルター31およびイオン交換樹脂を有する脱塩器32
を設置する。
When removing radioactive oxides from the internal surfaces of CUW equipment and piping, the following equipment will be installed. First, temporary piping 24 is provided at the inlet and outlet of the CUW system piping 23 so that cooling water can be circulated. Next, desalinator 2
Temporary electrolysis device 25, bypass piping 26,
A circulation pump 27 is provided. As shown in FIG. 2, the electrolyzer 25 has a cathode chamber 8 and an anode chamber 9 separated by a cation exchange membrane 10. To remove oxides more efficiently, a hydrogen gas blowing tank 28 and a hydrogen cylinder 29 are added. Also, at this time, the electrolyzer 30 may be used as the hydrogen gas generation source instead of the hydrogen cylinder 29. Like the electrolyzer 25, this electrolyzer 30 is separated into one ryanode chamber and a cathode chamber by a cation exchange membrane, but a concentrated acid is placed in the cathode chamber in order to increase the efficiency of hydrogen gas generation. In addition, if necessary, a temporary filter 31 and a demineralizer 32 having an ion exchange resin may be installed.
Set up.

以上の設備を仮設した後に、バルブ33Aおよび33B
を閉じ、循環ポンプ18および27を運転してCUW系
の配管23内の冷却水を循環させる。パル233C,3
3Dおよび33Eは閉じ、バルブ33Fおよび33Gは
開いている。配管23内を流れる循環水にタンク28内
で水素ガスを吹き込むと共に、電解装置25にて循環水
を電解還元して、循環水を還元状態にする。この還元さ
れた循環水を用いて配管23内壁に付着した放射性核種
を含有する酸化物を溶解除去する。次に溶出した成分を
フィルタ31および脱塩器32に導くことによってそこ
で除去する。
After temporarily installing the above equipment, valves 33A and 33B
is closed, and the circulation pumps 18 and 27 are operated to circulate the cooling water in the CUW system piping 23. Pal 233C, 3
3D and 33E are closed and valves 33F and 33G are open. Hydrogen gas is blown into the circulating water flowing through the pipe 23 in the tank 28, and the circulating water is electrolytically reduced in the electrolyzer 25 to bring the circulating water into a reduced state. This reduced circulating water is used to dissolve and remove oxides containing radionuclides adhering to the inner wall of the pipe 23. The eluted components are then introduced into a filter 31 and a desalter 32 where they are removed.

次にBWR型原子力発電プラントにおける再循環系(P
LR系)に本発明を適用するケースを第5図に示す。P
LR系は、原子炉圧力容器35内の冷却材を強制循環さ
せるために用いられたもので主に再循環ポンプ36、再
循環系配管37および弁38Aおよび38Bから構成さ
れている。
Next, the recirculation system (P
FIG. 5 shows a case in which the present invention is applied to the LR system. P
The LR system is used to forcefully circulate the coolant in the reactor pressure vessel 35, and is mainly composed of a recirculation pump 36, a recirculation system piping 37, and valves 38A and 38B.

この再循環ポンプ3Gおよび再循環系配管37内に付着
した放射性酸化物を除く場合次の設備を仮設する。まず
再循環系配管37の吹込側と吐出側とにバルブ39Aお
よび39Bを有する配管38を継ぐ。この配管38に、
循環ポンプ39、熱交換器40、フィルタ41、イオン
交換樹脂を有する脱塩器42、水素ガス注入夕/り43
および電解装置44を設ける。水素ガス注入タンク43
には水素ガスポンベ45または水素ガス発生用電解装置
46を接続する。電解装置44の構成は、第2図のもの
と同一である。
When removing radioactive oxides adhering to the recirculation pump 3G and the recirculation system piping 37, the following equipment will be temporarily installed. First, a pipe 38 having valves 39A and 39B is connected to the inlet side and the discharge side of the recirculation system pipe 37. In this pipe 38,
Circulation pump 39, heat exchanger 40, filter 41, demineralizer 42 with ion exchange resin, hydrogen gas injection tank 43
and an electrolysis device 44. Hydrogen gas injection tank 43
A hydrogen gas pump 45 or an electrolytic device 46 for hydrogen gas generation is connected to. The structure of the electrolyzer 44 is the same as that shown in FIG.

以上の設備を用い、CUW系の場合と同様にノくルプ3
8Aおよび38Bを閉じてノ(ルブ39Aおよび39B
を開き、循環ポンプ39を駆動し、冷却水を循環させる
。水素ガスをタンク43に導いて循環水に注入し、その
後、この循環水を電解装置44にて電解還元する。この
循環水に溶出した成分をフィルタ41および脱塩器42
で除去する。
Using the above equipment, Nokurupu 3 is installed in the same way as in the CUW system.
Close 8A and 38B and open (Lube 39A and 39B)
is opened, the circulation pump 39 is driven, and the cooling water is circulated. Hydrogen gas is introduced into the tank 43 and injected into the circulating water, and then the circulating water is electrolytically reduced in the electrolyzer 44. The components eluted into this circulating water are removed by a filter 41 and a demineralizer 42.
Remove with .

本発明によれば、化学薬品を用いることなく金属材料表
面の酸化物を効果的に除去できる。
According to the present invention, oxides on the surface of a metal material can be effectively removed without using chemicals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプールペダイヤグラム、第2図は本発明に用い
る電解装置の構造図、第3図は電解還元による溶出した
鉄分濃度の変化を示す特性図、第4図はBWROCUW
系に適用した本発明の除染方法の系統図、第5図はBW
RのPLR系に適用した本発明の他の実施例の系統図で
ある。
Figure 1 is a Pourpe diagram, Figure 2 is a structural diagram of the electrolyzer used in the present invention, Figure 3 is a characteristic diagram showing changes in iron concentration eluted by electrolytic reduction, and Figure 4 is BWROCUW.
Systematic diagram of the decontamination method of the present invention applied to the system, Figure 5 is BW
FIG. 3 is a system diagram of another embodiment of the present invention applied to a PLR system of R.

Claims (1)

【特許請求の範囲】 1、母材金属の表面に成長又は付着した酸化物を電解還
元した水に接触させることによシ還元溶解除去する金属
表面酸化物の除去方法。 2、電解還元する水に、水素ガスを注入する請求の範囲
第1項記載の金属表面酸化物の除去方法。
[Scope of Claims] 1. A method for removing oxides on a metal surface, in which oxides grown or attached to the surface of a base metal are brought into contact with electrolytically reduced water to reduce and dissolve them. 2. The method for removing metal surface oxides according to claim 1, wherein hydrogen gas is injected into the water to be electrolytically reduced.
JP13272281A 1981-08-26 1981-08-26 Removing method for oxide on metallic surface Pending JPS5837200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13272281A JPS5837200A (en) 1981-08-26 1981-08-26 Removing method for oxide on metallic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13272281A JPS5837200A (en) 1981-08-26 1981-08-26 Removing method for oxide on metallic surface

Publications (1)

Publication Number Publication Date
JPS5837200A true JPS5837200A (en) 1983-03-04

Family

ID=15088047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13272281A Pending JPS5837200A (en) 1981-08-26 1981-08-26 Removing method for oxide on metallic surface

Country Status (1)

Country Link
JP (1) JPS5837200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314910A (en) * 2005-05-12 2006-11-24 Sato Kogyo Kk Metallic work cleaning system, cleaning method and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314910A (en) * 2005-05-12 2006-11-24 Sato Kogyo Kk Metallic work cleaning system, cleaning method and production method

Similar Documents

Publication Publication Date Title
US7811392B2 (en) Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
JP4898877B2 (en) Corrosion prevention method for carbon steel members
US4820473A (en) Method of reducing radioactivity in nuclear plant
KR20020050742A (en) Chemical decontamination method and treatment method and apparatus of chemical decontamination solution
JP5059325B2 (en) Method and apparatus for inhibiting corrosion of carbon steel
JP2015052512A (en) Method for chemically decontaminating carbon steel member of nuclear power plant
JP4567765B2 (en) Radionuclide adhesion suppression method and film forming apparatus for nuclear plant components
US11728054B2 (en) Ambient temperature decontamination of nuclear power plant component surfaces containing radionuclides in a metal oxide
WO1989001224A1 (en) Nuclear fuel reprocessing plant
JP5377147B2 (en) Method of forming nickel ferrite film on carbon steel member
JP2008180740A (en) Nuclear power plant constitutive member
JPS5837200A (en) Removing method for oxide on metallic surface
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
RU2543573C1 (en) Intracircuit passivation method of steel surfaces of fast neutron nuclear reactor
JP6220294B2 (en) Anticorrosion method for nuclear power plant
US5901368A (en) Radiolysis-assisted decontamination process
JPS603598A (en) Electro-reduction decontaminating system
JPH01287286A (en) Method and device for preventing corrosion in highly corrosive liquid
JP2007198871A (en) Replacement member for nuclear power plant, and method of handling member for nuclear power plant
JPS6093999A (en) Method of treating chemically decontaminated waste liquor
JP2022072758A (en) Method for suppressing corrosion of carbon steel constituting nuclear power plant, and device therefor
JP5912886B2 (en) Chemical decontamination method
JPH04190197A (en) Decontamination of radioactive contaminated metal
JPS61118700A (en) Method and device for slowly cooling oxide film
JP2016128773A (en) Chemical decontamination method